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Abstract 

This research paper deals with the stability problem for a class of neutral-type Hopfield neural networks that involves discrete time 

delays in the states of neurons and discrete neutral delays in the time derivatives of the states of neurons. By constructing a novel suitable 

Lyapunov functional, an easily verifiable algebraic condition for global asymptotic stability of this type of Hopfield neural systems is 

presented. This stability condition is absolutely independent of the discrete time and neutral delays. An instructive example is given to 

demonstrate the applicability of the proposed condition. 
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Ayrık Gecikmeli Nötral-Tip Hopfield Yapay Sinir Ağlarının 

Kararlılık Analizi 

Öz-Türkçe 

 

 Bu araştırma makalesi, nöron durumlarının ayrık zaman gecikmeleri ve nöron durumlarının türevlerinin ayrık nötral gecikmeler içerdiği 

nötral-tip Hopfiled yapay sinir ağlarının kararlılık problemi ile ilgilenmektedir. Yeni ve uygun bir Lyapunov fonksiyonu kullanılarak, 

bu tip Hopfield yapay sinir ağlarının kararlılığı için, yeni ve kolayca doğrulanabilir cebirsel olarak ifade edilen bir koşul sunulmaktadır. 

Bu kararlılık koşulu kesinlikle hem ayrık zaman gecikmeleri hem de ayrık nötral gecikmelerinden bağımsızdır. Elde edilen kararlılık 

koşulunun uygulanabilirliğini göstermek için öğretici bir sayısal örnek verilmiştir. 

 

 

Anahtar Kelimeler: Nötral Sistemler, Hopfield Yapay Sinir Ağları, Lyapunov Fonksiyonları, Kararlılık Analizi. 

1. Introduction 

Recently, the class of Hopfield neural networks has been used in many critical engineering applications associated with image 

processing,    pattern recognitions and optimization related problems [1]-[5]. In these typical engineering applications of this neural 

network, the main problem is to know the requirement for the desired dynamical behavior of this neural network. For instance, in case 

of optimization problems, the critical point is that this neural network must converge some unique and globally asymptotically stable 

equilibrium points. A critical issue is that the dynamics of a neural network can be changed by different external parameters. Specially, 

the electronically implemented neural networks can show undesired dynamical activities due to the time delays caused by finite 

switching speed of electronic elements and signal processing times of neurons. Therefore, it would be appropriate to represent these 
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time delays in the dynamical modelling of these systems. Presently, many research papers have studied the stability of Hopfield neural 

networks involving discrete time delays [6]-[12]. It is important to mention that the neural networks including time delays may not 

always reveal the desired dynamics of neuronal reaction process because of some strange complicated dynamical activities of 

interactions taking place between the neurons.  Thus,  It is of crucial importance to introduce the meaningful information associated 

with the time derivatives of states of the neurons when establishing the dynamical representations of these systems for identifying the 

complete dynamics of these types of complex neuronal interactions. This task is carried out by presenting the additional delays to time 

derivatives of states of neurons. Neural networks whose mathematical models involve both different time delays in states of neurons 

and different neutral delays in time derivatives of states of neurons are called neutral-type neural networks. These types of networks 

have been proved to be effective systems in many applications in the fields of the population ecology, distributed networks involving 

lossless transmission lines [13]-[15]. 

This paper will analyze a neutral-type Hopfield neural network which involves different discrete time delays in states of neurons 

and different discrete neutral delays time derivatives of the states of neurons. Such a neural network possesses a dynamics that is 

governed by the dynamical equations:  

            �̇�𝑖(t) + ∑ 𝑒𝑖𝑗

𝑛

𝑗=1

�̇�𝑗(t − 𝜁𝑗) = −𝑐𝑖𝑥𝑖(𝑡) + ∑ 𝑎𝑖𝑗𝑓𝑗

𝑛

𝑗=1

(𝑥𝑗(𝑡)) + ∑ 𝑏𝑖𝑗𝑓𝑗

𝑛

𝑗=1

(𝑥𝑗(𝑡 − 𝜏𝑗)) + 𝑢𝑖 ,   𝑖 = 1,2, … , 𝑛                                         (1) 

where  𝑥𝑖(𝑡)  is a state variable representing ith neuron,  𝑐𝑖 represent some positive constants. The constants   𝑎𝑖𝑗  and  𝑏𝑖𝑗  are 

interconnection parameters.  Discrete time delays are denoted by   𝜏𝑗  and discrete neutral delays are denoted by  𝜁𝑗 ,  1 ≤ 𝑗 ≤ 𝑛.  The  

𝑒𝑖𝑗 are the constant parameters associated with time derivatives of the states having discrete neutral delays. The  𝑓𝑗(𝑥𝑗(𝑡))  are the 

activation functions and   𝑢𝑖 are the inputs. In neutral-type Hopfield neural network given by (1),  denote 𝜏 = max {𝜏𝑗}, 𝜁 = max {𝜁𝑗},  

1 ≤ 𝑗 ≤ 𝑛, and  Ω = max {𝜏, 𝜁}. Thus, neural network  (1) can be defined by the initial conditions of    𝑥𝑖(𝑡) = 𝜑𝑖(𝑡) and    �̇�𝑖(𝑡) =
𝜗𝑖(𝑡)  in    𝐶([−Ω, 0], 𝑅) . We also note that 𝐶([−Ω, 0], 𝑅) include the real valued functions which are assumed to be defined from 
[−Ω, 0]  to R. 

 

In dealing with the dynamical analysis associated with investigated stability issues of neutral neural system represented with equation 

(1),  the basic property that is needed to be satisfied by the activation functions 𝑓𝑗(𝑥𝑗(𝑡))   is an important concept. Therefore, it is first 

required to determine basic characteristics of these activation functions employed in (1). In the literature, it is customary to assume that 

there exist positive Lipschitz constants ℓ𝑖 such that 

 

|𝑓𝑖(𝑥𝑖(𝑡)) − 𝑓𝑖(𝑦𝑖(𝑡))| ≤ ℓ𝑖|𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)|, ∀𝑥𝑖(𝑡), ∀𝑦𝑖(𝑡)  ∈ 𝑅, 𝑥𝑖(𝑡) ≠ 𝑦𝑖(𝑡), ∀𝑖,                                                                       (2) 

 

The formulation of neural system  (1)  is of a mathematical nature that allows us to put system (1) in a form of vectors and matrices as 

shown in the following equation: 

 

 �̇� (𝑡) + 𝐸�̇� (𝑡 − 𝜁) = −𝐶𝑥(𝑡) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓(𝑥(𝑡 − 𝜏)) + 𝑢                                                                                                               (3) 
 

where 𝐶 = 𝑑𝑖𝑎𝑔(𝑐𝑖 > 0), 𝐴 = (𝑎𝑖𝑗)𝑛𝑥𝑛, 𝐵 = (𝑏𝑖𝑗)𝑛𝑥𝑛 and 𝐸 = (𝑒𝑖𝑗)𝑛𝑥𝑛 represent the connection matrices of system (1). 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡))𝑇, �̇�(𝑡) = (�̇�1(𝑡), �̇�2(𝑡), … , �̇�𝑛(𝑡))𝑇, 𝑓(𝑥(𝑡)) = (𝑓1(𝑥1(𝑡)), 𝑓2(𝑥2(𝑡)), … , 𝑓𝑛(𝑥𝑛(𝑡)))𝑇, 

𝑓(𝑥(𝑡 − 𝜏)) = (𝑓1(𝑥1(𝑡 − 𝜏)), 𝑓2(𝑥2(𝑡 − 𝜏)), … , 𝑓𝑛(𝑥𝑛(𝑡 − 𝜏)))𝑇,  �̇�(𝑡 − 𝜁) = (�̇�1(𝑡 − 𝜁), �̇�2(𝑡 − 𝜁), … , �̇�𝑛(𝑡 − 𝜁))𝑇, 

𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛)𝑇 
 

If neutral-type neural networks possess discrete delays, then the mathematical models of these neural systems can be formulated in 

the forms of vectors and matrices. Then,  we may study the stability of these neural network models by exploiting linear matrix inequality 

approach combining with the other appropriate mathematical tools and methods. In [16]-[25], the stability of neutral neural-type 

networks defined by (6)  have been studied and by constructing some classes of suitable Lyapunov functionals together with employing 

some lemmas and new mathematical techniques, different sets of novel stability results on the considered neutral-type neural networks 

of various forms of linear matrix inequalities have been presented. In [26]-[31],  new global stability criteria for system (6) in the forms 

of different representations of linear matrix inequality formulations have been proposed by employing various proper Lyapunov 

functionals with the triple or four integral terms. In [32] and [33]  various stability problems for neutral-type neural networks defined 

by (4) have been investigated, in which, by making the use of semi-free weighting matrix techniques and an augmented Lyapunov 

functional, some less conservative and restrictive global stability conditions via linear matrix inequalities have been presented.  In [34],   

the stability for Hopfield neural networks of neutral-type possessing discrete delays has been suitable conducted, and by utilizing a 

proper Lyapunov functional that makes a combination of the descriptor model transformation, a novel stability criterion has been 

formulated in linear matrix inequalities. In [35],    stability of neural system defined by (4) has been addressed and by proposing a 

appropriate Lyapunov functionals utilizing Auxiliary function-type integral inequalities and reciprocally convex method,  some sets of 

stability results via linear matrix inequalities have been obtained.  In [36],  the Lagrange stability issue of neutral-type neural systems 

having mixed delays has been analyzed, and by utilizing the proper Lyapunov functionals and applying some appropriate linear matrix 

inequality techniques, various sufficient criteria have been obtained to assure Lagrange stability of this model of considered neural 

network system. In [37],  the issues associated with stability of neutral type singular neural systems involving different delay parameters 

have been studied, and by exploiting a novel adequate Lyapunov functional and some rarely integral inequalities, a new global 
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asymptotic stability condition via linear matrix inequality has been derived. In [38], dynamical issues of neural networks of neutral type 

possessing some various delay parameters have been analysed, and various stability results have been derived employing linear matrix 

inequality together with Razumikhin-type approaches. 
 

 Note that the results of [17]-[39]  employ some various classes of linear matrix inequality tolls to derive different sets of sufficient 

stability conditions for system (6). However, the global stability results derived via linear matrix inequality method are required to test 

some negative definite properties of very high dimensional matrices whose elements are established by the system parameters of neural 

networks. Due to these complex and costly calculation problems, it becomes necessity to obtain different stability conditions for system 

(6), that are not expressed in linear matrix inequality forms. In this concept, this paper will focus on the dynamical analysis of system 

(6) to derive some easily verifiable algebraic stability conditions.  

2. Stability Analysis  

The basic contribution of this section will be deriving some stability conditions ensuring the stability of neutral-type Hopfield 

neural system whose model is given by (1).  We now proceed with a first step to simplify the proofs of the stability conditions. This step 

needs to transform the equilibrium points equilibrium points 𝑥∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ )𝑇of Hopfield-type neural network represented by 

equation  (1) to the origin. This will be achieved by utilizing the simple formula 𝑧𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑖
∗, which turns neutral-type neural 

network (1) to an equivalent neutral-type neural network represented by the following differential equations: 

 

 �̇�𝑖(t) + ∑ 𝑒𝑖𝑗

𝑛

𝑗=1

�̇�𝑗(t − ζ) = −𝑐𝑖𝑧𝑖(𝑡) + ∑ 𝑎𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡)) + ∑ 𝑏𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡 − 𝜏)) , 𝑖 = 1,2, … , 𝑛                                                        (4) 

 

where the new activation functions are determined to be in the form 𝑔𝑖(𝑧𝑖(𝑡)) = 𝑓𝑖(𝑧𝑖(𝑡) + 𝑥𝑖
∗) − 𝑓𝑖(𝑥𝑖

∗), ∀𝑖.  In the light of (2),  the 

functions  𝑔𝑖(𝑧𝑖(𝑡)) justify the following conditions : 

 

|𝑔𝑖(𝑧𝑖(𝑡))| ≤ ℓ𝑖|𝑧𝑖(𝑡)|, ∀𝑧𝑖(𝑡)  ∈ 𝑅, ∀𝑖                                                                                                                                                             (5) 

 

The formulation of neural system  (4)  is of a mathematical nature that allows us to put system (1) in a form of vectors and matrices as 

shown in the following equation: 

 

 �̇�(𝑡) + 𝐸�̇�(𝑡 − 𝜁) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡) + 𝐵𝑔(𝑧(𝑡 − 𝜏))                                                                                                                          (6) 

 

where  𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝑛(𝑡))𝑇,  �̇�(𝑡) = (�̇�1(𝑡), �̇�2(𝑡), … , �̇�𝑛(𝑡))𝑇,  𝑔(𝑧(𝑡)) = (𝑔1(𝑥1(𝑡)), 𝑔2(𝑧2(𝑡)), … , 𝑔𝑛(𝑧𝑛(𝑡)))𝑇, 

𝑔(𝑧(𝑡 − 𝜏)) = (𝑔1(𝑧1(𝑡 − 𝜏)), 𝑔2(𝑧2(𝑡 − 𝜏)), … , 𝑔𝑛(𝑧𝑛(𝑡 − 𝜏)))𝑇,  �̇�(𝑡 − 𝜁) = (�̇�1(𝑡 − 𝜁), �̇�2(𝑡 − 𝜁), … , �̇�𝑛(𝑡 − 𝜁))𝑇. 

 

We are now in the position to state the contribution of the paper by a theorem stated as follows : 

 

Theorem 1 : For  neutral-type Hopfield neural system (6), assume that the activation functions 𝑔𝑖(𝑧𝑖(𝑡))  satisfy (5). Then,  the origin 

of  system  (6) is globally asymptotically stable, if the following conditions hold: 

 

δ = 𝑐𝑚
2 − (‖𝐴‖2

2 + 2‖𝐴‖2‖𝐵‖2 + ‖𝐵‖2
2)ℓ𝑀

2 − 2𝑐𝑀
2 ‖𝐸‖2 − 𝑐𝑀‖𝐸‖2(‖𝐴‖2 + ‖𝐵‖2)ℓ𝑀

2 − 𝑐𝑀‖𝐸‖2(‖𝐴‖2 + ‖𝐵‖2) > 0 

and 

    𝑒𝑖 = 1 − ∑ |𝑒𝑗𝑖|

𝑛

𝑗=1

,     𝑖 = 1, 2, … , 𝑛                                                                                                                                                              

 

Proof :  This theorem will be proved by using the state transformation approach. To this end, we define the following: 

 

𝑦𝑖(𝑡) = 𝑧𝑖(𝑡) + ∑ 𝑒𝑖𝑗𝑧𝑗(𝑡 − 𝜁𝑗)

𝑛

𝑗=1

,   𝑖 = 1, 2, … , 𝑛.                                                                                                                                      (7) 

 

or equivalently 

 

y(𝑡) = z(𝑡) + Ez(t − 𝜁)                                                                                                                                                                                  (8) 

 

In this case, taking the time derivatives of both sides of equation (7) yields: 

 

�̇�𝑖(𝑡) = �̇�𝑖(𝑡) + ∑ 𝑒𝑖𝑗�̇�𝑗(𝑡 − 𝜁𝑗)

𝑛

𝑗=1

,   𝑖 = 1, 2, … , 𝑛                                                                                                                                     (9) 
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Equation (7) is equivalent to the following 

 

�̇�(𝑡) = �̇�(𝑡) + 𝐸�̇�(𝑡 − 𝜁)                                                                                                                                                                            (10) 

 

Combining (9) with (4) leads to 

 

𝑦𝑖(t) = −𝑐𝑖𝑧𝑖(𝑡) + ∑ 𝑎𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡)) + ∑ 𝑏𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡 − 𝜏)) , 𝑖 = 1, 2, … , 𝑛.                                                                                   (11) 

  

(11) can be written in form of  matrices and vectors  as stated below  

 

�̇�(𝑡) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡) + 𝐵𝑔(𝑧(𝑡 − 𝜏))                                                                                                                                             (12) 

We can now proceed further to construct a proper Lyapunov functional for the stability analysis of system (6) defined by :  

𝑉(𝑡) = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖
2(𝑡) + ∑ ∫ �̇�𝑖

2
𝑡

𝑡−𝜁𝑖

𝑛

𝑖=1

(𝑠)𝑑𝑠 + (𝛼 + β) ∑ ∫ 𝑧𝑖
2

𝑡

𝑡−𝜏𝑖

𝑛

𝑖=1

(𝑠)𝑑𝑠 + (𝛼 + 𝛾) ∑ ∫ 𝑧𝑖
2

𝑡

𝑡−𝜁𝑖

𝑛

𝑖=1

(𝑠)𝑑𝑠                                           (13) 

 

In (13),  α,  β  and γ  represent some positive real constants whose appropriate numerical values will be specified in what follows.  The 

time derivative �̇�(𝑡) of the Lyapunov functional V(𝑡)  along the trajectories of system (6) is calculated to be in the form: 

 

         �̇�(𝑡) = 2 ∑ 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖(𝑡) �̇�𝑖(𝑡) + ∑ �̇�𝑖
2

𝑛

𝑖=1

(𝑡) − ∑ �̇�𝑖
2

𝑛

𝑖=1

(𝑡 − 𝜁𝑖) + (𝛼 + β) ∑ 𝑧𝑖
2(𝑡)

𝑛

𝑖=1

                                                                              

−(𝛼 + β) ∑ 𝑧𝑖
2(𝑡 − 𝜏𝑖)

𝑛

𝑖=1

+ (𝛼 + 𝛾) ∑ 𝑧𝑖
2(𝑡)

𝑛

𝑖=1

− (𝛼 + 𝛾) ∑ 𝑧𝑖
2(𝑡 − 𝜁𝑖)

𝑛

𝑖=1

                                                      

   ≤ 2 ∑ 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖(𝑡) �̇�𝑖(𝑡) + ∑ �̇�𝑖
2

𝑛

𝑖=1

(𝑡) + (𝛼 + β) ∑ 𝑧𝑖
2(𝑡)

𝑛

𝑖=1

                                                                                           

                               −(𝛼 + β) ∑ 𝑧𝑖
2(𝑡 − 𝜏𝑖)

𝑛

𝑖=1

+ (𝛼 + 𝛾) ∑ 𝑧𝑖
2(𝑡)

𝑛

𝑖=1

− (𝛼 + 𝛾) ∑ 𝑧𝑖
2(𝑡 − 𝜁𝑖)

𝑛

𝑖=1

                                                                           (14) 

 

(14) can be rewritten in matrix and vector form by the following inequality: 

 

       �̇�(𝑡)  ≤ 2𝑦𝑇(𝑡)𝐶 �̇�(𝑡) + �̇�𝑇(𝑡) �̇�(𝑡) + (2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁) 

              = (2𝑦𝑇(𝑡)𝐶 + �̇�𝑇(𝑡))�̇�(𝑡) + (2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)  

                         = (2𝐶𝑦(𝑡) + �̇�(𝑡))
𝑇

�̇�(𝑡) + (2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)       (15) 

 

Using (8) and (10) in (15) results in 

 

         �̇�(𝑡)  ≤ (2C(z(t) + E𝑧(𝑡 − 𝜁)) − Cz(t) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)))𝑇(−Cz(t) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)))                      

  +(2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)                                 

 = (Cz(t) + 2CE𝑧(𝑡 − 𝜁) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)))𝑇(−Cz(t) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)))                    

+(2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)                              

  = −𝑧𝑇(𝑡)𝐶2𝑧(𝑡) − 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶2𝑧(𝑡) + 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐴𝑔(𝑧(𝑡)) + 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐵𝑔(𝑧(𝑡 − 𝜏)))      

 +𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐴𝑔(𝑧(𝑡))   + 𝑔𝑇(𝑧(𝑡 − 𝜏))) 𝐵𝑇𝐵𝑔(𝑧(𝑡 − 𝜏)))  + 2𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐵𝑔(𝑧(𝑡 − 𝜏)))                

                               +(2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)                                                   (16) 

 

First note the inequalities 

 

        −𝑧𝑇(𝑡)𝐶2𝑧(𝑡)  ≤  −𝑐𝑚
2 ‖𝑧(𝑡)‖2

2                                                                                                                                                                    (17) 

 

        −2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶2𝑧(𝑡)  ≤  2𝑐𝑀
2  ‖𝐸‖2‖𝑧(𝑡)‖2‖𝑧(𝑡 − 𝜁)‖2 ≤ 𝑐𝑀

2 ‖𝐸‖2‖𝑧(𝑡)‖2
2 + 𝑐𝑀

2 ‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2
2                                      (18) 

 

        2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐴𝑔(𝑧(𝑡)) ≤  2𝑐𝑀 ‖𝐴‖2‖𝐸‖2‖𝑔(𝑧(𝑡))‖2‖𝑧(𝑡 − 𝜁)‖2                                                                                                  
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                                                          ≤  𝑐𝑀 ‖𝐴‖2‖𝐸‖2‖𝑔(𝑧(𝑡))‖
2

2
+ 𝑐𝑀 ‖𝐴‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2                                                                   (19) 

 

        2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐵𝑔(𝑧(𝑡 − 𝜏)) ≤  2𝑐𝑀  ‖𝐵‖2‖𝐸‖2‖𝑔(𝑧(𝑡 − 𝜏))‖2‖𝑧(𝑡 − 𝜁)‖2                                                                                     

                                                                  ≤  𝑐𝑀 ‖𝐵‖2‖𝐸‖2‖𝑔(𝑧(𝑡 − 𝜏))‖
2

2
+ 𝑐𝑀 ‖𝐵‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2                                                    (20) 

 

 𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐴𝑔(𝑧(𝑡)) ≤  ‖𝐴‖2
2‖𝑔(𝑧(𝑡))‖

2

2
                                                                                                                                                (21) 

 

 𝑔𝑇(𝑧(𝑡 − 𝜏))𝐵𝑇𝐵𝑔(𝑧(𝑡 − 𝜏)) ≤  ‖𝐵‖2
2‖𝑔(𝑧(𝑡 − 𝜏))‖

2

2
                                                                                                                         (22) 

 

 2𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐵𝑔(𝑧(𝑡 − 𝜏)) ≤ 2‖𝐴‖2‖𝐵‖2‖𝑔(𝑧(𝑡))‖
2

‖𝑔(𝑧(𝑡 − 𝜏))‖
2

                                                                                          

                                                       ≤ ‖𝐴‖2‖𝐵‖2‖𝑔(𝑧(𝑡))‖
2

2
+ ‖𝐴‖2‖𝐵‖2‖𝑔(𝑧(𝑡 − 𝜏))‖

2

2
                                                                    (23) 

 

where 𝑐𝑚 = min {𝑐𝑖} and 𝑐𝑀 = max {𝑐𝑖}.  Inserting  (17)-(23) into (16) yields: 

 

            �̇�(𝑡) ≤ −𝑐𝑚
2 ‖𝑧(𝑡)‖2

2 + 𝑐𝑀
2 ‖𝐸‖2‖𝑧(𝑡)‖2

2 + 𝑐𝑀
2 ‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2 + 𝑐𝑀  ‖𝐴‖2‖𝐸‖2‖𝑔(𝑧(𝑡))‖2
2 + 𝑐𝑀 ‖𝐴‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2  

                   + 𝑐𝑀  ‖𝐵‖2‖𝐸‖2‖𝑔(𝑧(𝑡 − 𝜏))‖2
2 + 𝑐𝑀 ‖𝐵‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2 + ‖𝐴‖2
2‖𝑔(𝑧(𝑡))‖2

2 + ‖𝐵‖2
2‖𝑔(𝑧(𝑡 − 𝜏))‖2

2       

            + ‖𝐴‖2‖𝐵‖2‖𝑔(𝑧(𝑡))‖2
2 + ‖𝐴‖2‖𝐵‖2‖𝑔(𝑧(𝑡 − 𝜏))‖2

2                                                                                              

                           +(2α + β + 𝛾)𝑧𝑇(𝑡)𝑧(𝑡) − (𝛼 + β)𝑧𝑇(𝑡 − 𝜏)𝑧(𝑡 − 𝜏) − (𝛼 + 𝛾)𝑧𝑇(𝑡 − 𝜁)𝑧(𝑡 − 𝜁)                                                  (24) 

 

Since ‖𝑔(𝑧(𝑡))‖2
2 ≤ ℓ𝑀

2 ‖𝑧(𝑡)‖2
2 and ‖𝑔(𝑧(𝑡 − 𝜏))‖2

2 ≤ ℓ𝑀
2 ‖𝑧(𝑡 − 𝜏)‖2

2, (24) can be written as 

 

 �̇�(𝑡) ≤ −𝑐𝑚
2 ‖𝑧(𝑡)‖2

2 + 𝑐𝑀
2 ‖𝐸‖2‖𝑧(𝑡)‖2

2 + 𝑐𝑀
2 ‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2 + 𝑐𝑀  ‖𝐴‖2‖𝐸‖2ℓ𝑀
2 ‖𝑧(𝑡)‖2

2                                               

            +𝑐𝑀 ‖𝐴‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2
2   +  𝑐𝑀 ‖𝐵‖2‖𝐸‖2ℓ𝑀

2 ‖𝑧(𝑡 − 𝜏)‖2
2 + 𝑐𝑀  ‖𝐵‖2‖𝐸‖2‖𝑧(𝑡 − 𝜁)‖2

2                             

   +‖𝐴‖2
2ℓ𝑀

2 ‖𝑧(𝑡)‖2
2 + ‖𝐵‖2

2ℓ𝑀
2 ‖𝑧(𝑡 − 𝜏)‖2

2  +  ‖𝐴‖2‖𝐵‖2ℓ𝑀
2 ‖𝑧(𝑡)‖2

2 + ‖𝐴‖2‖𝐵‖2ℓ𝑀
2 ‖𝑧(𝑡 − 𝜏)‖2

2           

+(2α + β + 𝛾)‖𝑧(𝑡)‖2
2 − (𝛼 + β)‖𝑧(𝑡 − 𝜏)‖2

2 − (𝛼 + 𝛾)‖𝑧(𝑡 − 𝜁)‖2
2                                                                             (25) 

 

where ℓ𝑀 = max {ℓ𝑖}. We make the following choices for the values of  β  and γ : 

 

                 β = 𝑐𝑀 ‖𝐵‖2‖𝐸‖2ℓ𝑀
2 + ‖𝐵‖2

2ℓ𝑀
2 + ‖𝐴‖2‖𝐵‖2ℓ𝑀

2                                                                                                                                (26) 

and 

                 𝛾 = 𝑐𝑀
2 ‖𝐸‖2 + 𝑐𝑀 ‖𝐴‖2‖𝐸‖2 + 𝑐𝑀 ‖𝐵‖2‖𝐸‖2                                                                                                                                     (27) 

 

Inserting  (26) and (27) into (25) yields 

 

           �̇�(𝑡) ≤ (−𝑐𝑚
2 + 𝑐𝑀

2 ‖𝐸‖2 + 𝑐𝑀 ‖𝐴‖2‖𝐸‖2ℓ𝑀
2   + ‖𝐴‖2

2ℓ𝑀
2  +  ‖𝐴‖2‖𝐵‖2ℓ𝑀

2 )‖𝑧(𝑡)‖2
2                                                                     

                            +(𝑐𝑀  ‖𝐵‖2‖𝐸‖2ℓ𝑀
2 + ‖𝐵‖2

2ℓ𝑀
2 + ‖𝐴‖2‖𝐵‖2ℓ𝑀

2 + 𝑐𝑀
2 ‖𝐸‖2 + 𝑐𝑀 ‖𝐴‖2‖𝐸‖2 + 𝑐𝑀  ‖𝐵‖2‖𝐸‖2)‖𝑧(𝑡)‖2

2                        

  +2𝛼‖𝑧(𝑡)‖2
2 − 𝛼‖𝑧(𝑡 − 𝜏)‖2

2 − 𝛼‖𝑧(𝑡 − 𝜁)‖2
2                                                                                                   

 = −(𝑐𝑚
2 − (‖𝐴‖2

2 + 2‖𝐴‖2‖𝐵‖2 + ‖𝐵‖2
2)ℓ𝑀

2 + 2𝑐𝑀
2 ‖𝐸‖2 + 𝑐𝑀‖𝐸‖2(‖𝐴‖2 + ‖𝐵‖2)(ℓ𝑀

2 + 1))‖𝑧(𝑡)‖2
2      

+2𝛼‖𝑧(𝑡)‖2
2 − 𝛼‖𝑧(𝑡 − 𝜏)‖2

2 − 𝛼‖𝑧(𝑡 − 𝜁)‖2
2                                                                                                

= −δ‖𝑧(𝑡)‖2
2 + 2𝛼‖𝑧(𝑡)‖2

2 − 𝛼‖𝑧(𝑡 − 𝜏)‖2
2 − 𝛼‖𝑧(𝑡 − 𝜁)‖2

2                                                                                                 (28) 

(28) satisfies 

 

                 �̇�(𝑡) ≤     −δ‖𝑧(𝑡)‖2
2 + 2𝛼‖𝑧(𝑡)‖2

2 = −(𝛿 − 2𝛼)‖𝑧(𝑡)‖2
2                                                                                                                (29) 

 

In (29), the choice 2𝛼 < 𝛿 implies that �̇�(𝑡) will be negative definite for all z(𝑡) ≠ 0.  

 

Let z(𝑡) = 0. Then, from (28), we state the following inequality 

 

           �̇�(𝑡) ≤     −𝛼‖𝑧(𝑡 − 𝜏)‖2
2 − 𝛼‖𝑧(𝑡 − 𝜁)‖2

2    ≤  −𝛼‖𝑧(𝑡 − 𝜏)‖2
2                                                                                                     (30) 

 

Since α > 0, it can be directly concluded from (30) that if z(𝑡 − 𝜏) ≠ 0, then �̇�(𝑡) will be negative definite. 

 

Let z(𝑡) = 0 and z(𝑡 − 𝜏) = 0. Then, from (28), we state the following inequality 

 

           �̇�(𝑡) ≤     −𝛼‖𝑧(𝑡 − 𝜁)‖2
2                                                                                                                                                                         (31) 



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  520 

 

Since α > 0, it can be directly concluded from (31) that if z(𝑡 − 𝜁) ≠ 0, then �̇�(𝑡) will be negative definite. 

 

Let z(𝑡) = 0,  z(𝑡 − 𝜏) = 0 and z(𝑡 − 𝜁) = 0.  then, from (12), it follows that �̇�(𝑡) = 0. In this case, �̇�(𝑡) given by (14) takes the from: 

   

           �̇�(𝑡) = −‖�̇�(𝑡 − 𝜁)‖2
2                                                                                                                                                                              (32) 

 

In (32), it is easy to observe that �̇�(𝑡) < 0 if �̇�(𝑡 − 𝜁) ≠ 0, and �̇�(𝑡) = 0 if �̇�(𝑡 − 𝜁) = 0.  This leads the fact of �̇�(𝑡) = 0 if and only 

if  z(𝑡) = 0, 𝑔(z(𝑡)) = 0, z(𝑡 − 𝜏) = 0, 𝑔(z(𝑡 − 𝜏)) = 0, z(𝑡 − 𝜁) = 0 and �̇�(𝑡 − 𝜁) = 0. This directly means that   �̇�(𝑡) < 0 in  all   

the other cases. This analysis leads us to indicate that the origin of (6) is asymptotically stable. We now need to establish that system  

(6) is also globally stable. For this purpose, one needs to prove that V(𝑡)  is radially unbounded. This is equivalent to satisfy the condition 

of V(𝑡) → ∞  as ‖𝑧(𝑡)‖ → ∞.  

 

Since 

                    𝑦𝑖(𝑡) = 𝑧𝑖(𝑡) + ∑ 𝑒𝑖𝑗𝑧𝑗(𝑡 − 𝜁𝑗)

𝑛

𝑗=1

,   𝑖 = 1, 2, … , 𝑛.                                                                                                                                    

 

We can write 

 

                 |𝑧𝑖(𝑡)| ≤ |𝑦𝑖(𝑡)| + ∑ |𝑒𝑖𝑗||𝑧𝑗(𝑡 − 𝜁𝑖)

𝑛

𝑗=1

|,   𝑖 = 1, 2, … , 𝑛.                                                                                                                 (33) 

 

Now, choose a positive constant 𝑇  such that 0 ≤ 𝑡 ≤ 𝑇.  Then,   (33)  can be written as 

 

              |𝑧𝑖(𝑡)| ≤ |𝑦𝑖(𝑡)| + ∑|𝑒𝑖𝑗|
0

sup
t T 

|𝑧𝑗(𝑡)| + ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑗=1

,   𝑖 = 1, 2, … , 𝑛.                                                                    (34) 

(34)  can be written as 
 

             
0

sup
t T 

 |𝑧𝑖(𝑡)| ≤
0

sup
t T 

|𝑦𝑖(𝑡)| + ∑|𝑒𝑖𝑗|
0

sup
t T 

|𝑧𝑗(𝑡)| + ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑗=1

,   𝑖 = 1, 2, … , 𝑛.                                               (35) 

 

From (35), we obtain 

  

            ∑
0

sup
t T 

|𝑧𝑖(𝑡)|

𝑛

𝑖=1

  ≤ ∑
0

sup
t T 

|𝑦𝑖(𝑡)|

𝑛

𝑖=1

  + ∑ ∑|𝑒𝑖𝑗|
0

sup
t T 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖

+ ∑ ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖

                                              (35) 

 

(35) implies the following inequality 

 

            ∑(1 − ∑ |𝑒𝑗𝑖|)
0

sup
t T 

𝑛

𝑗=1

|𝑧𝑖(𝑡)|

𝑛

𝑖=1

  ≤ ∑
0

sup
t T 

|𝑦𝑖(𝑡)|

𝑛

𝑖=1

 + ∑ ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖

                                                                     (36) 

 

Let  𝑒𝑚 = min {𝑒𝑖}. Then, (36) takes the form 

              𝑒𝑚 ∑
0

sup
t T 

|𝑧𝑖(𝑡)|

𝑛

𝑖=1

≤ ∑
0

sup
t T 

|𝑦𝑖(𝑡)|

𝑛

𝑖=1

 + ∑ ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖

                                                                                         (37) 

 

From (37), we obtain 
 

              𝑒𝑚
0

sup
t T 

‖𝑧(𝑡)‖1 ≤
0

sup
t T 

‖𝑦(𝑡)‖1  + ∑ ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖

                                                                                               (38) 

 

Since the term 

 

              ∑ ∑|𝑒𝑖𝑗|
0

sup
t 

|𝑧𝑗(𝑡)|

𝑛

𝑗=1

𝑛

𝑖
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is bounded, it follows form (38) that if ‖𝑧(𝑡)‖1 → ∞, then  ‖𝑦(𝑡)‖1 → ∞. V(𝑡)  given by (13) ensures the following 
 

                              V(𝑡) ≥   ∑ 𝑐𝑖

𝑛

𝑖=1

𝑦𝑖
2(𝑡) ≥ 𝑐𝑚  ‖𝑦(𝑡)‖2

2                                          

Since ‖𝑦(𝑡)‖2
2 ≥

1

𝑛
‖𝑦(𝑡)‖1

2, we get that  

 

                              V(𝑡) ≥
𝑐𝑚

𝑛
 ‖𝑦(𝑡)‖1

2                              

Thus, ‖𝑧(𝑡)‖1 → ∞  also implies that V(𝑡) → ∞  . Q.E.D. 

 

3. An Instructive Example  
 

This section considers an example to demonstrate the applicability of the propose stability result. 

 

Example: Consider the neutral system given by  (1) which have the following matrices: 

 

 

𝐴 =
1

8
[

1 1 1 1
1 −1 1 −1
1

−1
1
1

−1 −1
1 −1

] ,     𝐵 =
1

8
[

1 1 1 1
1 −1 1 −1
1

−1
1
1

−1 −1
1 −1

] ,   𝐸 = [

𝑒 𝑒 𝑒 𝑒
𝑒 𝑒 𝑒 𝑒
𝑒
𝑒

𝑒
𝑒

𝑒 𝑒
𝑒 𝑒

] 

 

𝐶 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] ,        ℒ = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] 

 

where 𝑒 is a  positive constant. From the above matrices, we calculate : 𝑐𝑚 = 1, : 𝑐𝑀 = 1, : ℓ𝑀 = 1,  ‖𝐴‖2 =
1

4
 , ‖𝐵‖2 =

1

4
    and 

‖𝐸‖2 = 4𝑒. Then, the conditions of Theorem 1 are determined to satisfy the conditions:  
 

 

                   δ = 1 −
1

4
− 8e − 4e =

3

4
− 12e > 0                                                          

and 

         𝑒𝑖 = 1 − 4e > 0,     𝑖 = 1, 2,3,4.                                                                                                                                                              

 

Thus, for this example, e <
1

16
   is determined to be a sufficient condition for stability of neural system (1). 

4. Conclusions  

This research work has addressed stability problem for neutral-type Hopfield neural networks involving discrete time delays in the states 

of neurons and discrete neutral delays in the time derivatives of the states of neurons. By utilizing an appropriate Lyapunov functional, 

an easily verifiable algebraic criterion for global asymptotic stability of the class of Hopfield neural systems of neutral type has been 

presented. This stability condition proved to absolutely independent of the discrete time and neutral delays. An instructive example has 

been given to demonstrate the applicability of the proposed global stability condition. 
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