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Abstract 

This paper describes the initialization problem along with the localization problem over the Turtlebot3 and many more mobile robots. 

The least squares techniques and the squared range measurements obtained from ultra-wide band (UWB) sensors are used for 

calculating the initial robot position. Then by exploiting the initial position, Light Detection and Ranging (LiDAR) scans and scan 

matching technique have been proposed to find the initial heading. Thus, the autonomous pose initialization, which is an important 

problem in robotic applications, is solved. The Extended Kalman Filter, which fuses UWB range measurements, odometry and 

Adaptive Monte Carlo Localization (AMCL) pose information, is adopted to localize the robot during its trajectory. New modules 

have been implemented for Robot Operating Systems (ROS) for real and simulation environments and they are made to be open 

source to enable wide-spread adoption. The simulation results have shown that the proposed method’s Root Mean Square Error 

(RMSE) is 3 cm and it’s almost twice better in accuracy than the benchmarked method.  

 

Keywords: Extended kalman filter, Autonomous mobile robots, Robot navigation, Robot localization, Ultra-wide band, Lidar.   

ROS Ekosistemi ile Robotik Uygulamalar için UWB, LiDAR ve 

Odometriye Dayalı Konumlandırma ve İlklendirme Algoritmaları 

Öz 

Bu çalışmada, Turtlebot3 ve daha birçok mobil robot üzerindeki konum bulma sorunu ile birlikte ilklendirme sorunu açıklanmaktadır. 

Ultra geniş bant (UWB) sensörlerinden elde edilen uzaklıkların kareleri ölçümleri ve en küçük kareler tekniği ilk robot konumunu 

hesaplamak için kullanılır. Daha sonra bu başlangıç pozisyonunundan yararlanarak, ilk yönelim açısını bulmak için Işık Algılama ve 

Uzaklık (LiDAR) sensörünün taramaları ve tarama eşleştirme tekniği önerilmiştir. Böylece, robotik uygulamalarda önemli bir sorun 

olan başlangıçtaki otonom konumlandırma ve yönelim açısını bulma çözüldü. UWB uzaklık ölçümleri, kilometre odometre ve 

Uyarlanabilir Monte Carlo Lokalizasyon (AMCL) poz bilgisini birleştiren Genişletilmiş Kalman Filtresi, robotun yörüngesi sırasında 

konumu bulmak için benimsenmiştir. Gerçek ve simülasyon ortamları için Robot İşletim Sistemleri (ROS) için yeni modüller 

uygulanmıştır ve geniş çapta benimsenmesini sağlamak için açık kaynak olarak yapılmıştır. Simülasyon sonuçları, önerilen yöntemin 

Kök Ortalama Kare Hatasının (RMSE) 3 cm olduğunu ve kıyaslama yöntemden neredeyse iki kat daha iyi olduğunu göstermiştir. 

 

Anahtar Kelimeler: Genişletilmiş kalman filtresi, Otonom mobil robotlar, Robot navigasyonu, Robot konumlandırması, Ultra geniş 

bant, Lidar. 

 

 

                                                           
* Corresponding Author: pinar.ekim@ieu.edu.tr 

http://dergipark.gov.tr/ejosat


Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  344 

 

1. Introduction 

Autonomous vehicles and robots are trending topics. Main 

reason for that might be some advantages that these systems 

introduce to the world. Some of the advantages are decreasing 

human influence in the industry while keeping people away from 

dangerous jobs such as industrial welding or disaster response 

and increasing production rates. However, in order to expand the 

work fields of robots, well designed autonomous robotic systems 

are required. There is one important question that needs to be 

answered to be able to achieve this, “Where am I?”. Given a 

map of the environment and sensors data the problem of 

determining the pose of a robot is localization (Zhang et al., 

2009 and Fox et al., 1999). For example, a recent work for an 

optimal robot path planning in the field of robotics and 

automation proposes Particle Swarm Optimization (PSO) which 

needs the current location of the robot to plan the optimal path 

(Beşkirli and Tefek, 2019).   

Over the years different techniques and algorithms are 

developed to solve the localization problem accurately like 

Kalman filter (Jetto et al., 1999), particle filter (Vlassis et al., 

2002), Monte Carlo Localization (Dellaert et. al, 1999). Each 

method has pros and cons. The Kalman Filter tends to be less 

accurate compared to the particle filter whereas the particle filter 

may require more computation power depending on 

implementation since it uses multiple particles to represent 

robot’s possible location and move them in time according to the 

information coming from sensors. 

A robust solution is required to increase the autonomy and 

adaptability of mobile robots in different circumstances and 

expand the range of applications (Payá et al., 2017). To address 

the mentioned problems, some relevant information about the 

environment that the robot moves is necessary. This information 

is a priori unknown. Therefore, to extract the necessary 

information from the environment autonomous mobile robots 

can be equipped with different sensorial systems (Paya et al., 

2017). On A camera, GPS and odometry are utilized in the 

Kalman and particle filters to localise an outdoor robot (Lee et. 

al, 2009). A recent work which uses LiDAR sensor for point 

cloud-based 3D mapping uses GPS to localize the robot (Açıkel 

and Gökçen, 2019). Inertial Navigation System and a laser range 

sensor can be also exploited for localization (Luo et. al, 2014). 

Recently, Ultra-Wide-Band (UWB) has been mainly used for 

communication is considered as a promising solution for vehicle 

positioning (González et.al, 2009). Capability of data 

transmission range accurate estimation and material penetration 

make it suitable for indoor robotic applications. 

Robot Operating System (ROS) is an open source meta-

operating system that provides a message passing structure 

between different processes across a network (Robot Operating 

System, 2019). ROS is an ecosystem that allows to introduce a 

new sensor (or a node) easily and to have simultaneous data 

from different sensors. Therefore, it leads to easy 

implementation of different sensor fusion techniques and 

combining various hardware components. Furthermore, ROS has 

a simulator like Gazebo which is a powerful tool in the robotics 

field (Yılmaz and Bayındır, 2019). During the simulations and 

real tests, TurtleBot3 which is a ROS standard platform robot is 

exploited. Turtlebot3 uses odometry and Light Detection and 

Ranging (LiDAR) data to localize itself, map the environment 

and navigate. 

Fusing the information, which come from different sensors, 

in a reliable and an efficient way is the solution of localization 

problem or many more robotic problems. Because when a sensor 

can not have measurements under specific environmental 

conditions, the other one can be used to decrease the error 

propagation. In addition of this, the error characteristics of a 

sensor can be fixed by exploting another sensor with different 

characteristics. Although, the importance of the sensor fusion is 

widely known, the newly developed sensor technologies and the 

compatible algorithms have not been studied extensively yet.  

In order to achieve fully autonomous navigation, the 

initialization problem needs to be solved. The standard solution 

for this problem is to give the initial pose (position and 

orientation) of the robot manually. Instead, in this study, UWB 

sensors are proposed to be used to determine the initial position 

for navigation algorithms and also for indoor localization 

applications. UWB range measurements are obtained before 

robot moves and the algorithm estimates the location of the 

robot. Then this information is combined with LiDAR scans to 

calculate the angle of the robot facing relative to the map. With 

this accurate initial pose information, a better navigation can be 

possible. 

In this paper, the Extended Kalman Filter (EKF) has been 

implemented and it fuses odometry, the pose output of the 

adaptive Monte Carlo localization (AMCL) algorithm of 

Turtlebot3 and UWB range measurements to localize the robot 

during its trajectory. The proposed algorithm has been tested in 

different trajectories where the UWB tag on the robot is within 

the line of sight and the non-line of sight of the UWB anchors 

which are distributed in an indoor environment in the simulation 

environment and the real environment. The tests have already 

brought several promising results which can be found in the next 

sections. Once more the importance of sensor fusion is proved. 

Because 

The contributions are the integration of UWB nodes to the 

Turtlebot3 in the ROS ecosystem, to make use of these sensor 

measurements along with the wheel odometry and amcl 

algorithm’s output in the EKF for localization, and the 

initialization of the LiDAR based navigation stack using UWB 

ranging and LiDAR scan matching. Moreover, a simulation 

environment is implemented with the help of the Turtlebot3 

library in ROS. Appropriate GUIs are developed for creating 

synthetic data and testing any algorithm and visualizing the 

performances. They are open to public access in our GitHub 

websites (Bostanci et al., 2019). 

2. Material and Method 

2.1. Problem Formulation of the Localization 

Algorithm 

2.1.1 The Extended Kalman Filter 

The probabilistic theory has many applications in different 

scientific fields. However, it has a special case in robotics for 

interpreting and modelling the uncertainties about locating the 

robots, mapping and information from sensors (Dudek et. al, 

2010). Within this theory, Bayesian Filters aim to estimate the 

states or the beliefs about the states of an environment 

iteratively.  

https://www.turtlebot.com/
http://www.ros.org/about-ros/
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A special type of Bayesian Filter, EKF, is proposed to solve 

the localization for robotic applications. Let 𝑥𝑡  be the state to be 

estimated with time index t. The state is tried to be estimated by 

using the control inputs 𝑢1:𝑡 = {𝑢𝑡, 𝑢𝑡−1, ⋯ 𝑢1} and the 

information or measurements, 𝑧1:𝑡 = {𝑧𝑡 , 𝑧𝑡−1, ⋯ 𝑧1}, that come 

from sensors.  The measurements have a partial knowledge 

about the state, or they might contain error. Additionally, there 

might be errors due to the state modelling and control inputs. 

The evolution of the states and the error characteristics of the 

measurements obey the probabilistic laws.  

In robotic applications the motion model and the observation 

model are defined as follow: 

𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑢𝑡 , 𝑣𝑡−1) 

𝑧𝑡 = ℎ(𝑥𝑡 , 𝑤𝑡). 

 

(1) 

The motion noise and the observation noise are expressed with 

𝑣𝑡−1 and 𝑤𝑡, respectively. If the motion and the observation 

models are linear and the noises are additive, independent and 

identically distributed (i.i.d.) Gaussian distributions then the 

Kalman Filter (KF) is the optimum filter (Bar-Shalom et. al, 

2004). In other words,  

If the initial belief bel(x0) has a Gaussian distribution: 

𝑥𝑜~Ɲ(𝜇𝑜,𝑜) 

𝑏𝑒𝑙(𝑥0) = 𝑝(𝑥0) = det (2𝜋𝑜)−
1

2exp {−
1

2
(𝑥0 − 𝜇0)𝑇𝑜

−1(𝑥0

− 𝜇0)} 

If the motion probability model is linear and the motion noise is 

additive i.i.d. Gaussian distribution: 

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑣𝑡−1, 𝑣𝑡~Ɲ(0, 𝑅𝑡) 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) = det (2𝜋𝑅𝑡)−
1

2exp {−
1

2
(𝑥𝑡 − 𝐴𝑡𝑥𝑡−1 −

𝐵𝑡𝑢𝑡)𝑇𝑅𝑡
−1(𝑥𝑡 − 𝐴𝑡𝑥𝑡−1 − 𝐵𝑡𝑢𝑡)}  

 

(2) 

If the observation probability model is linear and the observation 

noise is additive i.i.d. Gaussian distribution: 

zt = Ctxt + wt, wt~Ɲ(0, Qt) 

𝑝(𝑧𝑡|𝑥𝑡) = det (2𝜋𝑄𝑡)−
1

2exp {−
1

2
(𝑧𝑡

− 𝐶𝑡𝑥𝑡)𝑇𝑄𝑡
−1(𝑧𝑡 − 𝐶𝑡𝑥𝑡)} 

 

(3) 

then the posterior distribution, bel(xt), is always Gaussian and 

the KF expresses it with the mean µt and the covariance t 

parameters at time t. 

The estimated mean and covariance are updated using the 

motion model and this step is called the prediction step: 

�̅�𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡 

̅𝑡 = 𝐴𝑡𝑡−1
𝐴𝑡

𝑇 + 𝑅𝑡. 

 

(4) 

The predicted mean and covariance are updated using the 

observation model and this step is called the update step: 

𝐾𝑡 = ̅𝑡𝐶𝑡(𝐶𝑡̅𝑡𝐶𝑡
𝑇 + 𝑄𝑡)−1 

𝜇𝑡 = �̅�𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡�̅�𝑡) 

𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)̅.𝑡 . 

 

 

(5) 

The Kalman gain Kt in Eq. (5) shows at what proportion the 

measurement is used at the state update.  

When the motion and the observation model are not linear, 

the approximate form of KF, the EKF, is used. The EKF exploits 

the first-degree Taylor approximations of the model functions as 

the local linear forms at the prediction and the update steps.  

2.1.2. The Motion Model: Odometry Information 

Technically, the odometry is a sensor, but it provides control 

inputs for the robotic applications (Dobrev et. al, 2018). The 

odometry motion model comprises the probability of transition 

between the states in the prediction step. Let the robot move 

trans and rotate rot in (t-1, t] so that ut = (trans, rot). Let xt-

1=(x,y,) and xt=(x’,y’,’) be the previous and the current robot 

poses  which have the following relationship: 

 

(
𝑥′
𝑦′

𝜃′

) = (

𝑥
𝑦
𝜃

) + (

𝛿𝑡𝑟𝑎𝑛𝑠cos 𝜃
𝛿𝑡𝑟𝑎𝑛𝑠sin 𝜃

𝛿𝑟𝑜𝑡

).      (6) 

 

To be employed in Eq. (4), the first derivatives of the motion 

model function 𝑔 in Eq. (1) with respect to u and x are obtained 

as follows: 

𝐴𝑡 =
𝜕𝑔(.)

𝜕𝑥
= [

1 0 −𝛿𝑡𝑟𝑎𝑛𝑠sin 𝜃
0 1 𝛿𝑡𝑟𝑎𝑛𝑠cos 𝜃
0 0 1

], 𝐵𝑡 =
𝜕𝑔(.)

𝜕𝑢
= [

cos 𝜃 0
sin 𝜃 0

0 1
].  

(7) 

2.1.3 The Observation Model: UWB Sensors 

UWB sensors can measure the distance between the 

transmitter and the receiver from two-way time of arrival of 

radio signals. The indoor localization problem is very hard due 

to the multipath and the non-line of sight conditions. However, 

UWB technology provides more accurate range measurements 

as the direct path of the signal is easily differentiated from the 

multipath thanks to the ultra-wideband (Bregar et. al, 2018). 

Let 𝑝𝑡
𝑖 and 𝑙

𝑗
 be the locations of the receiver on the robot 

and the 𝑗th transmitter in a 2D indoor environment (the extension 

to 3D is straightforward) respectively, then the true range 

between them is 

𝑟𝑡
𝑈𝑊𝐵 = ‖𝑝𝑡

𝑖 − 𝑙𝑗‖ = √(𝑥𝑡
𝑖 − 𝑙𝑥

𝑗
)2 + (𝑦𝑡

𝑖 − 𝑙𝑥
𝑗
)2.           (8) 

The environmental factors can be modelled as an 

independent Gaussian noise wt ~ N(0,w
2) and added to the 

measurements which have the following expression: 

𝑧𝑡 = 𝑟𝑡
𝑈𝑊𝐵 + 𝑤𝑡.                          (9) 

The first derivative of the observation model function ℎ in 

Eq. (1) with respect to x is obtained for each range 

measurements as follows: 

 

𝐶𝑗,𝑡 =
𝜕ℎ(.)

𝜕𝑥
= [

𝑥𝑡
𝑖−𝑙𝑥

𝑗

√(𝑥𝑡
𝑖−𝑙𝑥

𝑗
)2+(𝑦𝑡

𝑖−𝑙𝑥
𝑗

)2

𝑦𝑡
𝑖−𝑙𝑦

𝑗

√(𝑥𝑡
𝑖−𝑙𝑥

𝑗
)2+(𝑦𝑡

𝑖−𝑙𝑥
𝑗

)2

0].  (10) 
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2.1.4 The Observation Model: AMCL pose information 

Turtlebot3 employs the standard algorithms amcl, gmapping 

and move base for the solution of localization, mapping and 

navigation problems respectively. The amcl algorithm is a 

special form of particle filter which uses the odometry and 

LiDAR information to calculate the pose of the robot (Dellaert 

et. al, 1999). The proposed localization method in this paper 

exploits the pose of amcl algorithm at the update step of the 

EKF. The employed amcl output has the following form 

𝑝𝑡
𝑖,𝑎𝑚𝑐𝑙 = 𝑝𝑡

𝑖 + 𝑡                   (11) 

where 
𝑡
 is the noise of the amcl estimate.  

2.2. Problem Formulation of the Initialization 

Algorithm 

2.2.1 The Source Localization 

Let 𝒙 ∈ 𝑅𝑛 be the unknown robot position, 𝒂𝑖 ∈ 𝑅𝑛,𝑖 =

1, ⋯ , 𝑚 be known sensor positions (anchors), and 𝑟𝑖 = ‖𝒙 − 𝒂𝑖‖ +

𝑤𝑖  be the measured distance between the source and the i-th 

anchor, where 𝑤𝑖 denotes a noise term. Under i.i.d. noise 

maximizing the likelihood of observations for the source 

localization problem is equivalent to 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑|‖𝒙 − 𝒂𝑖‖𝑝 − 𝑟𝑖
𝑝

|
𝑞

.

𝑚

𝑖=1

 
 

(12) 

The case (p = 2, q = 2) is the main interest of this paper and 

corresponds to the cost function used in the SR-LS algorithm of 

(Beck et. al, 2008). The cost function for SR-LS is not a 

likelihood function. It is chosen because it is easy to implement, 

and its computational time is very suitable for practical robotic 

applications. Specifically, the problem solved in (Beck et. al, 

2008) is 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∑|‖𝒙 − 𝒂𝑖‖2 − 𝑟𝑖
2|

2
.

𝑚

𝑖=1

 
 

(13) 

The exact solution of Eq. (7) can be derived by writing the 

equivalent form as follows 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐀𝐲 − 𝐛‖2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 yTHy + 2cTy = 0,
  (14) 

 

where A =  [
−2𝑎1

𝑇 1
⋮ ⋮

−2𝑎𝑚
𝑇 1

], b = [
𝑟1

2 − ‖𝑎1‖2

⋮
𝑟𝑚

2 − ‖𝑎𝑚‖2
], 𝐻 = [

𝐼𝑛 0𝑛

01 0
], and 𝑐 =

[
0𝑛

−0.5
]. 

Next, compute 𝛼∗ as the root of  

�̂�(𝛼)𝑇𝐻�̂�(𝛼) + 2𝑐𝑇�̂�(𝛼) = 0,   with 𝛼 ∈ (−
1

𝛼1
, ∞), 

where α1 is the maximum of the generalized eigenvalues (Golub 

et. al, 1996) of (H, ATA) and �̂�(𝛼) = (𝛼H + A𝑇A)−1(A𝑇b − 𝛼c). 

Finally, the minimizer of the objective in (7) is given by the n 

first component of �̂�(𝛼∗) ∈ 𝑅𝑛+1.  

 

2.2.2 The LiDAR based heading 

The navigation stack of ROS is exploited to navigate a robot 

in a predefined map. The navigation stack resorts to amcl 

algorithm to estimate the current pose of the robot and optimize 

the path to the goal pose. However, amcl algorithm needs a good 

initialization and the common way is to define an initial starting 

pose and to determine the goal point manually on a ROS 

graphical interface, Rviz. If the initialization is not good enough 

then the robot might not reach to the goal location.  

The proposed initialization method uses the UWB and 

LiDAR data. To automate the initialization, the UWB sensors 

are exploited to estimate the current position of the robot via the 

source localization algorithm which is explained in Section 

2.2.1. UWB data can be only used to find the location 

information not the heading. However, the location information 

obtained from them is used as a reference point to match the 

map data around it and the current LiDAR scans so that the 

orientation of the robot can be calculated. To achieve this, the 

LiDAR scan data is rotated ten degrees incrementally and all the 

points are compared with the map data as shown in Fig. 1 at 

each iteration. Over the 360 degrees, the distance of each 

LiDAR end point to the nearest point on the map is calculated 

repeatedly. The angle value at which the sum of the distances of 

the points is the lowest gives the orientation of the robot. The 

pseudo code of the initialization algorithm is given in Table 1. 

               

Fig. 1. Ten degrees rotation of LiDAR scan data at each 

iteration. The blue and red dots correspond to scan and map data 

respectively. 

Table 1. The Pseudo code of the initialization algorithm 

 

 

 

 

 

 

 

 

 

 

 

Input : M = Map Array , L = Lidar Array 

Output : A = angle of robot 

1. A = 0 

2. min_error = infinity 

3. for i:=1 to 360 

4. if i % 10 = 0 

5. L[] rotate i degree 

6. total_distance = 0 

7. for j = L[] every element 

8. min_distance = infinity 

9. for k = M[] every element 

10. if min_distance > distance of k to j 

11. min_distance = distance of k to j 

12. total_distance += min_distance 

13. if min_error > total_distance 

14. A = i 

15. min_error = total_distance 
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2.3. ROS Ecosystem and System Flow 

The location information is the most important information 

for the navigation systems. The UWB sensors are very good 

choice for robotic localization applications as they provide range 

information with low noise components and they are resilient to 

multipath. Furthermore, the fusion of their information with 

odometry information leads to have a more robust solution for 

hard environmental conditions. However, UWB sensors and 

their fusion with other sensor types and for different indoor 

applications are not examined well enough in ROS ecosystem. 

Therefore, in this section the steps of the implementation of ROS 

modules will be described. 

Pozyx UWB sensors (pozyx et. al, 2009) are used through 

the simulations and the real tests. Therefore, the range 

information obtained from each UWB anchor in ROS has to be 

published. However, to determine the robot location, the range 

information from at least 3 or 4 different sensors for 2D and 3D 

are needed. Furthermore, sensors may fail randomly, and the 

erroneous sensor information has to be detected. Thus, a new 

message type, which contains destination_id array, distance 

array and stamp array, is created. For each sensor, the message 

comprises sensor id, range and measurement time and is 

published as "uwb_data_topic". The codes can be found at the 

GitHub website (Bostanci et. al, 2009). Additionally, for the 

simulation purposes, a new UWB simulation node is created and 

it subscribes to "gazebo/model_states" and gets the real position 

of the robot on the simulation. After this step, the range 

information, which is related with the real location, from each 

sensor is calculated and Gaussian noise is added on it. Then it is 

shared with "uwb_data_topic" using the same message type. The 

information from UWB and odometry sensors and amcl pose are 

obtained via "uwb_data_topic" topic, "odom" topic and 

"amcl_pose topic", respectively. "Odom" topic works with 30 

Hz. However, "uwb_data_topic" and "amcl_pose topic" work 

with 5 Hz and 2 Hz respectively so that every 0.033 s odom 

information is used to predict the pose and this is verified with 

UWB data every 0.2 s and amcl data every 0.5 s. After these, the 

pose of the robot is obtained and published with a publisher 

whose name is "localization_data_topic". The codes can be found 

in the GitHub website (Bostanci et. al, 2019). Fig. 2 shows the 

simulation results. The added Gaussian noise is arranged so that 

the standard deviation is the 1.5% of the true distances (pozxy et. 

al, 2019). For several trajectory, the Root Mean Square Error 

(RMSE) of the proposed method is 3cm whereas the RMSE of 

amcl is 6 cm. 

 

Fig. 2. The blue diamonds, the green triangles and the red line 

are the estimated trajectory by our method, the estimated 

trajectory by amcl and the true trajectory, respectively. 

The source localization algorithm with UWB node provides 

the location. However, the initial pose also needs an orientation 

with respect to the map and the system cannot estimate the 

orientation with only one location. Thus, the map and LiDAR 

scan matching is applied. After the initial heading estimation, the 

pose can be published on "initialpose" topic. Fig. 3 shows the 

pose of the robot before and after the initialization in Rviz. 

Before the autonomous initialization, the robot position, which is 

shown with grey rectangle, is wrong and the scan data, which is 

shown with green dots and lines, is not matched with the real 

map, which is shown with black dots and lines as demonstrated in 

Fig. 3a. After the initialization, the scan data and the map are 

properly matched as shown in Fig. 3b.     

Fig. 3.  a) The robot pose and scans from LiDAR before the 

automatic initialization. b) The robot pose and LiDAR scans after 

the automatic initialization. 

 

Lastly, the flow chart of the complete system is shown in 

Fig. 4. A complete simulation and real test environments are 

created so that it can be used for different tasks. Robot starts and 

then the simulation or real-world application is chosen. If the 

application runs in simulation, the Gazebo simulation and Pozyx 

simulation are initiated and those two simulators provide the 

synthetic sensor data and the map data. If the application runs in 

real world, the real sensor data are obtained. After obtaining 

either the synthetic data or real data initialization package uses 

UWB range data and the LiDAR scan data to fullfil the 

autonomous initialization. Afterwards, amcl algorithm takes this 

information, odometry and scan data to calculate the robot 

position during the robot trajectory. The Kalman Filter 

localization node exploits the odometry data to set its motion 

model and it updates the pose information by using the UWB 

range measurements and amcl pose information. Lastly, the GUI 

shows the map and the current robot position. If it is needed, the 

navigation stack can be fed with either with amcl pose 

information or the pose information obtained from the Kalman 

Filter which is proven to provide better pose information. 

 

a) 

 

b) 
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Fig. 4. The flow chart of the complete system 

3. Results and Discussion  

3.1. Initialization Tests 

The initialization is essential to have a proper navigation 

with the navigation stack of ROS. If the robot doesn’t know 

where it is and which direction it is facing properly, the goal it 

reached might be quite erroneous. The robot is placed on the 

point A and sent it to the goal point A’ for comparison (Fig. 5a). 

Fig. 5b indicates the map previously obtained from LiDAR data 

with Gmapping algorithm (Grisetti et. al, 2005).  

 

a) 

 

b) 

Fig. 5.  a)  The real test environment. b) The map of the 

environment obtained with LiDAR. 

The proposed algorithm uses UWB range measurements to 

estimate the robot location and LiDAR and map data to detect 

the direction it’s facing. Fig. 6a and 6b show the decently 

initialized location and the badly initialized location, 

respectively. The green dotted lines here represent LiDAR scan 

data on top of the previously obtained map. As can be seen, the 

Fig. 6a has almost a perfect initializing which means that the 

position of the robot and its alignment with respect to the real-

world match with the map information. On the contrary, the 

results in Fig. 6b demonstrate the bad matching of the laser data 

with the map data due to bad location and direction estimation of 

the robot. 

 

a) 

 

b) 

Fig. 6. a) The good initialization. b) The bad initialization. 

Once the initial pose of the robot is obtained, the robot 

autonomously goes to A’ by exploiting the move base algorithm 

in the navigation stack of ROS. The Figure 7a and 7b shows the 

final pose of the robot which has started with a good 

initialization on the map and in the real environment 

respectively. The robot has perfectly reached the goal as can be 

validated from the LiDAR scans on the map. The results of bad 

initialization can be observed in Fig 7c and 7d and the 

advantageous of having a good estimate on the initial pose is 

obvious. In other words, the robot is quite far away from the 

goal and the LiDAR data is not matched with the map at all. 

Thorough the tests, it is observed that the error above 10 degrees 

on the initial direction estimate of the robot causes the robot 

locates in a totally wrong final pose. Therefore, this emphasizes 

the necessity of the sensitive estimate on the initial pose. 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. 7. The final pose of the robot with a good initialization in a) 

and b), whereas with a bad initialization in c) and b). 

3.2. Localization Tests 

For both initialization and localization tests, five UWB 

anchors are installed in the testing environment which is full of 

chairs and tables in a 10 m by 10 m area (Fig. 8). The UWB tag 

on the robot communicates with these anchors to get the range 

information. Simultaneously, it gets the odometry and amcl pose 

information. Thus, the EKF algorithm fuses these data to get a 

better pose estimation. 
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Fig. 8. UWB anchors and the real test environments. 

The results are shown in Fig. 9 in which the dimensions are 

given in mm. The yellow dots represent the UWB anchors while 

the blue dots and green triangles represent the robot trajectory 

estimated by the EKF and amcl, respectively. The EKF keeps 

providing the location information even if amcl cannot due to 

the computational complexity. Additionally, the accuracy of the 

EKF with multiple sensors is better than the amcl most of the 

time. This motivates the usage of sensor fusion that even if one 

type of sensor measurement is blocked or erroneous, the other 

type keeps supporting the system.  

 

Fig. 9. The estimated trajectory of the robot is shown in blue and 

green by EKF and amcl in real tests respectively. 

 

4. Conclusions and Recommendations 

The EKF based localization algorithm, which fuses UWB, 

amcl output and odometry information is proposed for the 

solution of the localization problem of the robotic applications.  

The least squares and scan matching based initialization 

algorithms, which combine the squared range information and 

scan data, are exploited. The new modules for using UWB 

sensors for ROS ecosystem have been developed. A complete 

system flow is created for autonomous robotic applications. The 

simulation results and the tests in the real environment 

demonstrate the benefits of UWB sensors both for localization 

and the initialization of navigation systems in terms of accuracy, 

the robustness and practicality.  
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