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Abstract 

Detection of driver moods associated to driving style such as drowsy, distracted, vigilant, calm, or aggressive driving is one of the main 

problems of Advanced Driver Assistance Systems and it obviously plays vital role in the prevention of traffic accidents. The main goal 

of this study is to compare the performances of major Supervised Learning based Classification Algorithms (SLCAs) for aggressive 

driving detection, which is one of the fundamental problems for understanding driver mood or driving style through CAN (Control Area 

Network) bus sensor data. These algorithms utilize CAN-bus data acquired by OBDII (On-board Diagnostics) socket of the vehicle. In 

our experiments, to get ground truth data, many trials referring to aggressive and calm driving have been conducted by different subject 

drivers and these sensor data have been labeled as “aggressive” and “calm”. Afterwards, these transformed into training data to assess 

performances of SLCAs. As a result, the Naïve Bayes Classifier has been found to be more successful than the others.  

Keywords: CAN-bus, Driving safety, Aggressive driving, Intelligent vehicles, Classification algorithms.   

CAN-bus Verileri Kullanarak Agresif Sürüş Tespiti için Temel 

Sınıflandırma Algoritmalarının Performans Değerlendirmesi 

Öz 

Uykulu, dikkati dağılmış, dikkatli, sakin ya da agresif sürüş gibi sürüş tarzıyla ilişkili olan sürücü ruh hallerinin tespiti İleri Sürücü 

Destek Sistemlerinin (İSDS) ana problemlerinden biridir ve trafik kazalarının önlenmesinde hayati rol oynamaktadır. Bu çalışmanın 

temel amacı, CAN-bus sensör verilerini kullanarak sürücü ruh halini veya sürüş tarzını anlamanın temel problemlerinden birisi olan 

agresif sürüş tespiti yapmak için Eğiticili Öğrenme Tabanlı Sınıflandırma Algoritmalarının (EÖSAs) performanslarını karşılaştırmaktır. 

Bu algoritmalar, aracın OBDII soketinden elde edilen CAN-bus verilerini kullanır. Deneylerde, referans verilerini elde etmek için agresif 

ve sakin sürüşe ilişkin bir çok deneme sürüşü farklı sürücüler tarafından gerçekleştirilmiştir. Elde edilen veriler “agresif” ve “sakin” 

olarak etiketlenmiştir. Ardından, EÖSA’ ların performansını değerlendirmek üzere eğitim verilerine dönüştürülmüştür. Yapılan 

performans değerlendirmesi sonucunda, Naïve Bayes sınıflandırıcısının diğerlerinden daha başarılı olduğu görülmüştür.  

Anahtar Kelimeler: CAN veriyolu, Sürüş güvenliği, Agresif sürüş, Akıllı araçlar, Sınıflandırma algoritmaları. 
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1. Introduction 

1.1. Motivation 

Every year in the world, thousands of traffic accidents occur, 

resulting in many injuries and deaths. These accidents many of 

which result in loss of life and property are often caused by driver 

mistakes. According to NHTSA and Vantage Auto Club data, 66% 

of fatal traffic accidents are caused by “aggressive driving” 

(safemotorist, iii.org, aaafoundation). For example, according to 

the statistics of the Turkish Statistical Institute and Research 

Department, 313.746 out of the 1.229.364 traffic accidents, which 

result in death and injury in Turkey in 2018, namely 89.6%, are 

caused by the drivers (tuik.gov.tr). About 55% -70% of these 

mistakes are driver mistakes which can be defined as “aggressive 

driving”. According to aforementioned information, it can be 

concluded that driving styles and driver moods play an important 

role in traffic accidents. 

1.2. Problem Statement and Proposed Approach 

In the most general sense, "aggressive driving" can be defined 

as performing dangerous driving with risk of accident by making 

sudden speed or position changes that violate traffic rules. It is 

generally assumed that aggressive driving is in the form of low 

gear driving, sudden braking, sudden acceleration, sudden 

departure, sudden and frequent gear shifting, and uncontrolled 

lane change. Therefore, the real problem here is that sudden 

driving movements of the driver can be detected, which can 

represent a “driving mood” in a means. The existing mood of 

driver maybe different from his/her driving style. This situation 

looks like a player in a theatre. His/her existing mood can be 

happy but he/she plays like in unhappy person role. In a similar 

manner happy driver can drive aggressive. In opposite, an 

unhappy driver can drive calm in response to his/her driving 

experience or professionalism. Without acquiring and processing 

driving data on steering wheel, driving style of a driver cannot be 

understood. This state can be considered as “driving mood” rather 

“driver mood”. As shown in Figure 1, State C is the impulsive 

response of State A. Likewise, State E is the impulsive response 

of State C. In this study, to detect these movements it has been 

used the OBDII information of the vehicle received via CAN bus, 

which includes the vehicle's internal sensor information. By 

means of the built-in sensors, it can be obtained clues for detecting 

driving moods thanks to the driver's pedal movements and 

associated information such as speed, acceleration, and RPM 

(Revolution per Minute) of the vehicle. 

 In this study, external sensors such as cameras, radars, or 

LIDARs are not utilized. Therefore, the cost of problem is tried to 

be minimized solely using vehicle internal sensors. Specified 

classification algorithms are employed to detect aggressive 

driving via the CAN bus data. Data acquisition is carried out 

through CAN bus on a designated parkour. 

There are three stages of moods referring State A, State C, 

and State E in Figure 1. Also, there are two stages affecting 

mentioned moods addressing State B and State D. We assume 

driver’s native mood looks like a system. If an impulse like State 

B is applied to the system, State C is obtained. Then, State D is 

applied to State C. The final one is the responsive state (State E) 

to previous impulsive state (State D). Two different types of 

driving have been experimented, which are labelled as 

“aggressive driving” and “calm driving”. 

 

Figure 1. The story of driving behavior. 

Performance of the deployed algorithms has an important 

role in estimating driving style. As a matter of this fact, it needs 

to be assessed specified algorithms. The proposed approach 

allows researchers to find best algorithm for related problem. In 

this study, some well-known methods have been deployed, which 

are ANN, Naïve Bayes, SVM, C4.5 (J48), and K-Nearest 

Neighbor algorithms. 

1.3. Related Works and Contributions 

In the literature, many sensors have been used for determining 

driving style, one of which is external camera. Ö. Kumtepe et al. 

introduced a camera based system to detect driving style 

(Kumtepe at al, 2015; Kumtepe at al, 2016). They obtained 

aggressive driving rate using aforementioned components as 

nearly 90%. There are many driving behaviour estimation studies 

based on smartphone sensors in literature (Trivedi at al, 2011; 

Eren at al., 2012; Bergasa at al., 2014; Koh at al., 2015; Li at al., 

2016; Oliver at al., 2019). One of them is that of Bergasa et al. 

they were exploited by smartphone sensor data such as GPS 

sensor, acceleration sensor, and its camera to obtain aggressive 

driving level. Lane weaving and drifting rates are found, and 

aggressive driving scoring is performed. Authors in their study get 

a performance over 82%. Moreover, Fuzzy classification method 

is preferred in some of studies (Imkamon at al, 2008; Wu at al, 

2012; Songkroh at al, 2014; Fazio at al, 2016; Arefnezhad at al, 

2019; Wesseleny at al,2019). Determination of aggressive driving 

without CAN bus data is achieved by the studies in (Waitkus at al, 

2014; Li at al, 2014; Vignali at al, 2019; de Naurois at al, 2019). 

Simulator based studies rather using real vehicles exist in pressed 

resources introducing criteria for aggressive driving (Doshi at al, 

2010; Gregoriades at al, 2013; Shirazi at al, 2014; Keklikoglou at 

al, 2018). Some of studies comprise influence of aggressive 

driving estimation on emission (Dia at al, 2015; Sun at al, 2016; 

Stogios at al, 2019; Faria at al, 2019). 

OBDII sensor data is also involved in some of the 

aforementioned studies. Besides, attribute selection for CAN bus 

data reduction is conducted (Karaduman at al, 2013; Taylor at al., 

2015; Fugiglando at al., 2018; Lokman at al., 2019; Le at al., 

2020). The proposed study introduces an approach comparing 

calm and aggressive driving classification algorithms and exploits 

internal sensors existing in subject vehicle. As known, most of the 

vehicles have different kind of internal sensors. However, we have 

preferred common sensors existing in most of vehicles. To cope 

with this main problem, we have tried to use minimum number of 

sensors. Therefore, this scheme brings cost efficiency, portability, 

and compactness due to not using external sensors such as camera, 

radar, LIDAR, GPS, and smartphone sensors. In this study, some 

training based methods are used by real experimental subjects on 

a specified route, which are ANN, Naïve Bayes, SVM, C4.5, and 
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KNN. This comparative approach tries to find best supervised 

algorithm for aggressive and calm driving detection problem. 

1.4. Paper Organization 

Section II provides comprehensive details about 

methodology including Data Acquisition, Normalization, 

Learning and Classification Algorithms, Validation and 

Performance Evaluation. Section III comprises Experimental 

Results, subsections of which consist of data collection via CAN 

bus, estimation results of normalization, performance measure of 

selected algorithms, validation and performance evaluations. 

Conclusion and future works are in Section IV. 

2. Material and Method 

While determining driving style of a motorist, a system 

diagram with all the stages including performance comparison of 

potential classification methods and utilization of internal sensors’ 

information via CAN bus are provided in Figure 2.  

In the first stages, training data are collected, which includes 

aggressive and calm driving. The second stage comprises 

normalization process. In the stage three, the data labelled as 

aggressive/calm are trained by specified algorithms, which are 

ANN, SVM, KNN, C4.5, and Naïve Bayes. The last stage 

includes performance comparisons for aforementioned 

algorithms supporting with validation. 

2.1. Data Acquision 

The main goal of the study is to assess performances of 

driving style detection for specified classification algorithms 

using OBDII sensor data. All the data are collected on a specified 

route. Two types of individual experiments representing 

aggressive and calm driving are conducted to get ground truth 

data. In this manner, two different data tables are obtained. For the 

classification, all the sensor data are not involved in the process. 

Hence, specified attributes are selected from OBDII sensor data 

as shown in Table I. The other sensor data are not selected, since 

they reveal same characteristics for both aggressive and calm 

driving, in other words, they don’t expose discriminative features 

 

Figure 2. Stages of the proposed system 

 

Table 1. The selected sensor data model 

 Sensor Data Type 

Number A1 A2 A3 A4 A5 … 

X1 A11 A21 A31 A41 A51  

X2 A12 A22 A32 A42 A52  

X3 A13 A23 A33 A43 A53  

  .   .   .   .   .   .  

  .   .   .   .   .   .  

Xn-1 A1n-1 A2n-1 A3n-1 A4n-1 A5n-1  

Xn A1n A2n A3n A4n A5n  

2.2. Normalization 

Normalization is utilized to provide steady distribution of 

data sets employed by classification algorithms, to reduce their 

significance suppressing scale differences of sensor data, and to 

prevent from performance loses in the stages of learning and 

classification. Selected attribute set is represented by A=A1, A2, 

…, An-2, An-1, An, whose normalization formula can be provided 

as 

NormA =  
Ai − Amin

Amax− Amin
        (1) 

where Ai refers to attribute value to be normalized, NormA 

denotes normalized attribute value,  Amin indicates minimum 

attribute value, and  Amax represents maximum attribute value. 

2.3. Training Aggressive/calm Driving using 

Specified Classification Algorithm 

In order to realize training process in the classification 

algorithms, CAN bus data should be labelled as aggressive or 

calm subsequently to data acquisition process.  

Therefore, driving style can be classified in the end of 

supervised learning process. Here, we prefer binary labelling in 

which aggressive driving is indicated by “1”, and calm driving is 

represented by “0”. Table II comprises normalized aggressive and 

calm driving dataset. Figure 3 symbolizes driving style in binary 

form 

Table 2. Normalized aggressive and calm driving datasets 

 

Figure 3. Labelling driving style in binary form 

 

 A1 A2 A3 A4 A5             

1 NormA11 NormA21 NormA31 NormA41 NrmA51 

1 NormA12 NormA22 NormA32 NormA42 NrmA52 

. . . . . . 

0 NormA1n NormA2n NormA3n NormA4n NrmA5n 

Aggressive Driving 

Calm Driving 

1 

0 
Calm Driving 
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2.3.1. Artificial Neural Network 

One of the classification algorithms in the proposed approach 

is Artificial Neural Network (ANN). Selection of transfer function 

is a significant stage for ANN. Correlation coefficient is utilized 

in this selection, which is provided in Equation 2. Correlation 

coefficient (r) comprising magnitude and direction, varying from 

-1 to +1, gives the relationship between estimated and actual 

results. Hence, the relationship between ground truth and 

estimated result can be evaluated. 

rxy =  
∑ xy − 

(∑ x)(∑ y)

N

√[∑ x2− 
(∑ x) 2

N
] [∑ y2− 

(∑ y) 2

N
]

           (2) 

where x refers to independent variable, y represents dependent 

variable, and N indicates number of observations. All the 

correlation results are plotted in Figure 4, which are Linear 

Transfer Function (PURELIN), Unipolar Sigmoid Transfer 

Function (LOGSIG), and Bipolar Sigmoid Transfer Function 

(TANSIG). Here, the TANSIG being at closest value to +1 

appears most stable estimation. 

 

Figure 4. Correlation values of the transfer function 

Table 3. Correlation coefficients 

 Learning Validation Test 

 r r r 

LogSig 0,71744 0,65875 0,76662 

TanSig 0,83182 0,89724 0,92370 

Purelin 0,72618 0,66166 0,68348 

Transfer estimation is given by 

F(NET) =
(eNET+ e−NET)

( eNET−e−NET)
     (3) 

considering TANSIG which is selected as transfer function. 

Designed ANN model is illustrated in Figure 5. 

 

Figure 5. Designated ANN 

2.3.2. Naive Bayes 

Another classification algorithm which is employed by this 

study is Naïve Bayesian algorithm. Each of attributes located in 

this classifier is conditional independent. Trained variable is 

conditional dependent to these attributes. In the statistical 

calculations of the Naïve Bayesian algorithm, data sets are firstly 

determined. Given i=1, …, n data sets can be defined as 𝑥𝑖 =
[ A1𝑖, A2𝑖 , A3𝑖 , A4𝑖 , A5𝑖 , … ]. Each of these data sets have m 

number of classes (cj). Aggressive or calm probability of class j is 

estimated by 

P(cj |x)= P(x|cj )∙P(cj )/P(x)           (4) 

Independent features are also obtained by 

P(cj|x) = ∏ P(xi|cj)
n
i=1 = P(x1|cj) ∙ P(x2|cj) ∙ … ∙ P(xn|cj)   (5) 

2.3.3. K-Nearest Neighbors 

The KNN classification algorithm possesses a memory based 

structure. For this reason, data to be classified are repeatedly 

calculated in each iteration. In the algorithm, variables replacing 

in data sets are represented by a space with n-dimensional as many 

as sample data numbers, which are as shown in Table I. Each 

training data indicates a point { A1i,  A2i, A3i,  A4i,  A5i,
… ,  Ani} in n-dimensional space. Following training stages, new 

samples referring to test data of the system are added to the nearest 

neighbor class determining K-number of neighbors through 

training data. While the classification is proceeded, distances to 

variables of groups are calculated and one with shortest distance 

is obtained. This variable set is added to the class. For n-

dimensional space, the coordinate plane indicating variable set 

class to be added is given in Figure 6. There is different distance 

estimation algorithms in literature. In this study, well-known 

Euclidian distance measure is performed. Xu in Figure 6 denotes 

data to be classified. Euclidian distance calculation to find class 

of data is provided in. 

√∑ (xi −  yi)
2n

i=1       (6) 

where xi and yi represent distance at horizontal and vertical axis 

 
Figure 6. Correlation plane of KNN classification 

2.3.4. Support Vector Machine 

In this study, SVM is aimed to find hyper plane virtual line 

separating calm and aggressive driving classes at equal and 

furthest distance. Dashed lines determine the border line of closest 

data to the other groups. Thus, the distance between these two 

groups is divided into two portions through the hyper plane. Class 

of streaming test data is obtained by border line at equal distance 

y 

Xu 

𝜔1                        𝜔2 

 

Sample Calm Aggressive x 
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to both class using training data. Hyper plane line discriminating 

aggressive and calm driving is determined by SVM coordinate 

system. 

2.3.5. C4.5 Algorithm (J48 Algorithm) 

One of the algorithms that is preferred in this study is C4.5 or J48 

algorithm. Decision trees are utilized for classification in C4.5 

algorithm. It can continue classifying even if missing information 

occurs. Threshold value of each variable set, for example k=1..., 

n and A5𝑘 = {A51, A52, A53, … , A5𝑛} in Table I, should be 

determined for classification, and all the values located in variable 

set should be sorted. The threshold value is obtained by 

calculating the median value of these sorted data as 

Ti =  
Ak+Ak+1

2
       (7) 

 

Figure 7. SVM coordinate plane 

To find locations of data group in branch of tree, the entropy of 

each one should be obtained right after getting threshold values. 

Uncertainty measure for each parameter is thus determined, and 

these parameters are sorted considering their discrimination level. 

Entropy values are calculated by 

H(S) =  − ∑ 𝑝𝑖
n
i=1 log2(𝑝𝑖 )         (8) 

where H(S) refers to entropy values of S, n denotes number 

of messages generated, and 𝑝𝑖  indicates probability for generating 

messages. 

2.4. Validation and Performance Evaluation 

In order to reveal the relationship between the variables in the 

dataset, training data which are labelled as aggressive or calm are 

trained using classification algorithms, and thus aggressive or 

calm driving classification is performed. Estimation performance 

for ANN can be given by 

MSE =
1

k
 ∑ (  yi −  yĩ)

2k
i=1         (9) 

where MSE refers to Mean Square Error, k indicates number 

of data, yi represent value at instant i, and y�̃� denotes i th 

predicated values at instant i. Here, the least error means the most 

accurate estimation. The validation for Naïve Bayes, SVM, KNN, 

and C4.5 is achieved by recall and precision values. There is a 

reverse correlation between recall and precision values as shown 

in Figure 8. 

 

Figure 8. The relation between recall and precision 

In some situations, while precision result is high, recall value 

may be low. For that reason, the result may not be meaningful as 

shown in Figure 8. Therefore, harmonic average value of arising 

results is obtained to get F-Score value, which refers to 

performance value. Table IV includes data classification results in 

which TP denotes True Positive, FN represents False Negative, FP 

indicates False Positive, and TN refers to True Negative. 

Furthermore, Equation 10 denotes accuracy rate estimation, 

Equation 11 represents error rate estimation, Equation 12 refers to 

precision estimation, Equation 13 indicates recall estimation, and 

Equation 14 reveals F-Score estimation (Sokolova at al., 2006). 

Table 4. Data classification results (confusion matrix) 

 Estimated 

(No) 

Estimated 

(Yes) 

 

Actual (No) TN FP TN + FP 

Actual (Yes) FN TP FN + TP 

 TN + FN FP + TP  

Accuracy rate = 
TP+TN 

TP+FP+FN+TN
                          (10) 

Error rate = 
FP+FN 

TP+FP+FN+TN
                                 (11) 

Precision = 
TP

TP+FP
                                      (12) 

Recall = 
TP

TP+FN
                                                    (13) 

F-Score = 
2∙recall∙precision

recall+precision
                         (14) 

3. Experimental Results 

3.1. Data Acquisition via CAN bus 

In this study, five different drivers get a specified lap in two 

times for collecting data as shown in Figure 9. Drivers were asked 

for driving either aggressive or calm in each trial lap. Therefore, 

this process provides a table including ground truth data for 

aggressive and calm driving through same route. The main goal 

of this study is to estimate driving style of drivers through OBDII 

and to compare achievements of classification algorithms. 

Classification process needs characteristically attributes. All the 

sensor data acquired by OBDII is not distinctive. For this reason, 

optimum variables are selected to accomplish classification, 

which are A1, A2, A3, A4, and A5 referring to MAF (grams/sec), 

Calculated Load (%), RPM, Instant Economy Cost (100 Km/L), 

and Vehicle Speed (Km/h), respectively. The rest does not have 

characteristically attributes for discriminating aggressive or calm  

y 

x 

Hyper plane 

Calm Aggressive 

recall 

precision precision 
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Figure 9. Data collection route 

driving. The specified route on which sensor data is collected is 

shown in Figure 9. Selected sensor data for the specified route is 

provided in Table V addressing raw training data set. In the 

Driving Type column of the table, aggressive and calm driving are 

labelled as “1” and “0”, respectively. The sensor data through 

CAN bus varies by vehicle brand and series. Selected attributes 

are common for most of the vehicles. Aggressive dataset consist  

 

 
Figure 10. Data acquisition via OBDII 

of data of 281 rows, and calm data set consist of 372 rows. Sample 

snapshots for data acquisition experiment in vehicle are shown in 

Figure 10. 

 

Table 5. Raw training dataset 

  A1 A2 A3 A4 A5 

No Driving 

Type 
MAF Calculated 

Load 

RPM Instant 

Economy 

Vehicle 

Speed 

1 1 5,74 96,8 2246 10,5 39,8 

2 1 6,11 98,8 2411 10,6 42,9 

. 1 . . . . . 

281 1 5,54 87,8 2170 10,5 38,5 

282 0 0,87 14,9 861 1 0,6 

283 0 0,94 15,7 805 1,1 0,6 

. 0 . . . . . 

652 0 0,85 14,9 865 2 1,2 

653 0 0,87 14,9 861 1 0,6 

A1: MAF (grams/sec), A2: Calculated Load (%), A3: RPM, A4: Instant Economy Coast (100 Km/L), A5: Vehicle Speed (Km/h) 

 

Table 6. Normalized training datasets 

  A1 A2 A3 A4 A5 

 No Driving 

Type 

MAF Calculated 

Load 

RPM Instant 

Economy 

Vehicle 

Speed 

1 1 0,685 0,968 0,399 0,178 0,762 

2 1 0,735 0,988 0,444 0,179 0,821 

. 1 . . . . . 

281 1 0,659 0,878 0,378 0,178 0,737 

282 0 0,034 0,149 0,022 0,016 0,011 

283 0 0,044 0,157 0,007 0,018 0,011 

. 0 . . . . . 

652 0 0,032 0,149 0,023 0,033 0,023 

653 0 0,034 0,149 0,022 0,016 0,011 
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3.2. Normalization 

Collected data should be normalized before training, 

validation, and test processes. Therefore, relative amplitude 

differences in sample data are suppressed, and also this process 

minimizes ill-effect of input data with outliers on the running 

system operation. The input data are taken into the normalization 

range between 0 and +1 as given in Equation 1 denoting min-max 

operation. Normalized data for aggressive and calm driving are 

given in Table VI. 

3.3. Training, validation, and test for ANN 

The selection of transfer function to be employed by ANN is 

achieved, which is given in Equation 2. Correlation performance 

of transfer functions are obtained as shown in Figure 4. Then, the 

bipolar sigmoid transfer function (TANSIG) exposing best 

performance is selected. Number of hidden layer in ANN is 

determined by some factors including over fitting and 

performance to be involved in optimum layer. As it can be 

remembered, the layout of the proposed ANN model is provided 

in Figure 5. Distribution of training, validation, and test process 

results for the proposed ANN is shown in Figure 11. 

 

(a) 

 

(b) 

 
(c) 

Figure 11.  Performance results of ANN, (a) training performance, 

(b) validation performance, (c) test process performance 

3.4. Performance measure of Naïve Bayes, KNN, 

SVM, C4.5 and ANN 

Confusion matrix for the investigated algorithms is provided 

in Table VII, considering 94% training data and 6% test data. The 

results in confusion matrix is substituted by Equation 10, 11, 12, 

13, and 14; then performance results are obtained as given in 

Table VIII including accuracy rate, error rate, precision, recall, 

and F-Score. 

Table 7. Confusion matrix 

 Performance Results 

The Algorithms TN FN FP TP 

Naive Bayes 17 2 1 20 

KNN 15 3 3 19 

SVM 17 4 1 18 

C4.5 (J48) 15 3 3 19 

ANN 16 3 2 19 

TP: True Positive           FN: False Negative                                                                    

FP: False Positive      TN: True Negative 

    

 

Figure 12. ROC curves indicating performance of the algorithms 

 

Table 8. Performance results the algorithms 

 Performance Measures  

Algorithms Accuracy 

Rate 

Error 

rate 
Precision Recall F-

Score 

Naive Bayes 0,925 0,075 0,95 0,909 0,930 

KNN  0,850 0,150 0,86 0,864 0,864 
SVM 0,875 0,125 0,94 0,818 0,878 

C4.5 (J48) 0,850 0,150 0,86 0,864 0,864 
ANN 0,875 0,125 0,90 0,864 0,884 

3.5. Validation and Performance Evaluation 

Process  

The validation process has been carried out using new 

aggressive and calm driving data which is different from previous 

training data. In the acquisition stage, raw test data addressing to 

calm and aggressive driving have been recorded. Then, 

normalization process is applied for them. And then, 

aforementioned algorithms have been experimented by test data.  
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Figure 13.  Performance results of the algorithms in bar 

representations 

Performance results are provided in Table VII. By means of 

recall (sensitivity) and precision values, we can obviously 

perform a logical interpretation between both indicators being 

inverse parabolic relationship. Therefore, we have focused on 

interpreting of F-Score and harmonic average values obtained by 

Equation 14. Further, accuracy rate gives a valuable clue to have 

an idea for performance of existing algorithms. On the other hand, 

in Table VIII, accuracy rate and F-Score values of the algorithms 

are close to each other.  

ROC curve referring to test results of the classification 

algorithms are shown in Figure 12. Also, Table VII is converted 

to bar representation for visually clarifying the issue as provided 

in Figure 13. Accuracy rate, F-Score, precision, and recall 

(sensitivity) scores of Naïve Bayes algorithm are better than those 

of the others, and ROC curve validates this situation. Hence, their 

error rates are less than those of the rest. 

4. Conclusions and Recommendations 

In the present study, we have compared the performance 

results of specified algorithms for aggressive and calm driving by 

means of limited internal sensors. According to the F-Score rate 

of 93%, Naïve Bayes is estimated as best performance value. The 

F-Score performance rates of Artificial Neural Network, Support 

Vector Machine, K-Nearest Neighbors, and C4.5 (J48) algorithms 

are calculated as 88%, 87%, 86%, and 86% in ascending order. 

The difference between both algorithms showing best and least 

performance is 7%, which is the meaningful result in specified 

trials. In the next study, we are planning to deploy embedded 

software estimating driving style through driving mood involving 

in Fuzzy Logic approach for aggressive and calm driving mood. 
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