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Abstract 

In this study, the ruled surfaces obtained by normal and binormal vectors along a timelike space curve by using q-frame are 

investigated in 3 dimensional Minkowski space. Directional evolutions of both quasi normal and quasi binormal ruled surfaces are 

studied by using their directrices. Then, we work on some geometric properties such as inextensibilty, developability and minimality 

of these ruled surfaces. 
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Timelike Uzay Eğrisi Boyunca q-çatı Kullanılarak Doğrultmanların 

Gelişimine Göre Regle Yüzeylerin Yönlü Gelişimleri 

Öz 

Bu çalışmada, 3 boyutlu Minkowski uzayında q-çatılı timelike uzay eğrisi boyunca normal ve binormal vektörlerle elde edilen regle 

yüzeyler incelendi. Doğrultmanlar kullanılarak hem quasi normal hem de quasi binormal regle yüzeylerin yönlü gelişimleri  çalışıldı. 

Daha sonra bu regle yüzeylerin açılabilirliği, uzatılamaz olduğu ve minimal olma özellikleri gibi bazı geometrik özellikler üzerine 

çalıştık.  
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1. Introduction 

The time evolution of a curve or a surface is generated by 

inextensible flows of a curve or a surface. The flow of a curve or 

a surface is said to be inextensible if its arclength is preserved or 

the intrinsic curvature is preserved, respectively. Physically, the 

inextensible curve flows lead to motions in which no strain 

energy is induced. Also, the evolutions of curves have many 

important applications of physics as magnetic spin chains and 

vortex filaments [3,12,17]. 

In recent times, the motion of inelastic plane curves has 

been studied by many authors. After Da Rios in 1906 found out 

the geometric relation between the motion of curves and the 

differential equation, Doliwa in 1994 [9] characterized the 

integrable motions of a curve. While Kwon 2005 [16] and 

Körpinar 2011 [15] worked on inextensible flows of curves in 

Euclidean space, Gurbuz 2009 [11] and Yüzbaş 2018 [22] 

studied these curves in Minkowski space. Abd. Ellah 2015, 

Hussein 2016, D.W. Yoon 2019, Soliman 2018 studied the 

evolutions of the ruled surfaces via the evolution of their 

directrix [1,13,20,21]. After the quasi-normal vector of a curve 

was introduced by Coquillart [5], Dede et.al. [6] found quasi 

frame in 2015 and Soliman also used this frame to work on this 

subject in 2018 [20]. 

For a space curve  ( )t , quasi frame consists of three 

orthonormal vectors, the unit tangent vector  t , the quasi-normal  

qn  and the quasi-binormal vector  
qb . The quasi frame as 

called q-frame  , ,q qt n b  is written as 

, ,q q q





 
   

 

t k
t n b t n

t k
,  (1) 

where  k   is the projection vector [6]. The q-frame has many 

advantages versus other frames (Frenet, Bishop). For instance 

the q-frame can be defined even along a line ( 0)    and the 

construction of the q-frame doesn't change if the space curve has 

unit speed or not and the q-frame can also be calculated easily 

[6]. 

 The projection vector  k  is a unit vector along  ,x y   

and z   axes. We choose the projection vector  (0,0,1)k  

without loss of generality.  A quasi frame along a space curve is 

shown in Figure 1. 

 

Figure 1: The q-frame and Frenet frame. 

The derivation equations of the quasi frame is expressed by  

1 2

1 3

2 3

0

0 ,

0

q q

q q

k k

k k

k k









    
         
         

t t

n n

b b

   (2) 

where the quasi curvatures are given as follows 

1 2 3

, , ,
, , .

q q q q
k k k

  

  

    
  

t n t b n b
 (3) 

A ruled surface is a surface that can be sweept out by 

moving a line in space. Therefore, it has a parametrization of the 

form 

( , ) ( ) ( )u v u v u     

where     is called the directrix and     is the director curve. 

 In Minkowski 3-space ℝ1
3, the inner product of two vectors  

1 2 3( , , )u u uu   and  
1 2 3( , , )w w ww  is defined as 

1 1 2 2 3 3, u w u w u w   u w  

and the cross product of two vectors  
1 2 3( , , )u u uu   and  

1 2 3( , , )w w ww   is defined as 

3 2 2 3 1 3 3 1 1 2 2 1( , , )u w u w u w u w u w u w    u w  

where  
1 2 3, e e e    

2 3 1,  e e e    
3 1 2,  e e e   

respectively [2]. If  u  and w   are timelike vectors then  

u w   is a spacelike vector [19]. 

 The norm of the vector  w   is given by 

,w w w       (4) 

We say that a Lorentzian vector  w   is spacelike, lightlike 

or timelike if  , 0w w ,  , 0w w   and  0,w    

, 0,w w   respectively. In particular, the vector  0w   is 

spacelike [18,19]. Let  ( )t   be a timelike space curve with a 

non-vanishing second derivative. 

 Then Frenet formulas of timelike curve may be written as 

0 0

0

0 0

v



 



     
      
     
          

t t

n n

b b

    (5) 

where  .v  t   The curvature and torsion of timelike curve  

( )t in Minkowski  3-space are obtained by 

, ,   t n b       (6) 

respectively [2,19]. 

 Let    be a surface in Euclidean 3-space, the first 

fundamental form  I of     is defined by  

2 22I Eds Fdsdv Gdv     where 

, , , , , .s s s v v vE F G            (7) 

 The second fundamental form  II   of    is given by  

2 22II eds fdsdv gdv     where  

, , , , ,ss sv vve N f N g N          (8) 

and N  is the unit normal of   . The Gaussian and the mean 

curvatures are expressed as   
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 

2

2 2

2
 and 

2

eg f eG fF gE
K H

EG F EG F

  
 

 
 (9) 

respectively. The necessary and sufficient condition for a regular 

surface being developable and flat is that its Gaussian curvature 

vanishes identically. A minimal surface in R3
is a regular 

surface if its mean curvature vanishes identically [4]. 

 Moreover, in [22] a surface evolution ( , , )s v t   and its 

flow  
t




  are said to be inextensible if the following equalities 

satisfy  

0.
E F G

t t t

  
  

  
     (10) 

 In this paper, we give another approach to evolutions of the 

ruled surfaces depend on a timelike space curve by q-frame used 

in [7,8,10,14]. Using q-frame, we present two sets of quasi frame 

equations with respect to arc-length  s  and time t . We obtain 

three differential equations depend on q-curvatures for the q-

frame vectors of the timelike space curve. Calculating first and 

second fundamental forms of this ruled surface, we get 

geometric properties such as curvatures, flatness, inextensibility 

and minimality of the ruled surface. 

2. q-frame Along a Timelike Space Curve 

 As an alternative frame, quasi frame as called q-frame in 

both Euclidean and Minkowski space is defined by Dede and 

Ekici et al. [6,10]. For a space curve  ( )t , quasi frame consists 

of three orthonormal vectors, the unit tangent vector  t , the 

quasi-normal  
qn  and the quasi-binormal vector  

qb . The quasi 

frame as called q-frame  , ,q qt n b  is written as 

, , .q q q





 
   

 

t k
t n b t n

t k
  (11) 

 Since the derivation formula for the q-frame for the timelike 

curve in Minkowski space does not depend on projection vector 

being timelike or spacelike, we work on spacelike projection 

vector without loss of generality. 

 In [8], the derivation equations of the directional q-frame for 

the timelike space curve when tangent vector (timelike), 

projection vector  (0,1,0)k   (spacelike), quasi-normal 

vector (spacelike) and quasi-binormal vector (spacelike) are 

given by 

1 2

1 3

2 3

0

0

0

q q

q q

k k

k k

k k







    
    

    
        

t t

n n

b b

,     (12)                                                                

where the q-curvatures are  

1 2 3, , , , ,q q q qk k k    t n t b n b   (13) 

Then, we have a relation matrix in the following form 

1 0 0

0 cosh sinh .

0 sinh cosh

q

q

 

 

     
     

     
          

t t

n n

b b

 (14) 

Thus, 

1 0 0

0 cosh sinh .

0 sinh cosh

q

q

 

 

    
    

     
          

t t

n n

b b

 (15) 

Moreover, the relation between q-curvatures and Frenet 

curvatures are as follows  

1 2 3cos , sin , .k k k d           

3. Evolution of Timelike Space Curve with 

Time by q-frame 

 In this section, we obtain time evolution equations 

depending on q-curvatures of the evolving curve in order to 

obtain space curve with q-frame. That is, integrating time 

evolution equations for given  , , ,     one can find q-

curvatures. Using eq. (6), we get evolving curve. 

 Theorem 1. The evolution equations for the quasi 

curvatures of the evolving curve are given by 

1
2 3

2
3 1

3
2 1

k
k k

t s

k
k k

t s

k
k k

t s


 


 


 

 
  

 

 
  

 

 
  

 

   (16) 

where the quasi formula with respect to time t  is in the form  

 

 

0

0 .

0

q q

q q

t

 

 

 

    
     

    
        

t t

n n

b b

 

 Proof. Using equation (11), and defining 

1 2

1 3

2 3

0 0

, 0 , 0 ,

0 0

q

q

k k

q A k k B

k k

 

 

 

     
     

       
          

t

n

b

(17) 

we can write  

,

.

q
Aq

s

q
Bq

t











 

Applying the compatibility condition  

,
q q

t s s t

      
   

      
     (18) 

one can find easily 

 , 0
A B

A B
t s

 
  

 
     (19) 
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where   ,A B AB BA    is called Lie bracket of  A   and  

.B   

Using the equations (12) and (14), the matrix of evolution 

equations is obtained by  

1 2
2 3 1 3

31
3 2 1 2

32
3 1 2 1

0

0 0

0

k k
k k k k

t s t s

kk
k k k k

t s t s

kk
k k k k

t s t s



 
   

 
  

 
   

 

 

  

   
       

 
       

    
 

      
     

 

Thus the compatibility condition becomes  

1
2 3

2
3 1

3
2 1

k
k k

t s

k
k k

t s

k
k k

t s


 


 


 

 
  

 

 
  

 

 
  

 

 

which proves theorem. 

4. Directional Evolutions of the Ruled 

Surfaces Depending on A Timelike Space 

Curve 

In this section, giving the characterizations of evolutions of 

ruled surfaces generated by both quasi normal and quasi 

binormal, we calculate their Gaussian and mean curvatures. 

4.1. Evolution of Quasi Normal Ruled Surface 

 The equation of surfaces generated by quasi normal i 

   ( , , ) , ,qs v t s t v s t   n  

First partial derivatives of the surface  ( , , )s v t  are  

 1 31 and .s q v qvk vkt b n      

The normal vector of  ( , , )s v t   is 

 

 

3 1

22 2

3 1

1
.

1

qs v

s v

vk vk
N

v k vk

 

 

  
 

   

t b
 

The coefficients of the first fundamental form are calculated by 
2 2 2

3 1 1( ) 2 1

0

1.

E v k k vk

F

G

   





 

Second partial derivatives of the surface  ( , , )s v t   are  

  21 3
2 3 1 1 3 1 2

1 3

( + ) +( 1+ ) +((1+ ) + )

0.

ss q q

sv q

q

vv

k k
v k k vk k vk vk k v

s s

k k

v







 
 

 

 


 



t n b

t b

n

 

The coefficients of the second fundamental form are calculated 

by 

 

 

2 2 2 23 1
2 1 2 3 2 3 1

3

2 2 2

1 3 1

1 3 3

2 2 2

1 3 1

(2 ) [ ( ) ( )]

1 2

(1 )

1 2

0.

k k
k v k k v k k k k

s s k
e

v k k vk

vk k k
f

v k k vk

g

 
     

 


  

 


  



 

One can find Gaussian and mean curvatures  

     

2 2 2 22

3 1 3 3 1 3 3

2
2 2 2 2 2 2

1 3 1 3 1 1

2 (1 ) (1 2 )

1 2 . 2 1

k vk k k v k k kf
K

E v k k vk v k k vk

     
  

     

 

and  

  

2 2 2 23 1
2 1 2 3 2 3 1

3

3/2
2 2 2

1 3 1

(2 ) [ ( ) ( )]

2 2 1 2

k k
k v k k v k k k k

s s ke
H

E v k k vk

 
     

 
 

  

 

respectively. The quasi normal ruled surface is minimal if and 

only if  0.e    

The ruled surfaces generated by quasi normal are developable 

and flat if and only if  

3 1

1

1
.

1 ( )
k

vk 



      (20) 

With the help of (10), if the quasi normal surface is inextensible, 

then one can derive this differential equation 

2 2 2 1
3 1( ) 0.

k
v k k v

t t

 
  

 
   (21) 

4.2. Evolution of Quasi Binormal Ruled Surface 

 The equation of surfaces generated by quasi binormal is  

     , , , ,qs v t s t v s t   b  

First partial derivatives of the surface  ( , , )s v t   are 

 2 31

.

s q

v q

vk vk



  



t n

b
 

The normal vector of  ( , , )s v t   is 

 

 

3 2

22 2

3 2

1
.

1 1

qs v

s v

vk vk
N

v k vk

 

 

 
 

   

t n
 

The coefficients of the first fundamental form are calculated by 
2 2 2

3 2 2( ) 2 1

0

1.

E v k k vk

F

G

   





 

Second partial derivatives of the surface  ( , , )s v t   are  
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2 22 3
1 3 1 1 2 2 2 3

2 3

( ) +( + ) +( + )

0.

ss q q

sv q

vv

k k
v k k k vk k v k vk vk

s s

k k







 
   

 

 



t n b

t n

 

The coefficients of the second fundamental form are calculated 

by  

 

 

2 2 2 23 2
1 1 2 3 1 2 3

3

2 2 2

2 3 2

3

22 2

3 2

(2 )+ [ ( )+ ( )]

1 2

1 1

0.

k k
k v k k v k k k k

s s k
e

v k k vk

k
f

v k vk

g

 
  

 


  




  



 

Gaussian and mean curvatures are calculated by  

 

2

3

22 2

3 21 1

k
K

v k vk

 
  
    

 

and  

  

2 2 2 23 2
1 1 2 3 1 2 3

3

3/2
22 2

3 2

(2 ) [ ( ) ( )]

2 1 1
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respectively. The quasi binormal ruled surface is minimal if and 

only if  0.e    

 The ruled surfaces generated by quasi binormal are both 

developable and flat if and only if  
3 0.k    With the help of 

(10), if the quasi binormal surface is inextensible, then one can 

derive this differential equation 

2 2 2 2
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