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Abstract 

In this research, we present a multi-layered feed-forward neural network (ANN) model developed for prediction of dynamic viscosity 

of aqueous gelatin solutions using experimental data collected from a number of measurements. In ANN architecture, shear stress, shear 

strain, torque of spindle, the angular velocity of spindle together with mass concentrations of gelatin solutions were introduced as input 

neurons, whereas dynamic viscosity of aqueous gelatin solutions was assigned as a single output neuron to be predicted. Developed 

ANN model was trained using backpropagation algorithm optimized with Bayesian regulation. Optimal geometry of the hidden layer 

was first studied to search out the ANN architecture which yields the most accurate performance results. Mean squared error (MSE), 

mean absolute error (MAE), root-mean-squared error (RMSE), determination of coefficient (𝑅2), the variance accounted for (VAF) and 

regression analyses were used as performance assessment parameters for suggested network models. Sensitivity analysis was carried out to 

investigate the most effective input neuron strongly influencing the performance of the developed ANN model. As a result, the use of 8 neurons 

in the hidden layer has shown excellent performance results yielding the least MSE and the highest 𝑅2 values compared to other suggested 

ANN models. Upon sensitivity analysis, the shear rate was found to be the most effective input neuron significantly affecting network 

performance. ANN-based predicted dynamic viscosity values were found to be in excellent agreement with measured viscosity values, 

demonstrating the robustness as well as the accuracy of the developed ANN model. Developed ANN model can, therefore, be effectively 

used to predict the dynamic viscosity of aqueous polymer solutions using the same input and output parameters in specific data range 

reported in this paper with statistical details. 

 

Keywords: Artificial intelligence, Machine Learning, Artificial neural network, Bayesian regulation, Regression, Relative importance, 

Statistical analysis, Gelatin, Biopolymer, Rheology, Dynamic viscosity.   

Jelatin Çözeltilerinin Dinamik Viskozitesine Yapay Sinir Ağı (YSA) 

Yaklaşımı: Esnek Hesaplama Çalışması 

Öz 

Bu araştırmada, bir dizi ölçümden toplanmış deneysel veriyi kullanarak jelatin çözeltilerinin dinamik viskozitesini tahmin etmek üzere 

geliştirilen çok katmanlı ileri beslemeli bir yapay sinir ağı modeli (YSA) sunuyoruz. YSA yapısında, kayma gerilmesi, kayma oranı, 

mil torku, mil açısal hızı ile birlikte jelatin çözeltilerinin kütle konsantrasyonu giriş nöronları olarak tanıtılırken, jelatin çözeltilerinin 

dinamik viskozitesi tahmin edilmek üzere tek bir çıkış nöronu olarak kullanılmıştır. Geliştirilen YSA modeli, Bayesian regülasyonu ile 

optimize edilmiş geri yayılım algoritması kullanılarak eğitilmiştir. İlk olarak, en doğru performans sonuçlarını veren YSA yapısını 

bulmak üzere gizli katmanın optimal geometrik yapısı çalışılmıştır. Önerilen ağ modelleri için ortalama karesel hata (MSE), ortalama 
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mutlak hata (MAE), ortalama kare hatalarının karekökü (RMSE), determinasyon katsayısı (𝑅2), varyans (VAF) ve regresyon analizleri 

performans değerlendirme parametreleri olarak kullanılmıştır. Geliştirilen YSA modelinin başarı performansını etkileyen en etkin giriş 

nöronunu araştırmak amacıyla duyarlılık analizi yapılmıştır. Sonuç olarak, gizli katmanda 8 nöronun kullanılması, önerilen diğer YSA 

modellerine kıyasla en düşük MSE ve en yüksek 𝑅2 değerlerini vererek en yüksek başarı performansını göstermiştir. Duyarlılık 

analizinin sonucu olarak, kayma oranı oluşturulan sinir ağının başarı performansını etkileyen en etkin giriş nöronu olarak bulunmuştur. 

Tahmin edilen dinamik viskozite değerlerinin, ölçülen dinamik viskozite değerleriyle büyük bir uyum içinde olması, geliştirilen YSA 

modelinin doğruluğunu ve güvenilirliğini ispatlamıştır. Bu nedenle geliştirilen YSA modeli, bu araştırmada istatistiksel detayları verilen 

veri aralığındaki giriş ve çıkış parametrelerini kullanarak, polimer çözeltilerinin dinamik viskozitesini tahmin etmek için efektif bir 

kullanım sağlamaktadır. 
 

Anahtar kelimeler: Yapay Zeka, Makine Öğrenmesi, Yapay Sinir Ağları, Bayesian Regülasyonu, Regresyon, Duyarlılık Analizi, 

İstatistiksel Analiz, Jelatin, Biyopolimer, Reoloji, Dinamik Viskozite.  

1. Introduction 

Gelatin is a water-soluble natural biopolymer that can be obtained by the chemical degradation or thermal denaturation of collagen taken 

from animals. Chemical structure of gelatin is essentially composed of 14% hydroxyproline, 16% proline and 26% glycine, respectively (Wang 

et al., 2019). Production of gelatin increases with a rapid trend since it can be easily extracted from the skin, tendons, cartilage and bones of 

different animals, particularly fish and porcine (Char et al., 2019). It has a wide array of applications not only in the food industry but also in 

clinical studies. Due to its biocompatibility, biodegradability, as well as low cost, much attention has recently been focused on the applications 

of gelatin mainly in biomedical research methods including tissue engineering, drug delivery and wound dressing (Gullapalli, 2010). 

Particularly, gelatin is well known with its natural chemical cross-linking ability and it is, therefore, being used as a cross-linker to trap 

pharmaceutical molecules in drug delivery systems (Foox & Zilberman, 2015). In such systems, for transportation of drugs to target regions 

in the human body, viscosity of substance as well as carrier medium plays a significant role to ensure homeostasis.  

Depending on the age, breed and partial hydrolyzation of the animal from which the collagen is obtained, the resultant gelatin may have 

different physicochemical and rheological properties that affect its efficiency and workability as well. In this respect, viscosity is one of the 

most significant parameters to measure both the grade and quality of gelatin-based substances. The viscosity of such natural chemical cross-

linkers including gelatin can be controlled by varying a degree of cross-linking and sample concentration. However, the viscosity 

measurements of gelatin-based solutions, in the presence of other additives or at higher concentrations, are not that simple since the 

flow characteristics can quickly change over time due to formation of macromolecules which are strongly bound to each other by long 

peptide chains (Osorio, Bilbao, Bustos, & Alvarez, 2007). It is also known that the rheological characterization of polymer-based 

solutions requires overtime work as much as a joint effort of researchers from many different backgrounds. In that sense, the applications 

of machine learning methods, particularly artificial neural networks (ANNs), are recently of utmost importance to researchers to model 

the most challenging, long-time running experimental problems using earlier measured data and to predict potential results for unknown 

data sets instead of performing new measurements.  

Today, the implementation of ANNs to estimate measurement parameters including the viscosity of materials from different classes 

has become one of the best soft computing methods due to the efficiency and reliability of ANNs. In accordance with the literature 

review, there are several successful neural networks have been developed to predict the viscosity of polymer solutions using a different 

set of parameters (Aminian, 2017; Fatehi, Raeissi, & Mowla, 2017; Hemmat Esfe & Abbasian Arani, 2018). Other than these 

contributions, there are only a few ANN studies addressing the dynamic viscosity of aqueous biopolymer solutions. However, the 

dynamic viscosity of gelatin solutions has not been studied by means of ANNs yet. For this reason, the main goal of this study is to 

develop a multi-layered feed-forward neural network (FFNN) to forecast the dynamic viscosity of aqueous gelatin solutions using a 

large set of experimental data gathered from rheological measurements. Information regarding ANN present with further details in the 

following section. 

 

2. Artificial Neural Network (ANN) 

Artificial neural network (ANN) is a mathematical analog which can examine linear and non-linear complex relationships between 

input and output data by learning algorithm (Haykin, 1994). To develop a simple ANN model for any particular system, one needs to 

define a topology of the network, the training algorithm as well as activation functions, respectively. In each ANN architecture, the 

simplest processing element is called an artificial neuron, which imitates the behavior and the functions of biological neurons in the 

human brain where large amounts of information can be stored and processed simultaneously by neurons (Akkoyun, Yildiz, & Kaya, 

2019). ANN topology basically consists of a number of artificial neurons, similar to biological neurons. ANN has an input layer and an 

output layer with different numbers of neurons, which are interconnected to each other by one or more hidden layers. Among the various 

ANN architectures, the most well-known is a feed-forward neural network (FFNN), which has three distinct layers with several neurons: 

the input layer, the hidden layer(s) and the output layer (Pal & Chakraborty, 2005). In order to illustrate a simple topology of ANN, the 

ANN architecture used in this research article is present in Figure 1.  

In FFNN, interconnection between each neuron is restricted just to one direction, meaning that information flows from the input 

layer to the output layer by passing through the hidden layer(s) by using neurons in each layer (Asteris, Roussis, & Douvika, 2017). 

The first layer in the network topology is known as the input layer where data from the outside world is kept by input neurons. Data 

stored in the input layer is then passed through the neurons in the second layer, called the hidden layer, to be processed using an 
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activation function. The hidden layer plays a very significant role in prediction performance since it allows the neural networks to 

examine the logic of complex relationships between the inputs and the outputs. Based on the complexity of the prediction problems, 

more than one hidden layer can also be used in the network topology. However, in most of the engineering problems, one hidden layer 

with an optimal number of neurons gives excellent prediction results. The last layer of the network is the output layer which receives 

processed information from the neurons in the hidden layer(s) and yields a response of network topology to the inputs. In FFNN, inter-

connected nodes between each neuron have weights that strongly affect the output response of the network model.  

 

 

Figure 1. A basic topology of artificial neural network (ANN) 

 

In order to achieve successful prediction results using the ANN approach, the most important step is to train neural network 

optimally. There are many different types of training algorithms available in the literature used for training ANNs. The most common 

and effective algorithm is backpropagation, which involves two passes. In the forward pass, data in the input layer are fed to ANN. 

Signals in the input layer propagate towards the network topology in order to predict an output value in the output layer based on the 

weights, biases (only connected to the neurons both in the hidden and the output layers) and processing functions of neurons. Predicted 

output value is then compared with the real output value of the assigned input-output data set when the generated signal reaches the 

output layer. To evaluate the performance of the backpropagation algorithm, the error between real and predicted output values is 

computed, and the error signals are then sent backward from the output layer to the input layer by passing through the hidden layer(s) 

(Erdil & Arcaklioglu, 2013). One pass through the set of training patterns by updating the weights is called epoch. Weights and bias 

values are updated simultaneously at the end of each epoch. As also seen from Figure 2, training takes place repeatedly through gradient 

descent on the sum of squares of the errors for all training patterns until these errors are fully minimized (Goh, 1995). After training 

process is successfully done, all final weights and bias values are stored in ANN memory and the neural network is then able to reproduce 

target output values that should close enough to real output values.  

In order to better minimize the error by updating interconnection weights, an effective optimization method must be carried out in 

the backpropagation algorithm. There are many different back-propagation algorithms such as Levenberg-Marquardt, Bayesian 

regulation, scaled conjugate gradient and so forth, which have been used in training of different neural network structures. The trained 

ANN model has to be tested by a different data set, which are not introduced to neural network during the training process. A perfectly 

trained network model is supposed to give nearly similar training and testing errors. For this reason, after training and testing phases, 

neural network is usually validated with a different data set in order to prevent over-fitting when standard optimization methods such 

like Levenberg-Marquardt algorithm are applied in backpropagation algorithm (Ghatak & Robi, 2018). Recent studies have shown that 

the optimization of backpropagation using Bayesian regulation is more robust compared to other standard optimization methods as it 

eliminates the need for lengthy cross-validation (Burden & Winkler, 2009). It is also known that the larger the weights, the higher the 

error. Bayesian regulation backpropagation minimizes the sum of squared errors together with weights between neurons and bias values 

to allow the network to generalize very well. Unlike Levenberg-Marquardt optimization, Bayesian regulation optimization does not 

require an additional data set for validation step and there is no risk of over-fitting (Demirezen & Fung, 2019; Kayri, 2016). Therefore, 

in this study, Bayesian regulation has been used as an optimization method in back-propagation algorithm during training of developed 

network model.  
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Figure 2. Flow-chart illustration of back-propagation algorithm 

 

3. Materials & Methods 

3.1. Preparation of aqueous gelatin solutions 

Gelatin (bloom, purchased from Doğa drug industry) powder was used as a main substance to prepare all aqueous solutions. 

Different amounts of gelatin powders were weighed using a weighing vessel and then added into glass beakers filled with distilled water 

(dH2O). All aqueous solutions were homogeneously mixed on a magnetic stirrer with a constant speed of 1200 rpm at 40 °C for 30 min. 

In total, 6 different aqueous gelatin solutions, each having the same sample amount of 18 ml and different mass concentrations in the 

range between 0.66 wt/vol% and 5 wt/vol%, were prepared in separate glass beakers and cooled down to the room temperature. The 

sample preparation process has been done at room temperature about 21 ± 2 °C and each sample solution was freshly prepared just 

before measurements on the same day. All experiments were performed in cross-linked materials research laboratory in the department 

of physics engineering at Istanbul Technical University (ITU).   

3.2. Dynamic viscosity measurements 

Dynamic viscosity measurements of prepared aqueous gelatin solutions were performed using a rotational rheometer (Fungi-Lab 

premium series) equipped with a heat control unit. All solutions were separately dropped into a removable (stainless-steel) sample 

container of rheometer, which has 18 ml volume capacity, where measuring spindle is attached and rotates to detect viscous forces of 

fluid against rotation direction of the spindle. During the measurements, prepared solutions within container were isolated from an 

external environment using a special component called solvent trap, which restricts the evaporation of the sample. Using a rotational 

rheometer, the dynamic viscosity of solutions can be determined by detecting shear stress and shear rate values. Shear stress is mainly 

associated with measured torque and also geometrical shapes of the spindle whereas the shear rate is calculated from the system’s 

geometry as well as the angular velocity of the spindle. In our experiments, coaxial cylinder spindle (LCP) was used to measure the 

dynamic viscosity of solutions at room temperature (294.15 K). In measurements, not only dynamic viscosity was measured, but also 

other data sets including shear stress, shear rate, torque of spindle as well as the angular velocity of spindle were recorded to be used in 

the ANN development. Information regarding the ANN model is given with further details in the following section.   

 

3.3. Neural network model 

ANN architecture is designed to predict the dynamic viscosity of gelatin solutions by using several different rheological 

measurement parameters and mass concentrations of prepared aqueous sample solutions. In the developed ANN model, mass 

concentration of gelatin solution (𝐶), velocity of spindle (𝑤), torque of spindle (𝑀), shear rate (�̇�) and shear stress (𝜏) were used as input 
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neurons, whereas dynamic viscosity (𝜂) was used as a single output neuron. Statistical details of input and output variables are present 

in Table 1.  

 

Table 1. Statistical details of input and output neurons employed in ANN model 

 

Network 

parameters  

Variables Units of  

variables 

Properties of data set used in network topology 

Minimum Maximum Mean Standard Deviation 

Input 𝐶 wt/vol% 0.66 5 82.2059 42.1648 

Input 𝑤 rad/s 10 220 102.8431 62.6567 

Input 𝑀 N.m 2.3481 98.8399 42.7886 28.3242 

Input �̇� s-1 12.23 269.06 125.7772 76.6292 

Input 𝜏 N/m2 0.1723 7.8513 3.1390 2.0777 

Output 𝜂 cP 1.3427  13.2926 2.8513 2.2896 

 

 

Many different numbers of dynamic viscosity measurements were performed using aqueous gelatin solutions at different mass 

concentrations. In total, 204 separate experimental data were collected to be used in the ANN development. All collected experimental 

data were then randomly divided into two different sub-datasets: a training data set, to develop the network topology, and an independent 

testing data set, to be predicted and then compared with measurement data. 70% of the data (143 data set) were used in network training 

and the remaining 30% (61 data set) were used in ANN testing, respectively. Design of ANN architecture, development of network 

model, and all calculations regarding performance indices were computed in Matlab® (MathWorks, version 2017-b) environment and 

all figures and plots were prepared using Python. A single hidden layer in ANN topology is often sufficient to get high prediction quality 

when optimal geometry is maintained by varying the number of neurons in that of the hidden layer. For this reason, different number 

of neurons has been employed in the hidden layer to find out successfully predicted dynamic viscosity values. Since each input and 

output variable used in ANN development have different orders of magnitude, all experimental data must be normalized to be at a 

comparable range. Therefore, both input and output data were normalized separately in forms of single vectors in the range between 0 

and 1, by using the equation (1): 

 

                                                                                                              𝑥𝑖
∗ =

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

                                                                                            (1) 

 

The selection of activation functions that are used in the hidden and the output layers remarkably affects the performance of the 

developed ANN model. Therefore, several different activation functions, such as logistic-sigmoid, hyperbolic sigmoid and linear 

functions have been tested to investigate which one of them yields the best performance of the network model. Over-fitting is a major 

problem typically arising during the training stage. The use of suitable optimization methods, such as Levenberg-Marquardt, Bayesian 

regulation and so forth, in back-propagation can eliminate the risk of over-fitting. Other than Levenberg-Marquardt, the utilization of 

Bayesian regulation optimization in backpropagation algorithm does not require additional data set used for network validation 

(Demirezen & Fung, 2019) and there is no danger of over-fitting. For this reason, the Bayesian regulation backpropagation algorithm 

was used in network training. The learning rate and maximum number of epochs were set to 0.3 and 1000, respectively, as the network 

model has shown very successful prediction results using these hyperparameter values. All input and output neurons were denormalized 

after network training to measure the success of the developed neural network models. For interpretation of network performance, 

several different performance assessment parameters including mean squared error (MSE), mean absolute error (MAE), root-mean-

squared error (RMSE), coefficient of determination (𝑅2), the variance accounted for (VAF) and regression analysis were employed. 

Equations of MSE, MAE, RMSE and R2 were listed as below (Erzin & Turkoz, 2016; Khalaj, 2013; Nazari, Hajiallahyari, Rahimi, 

Khanmohammadi, & Amini, 2019):  

 

                                                                                                       𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                                                          (2) 

                                                                                                      𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

                                                                                             (3) 

                                                                                                   𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                                                       (4) 

                                                                                                      𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖

∑ �̂�𝑖
2𝑛

𝑖

                                                                                            (5) 

 

where 𝑦𝑖 is measured output data, �̂�𝑖 is ANN predicted output data and 𝑛 is the total number of data.  
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4. Results and Discussion   

An ANN model was developed to forecast the dynamic viscosity of gelatin solutions. Network architecture has 5 neurons in the 

input layer, 1 neuron in the output layer together with 1 hidden layer with different number of neurons, as mentioned in previous section. 

As a first step, the effect of hidden layer geometry, i.e. the number of neurons in the hidden layer as well as different activation functions 

used in the hidden and the output layer on training performance of developed network model was studied. MSE has been chosen as an 

error function in training phase since Bayesian regulation backpropagation algorithm can minimize sum of squared errors. MSE, 𝑅2 

and other details of all optimal network models were listed in table 2.  

 

Table 2. Performance evaluation of the best network models having different transfer functions and hidden neurons 

 

Number of 

hidden 

neurons 

Transfer 

functions used in 

 

𝜇 

 

Epoch 

 

Training 

 

Testing 

Hidden layer Output layer   𝑅2 MSE 𝑅2 MSE 

5 Tan-sigmoid Tan-sigmoid 0.005 195 0.99991 5.28 × 10−6 0.99869 1.78 × 10−4 

6 Log-sigmoid Tan-sigmoid 0.5 509 0.99998 1.34 × 10−6 0.99983 3.71 × 10−4 

6 Tan-sigmoid Tan-sigmoid 0.005 422 0.99904 4.07 × 10−6 0.99894 0.0106 

7 Tan-sigmoid Linear 0.5 314 0.99999 7.21 × 10−7 0.99912 1.32 × 10−4 

7 Tan-sigmoid Tan-sigmoid 0.005 549 0.99998 1.37 × 10−6 0.99077 0.0075 

8* Tan-sigmoid Tan-sigmoid 0.05 546 0.99999 6.27 × 10−7  0.99918 1.26 × 10−4  

8 Tan-sigmoid Linear 0.05 352 0.99998 8.45 × 10−7 0.99957 3.91 × 10−4  

9 Tan-sigmoid Tan-sigmoid 0.05 574 0.99999 6.52 × 10−7 0.99752 1.65 × 10−4 

9 Log-sigmoid Tan-sigmoid 0.05 474 0.99999 7.16 × 10−7 0.99672 0.0011 

10 Tan-sigmoid Tan-sigmoid 0.05 685 0.99999 4.91 × 10−7 0.99183 0.0018 

11 Log-sigmoid Tan -sigmoid 0.5 441 0.99999 3.62 × 10−7 0.99172 7.32 × 10−4 

         *Represents a suggested ANN model yielding the best performance results 

 

As clearly shown in Table 2, when ANN model having 8 neurons in the hidden layer is trained by using a hyperbolic-tangent 

activation function in both hidden and output layer, it yields the highest 𝑅2 and the least MSE values for both training and testing data 

sets, compared to other network models having different numbers of neurons in the hidden layer and different activation functions. For 

the best ANN model, MSE and 𝑅2  values were found to be 6.27 × 10−7and 0.9999, respectively.  

 

Apart from MSE values, as shown in Figure 3(a), regression between measured viscosity and ANN predicted viscosity values, 

which yielded excellent 𝑅2(=0.9999) value, quite close to unity, is a great indication of equally updated weights between interconnected 

nodes. It is clearly shown in Figure 3(a) that a uniform distribution of training data points around the linear least-square fit line in the 

regression plot is another reason why ANN reflects an excellent 𝑅2 value.  

 

 
 

Figure 3. Performance assessment of ANN training: (a) regression plot, (b) residuals, the difference between ANN predicted viscosity 

and measured viscosity values, (c) residual distribution histogram  
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To further investigate how the developed network model is well-trained, residuals and their distribution were additionally analyzed. 

For each training data point, residuals (the difference between measured viscosity and ANN predicted viscosity values) were calculated. 

Residuals were found to be mainly centered around zero with very small homogeneous deviations (see Figure 3(b)), meaning that there 

is no systematic error stemming from the ANN method. The randomized symmetrical distributions of residuals on both sides of zero 

indicate that the developed ANN model is unbiased with a good prediction capability. The main source of prediction error might be due 

to the nature of data sets which cannot be entirely attributed to prediction capability of neural network itself, however, partially the data 

set used in the network model. The residual distribution of the training data set was then studied with a histogram plot to find out the 

range of the error. Figure 3(c) reveals that residuals obtained by the ANN method show a very symmetrical Gaussian distribution and 

most of the training data points used in ANN training found very close to zero, which is in a good agreement with results shown in 

Figure 3(b). It was also observed that residuals obtained using the ANN model were very small, varying between -0.0567 and 0.0289. 

Residuals of training data were found to be 0.0856 in total. 

 

Table 3. Weights and biases for the best ANN topology having 8 hidden neurons 

 

 

Hidden 

neuron 

Weights   Bias 

Input  

neurons 

Output 

neuron 

  Hidden     

  layer 

Output 

layer 

𝐶 𝑤 𝑀 �̇� 𝜏       𝜂  

1 -0.17429   -2.83420  5.96910 -2.83420    5.96930 13.0190    7.83870 3.039 

2 -0.19178   -1.76520 -0.01034 -1.76450   -0.00365   2.1228   -3.10890  

3  0.06877    0.07517  0.09080  0.08348    0.22441   4.2771    0.27651  

4 -0.07328    0.35505 -1.09480  0.35502   -1.09850  -0.9783   -1.33850  

5 -0.00030    2.02180 -0.25705  2.02330   -0.25461   4.297    3.18920  

6 -0.06137   -0.13843 -0.11151 -0.12491   -0.00559 11.312   -0.88134  

7  0.15642   -2.37500  0.53605 -2.37400    0.53530   2.7375   -3.54640  

8  0.80464 -20.46600  4.18640 -20.4660    4.18660 10.569   -35.991  

 

 

In order to determine which of the input neurons employed in ANN training has a domestic effect on prediction performance of 

dynamic viscosity, relative importance-based sensitivity analyses were performed. The relative importance of each input neuron on that 

of dynamic viscosity was studied using inter-connection weights and biases at each neuron presented in Table 3 as well as Garson’s 

algorithm (Garson, 1991). Garson suggested a method of partitioning ANN weights in order to determine the sensitivity of each input 

neuron in network topology as given below: 

 

                                                                        𝐼𝑗 =  
∑ ((𝑤𝑗𝑚

𝑖ℎ ÷ ∑ |𝑤𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1 ) ⋅ |𝑤𝑚𝑛
ℎ𝑜 |)𝑚=𝑁ℎ

𝑚=1

∑ {∑ ((|𝑤𝑗𝑚
𝑖ℎ | ÷ ∑ |𝑤𝑘𝑚

𝑖ℎ |𝑁𝑖
𝑘=1 ) ⋅ |𝑤𝑚𝑛

ℎ𝑜 |)𝑚=𝑁ℎ
𝑚=1 }𝑘=𝑁𝑖

𝑘=1

                                                                 (6)  

 

where 𝐼𝑗 is the relative importance of the 𝑗th input parameter on the output parameter, 𝑁𝑖 and 𝑁ℎ are the number of input and hidden 

neurons, respectively, 𝑤 are connection weights, the subscripts 𝑖, ℎ and 𝑜 refer to input, hidden and output layers, respectively, and 

subscripts 𝑘, 𝑚 and 𝑛 refer to input, hidden and output neurons, respectively. Essentially, the sensitivity analyses are applied to the 

developed network models to be trained with a new set of random weights to check the robustness of the developed ANN model. In our 

analysis, the best ANN model has been trained five times with various random starting weights to elucidate how the relative importance 

of each input neuron responds after each training step. 

 

Table 4. Sensitivity analysis using relative importance of each input neuron employed in the network topology 

 

Trial  

Number 

Relative importance (%) 

     𝐶        𝑤        𝑀       �̇�       𝜏 

1 4.9212 30.6567 16.9452 30.4652 17.0117 

2 9.8811 31.4406 13.5993 31.4481 13.6310 

3 7.2235 24.6285 23.2589 24.7425 20.1465 

4 7.8629 25.4671 20.5122 25.5287 20.6291 

5 4.6052 29.5418 18.0748 29.6451 18.1331 

Average 6.8977 28.3469 18.4781 28.3659 17.9103 

Ranking      5       2       3      1       4 

 

The analysis results were listed in Table 4 and the calculated average relative importance (%) was additionally provided with a 

histogram plot including error bars that obtained from standard deviation (see Figure 4(a)). As shown in Table 4, it is clear that the order 
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of relative importance of each input neuron does not change after each training step with new random weights, demonstrating the 

robustness and reliability of the developed ANN model. The contribution of input neurons on network prediction varied from 4.6052% 

to 31.4481%. Among all input neurons, it is shown that �̇� has the most significant effect on the predicted dynamic viscosity values, 

followed by 𝑤, 𝑀, 𝜏 and 𝐶.  

The reason why �̇� has a domestic contribution, as opposed to 𝐶, on the prediction of 𝜂 by suppressing all other input neurons is a 

large distribution of �̇� data set used in ANN training. Distribution of all normalized input neurons obtained from the best ANN model 

is present in histogram plots shown in Figures 4(b)- 4(f). As clearly seen in Figure 4, most of the data points of �̇� distributed in a very 

broad range and distribution of data set of 𝐶 (shown in Figure 4(b)) is very narrow due to repetitive nature of 𝐶. Since only 6 different 

aqueous gelatin concentrations were used as input neurons in the development of the ANN model, the relative importance of that of 𝐶 

was found to be weaker on prediction performance of developed ANN model, compared to other input neurons.   

 

 

Figure 4. (a) Sensitivity analysis results and distributions of normalized input variables: (b) mass concentration of aqueous gelatin 

solutions, (c) the angular velocity of spindle, (d) torque of spindle, (e) shear rate, and (f) shear stress  

 

After ANN training stage, a second data set, which has not introduced to neural network during training, have been used to test the 

performance of the developed ANN model with additional performance evaluation parameters to demonstrate the versatility of network 

architecture. In ANN testing, as an alternative to MSE, MAE and RMSE were considered as additional error functions to measure the 

accuracy of the ANN model. Because MSE itself may not be universal in testing the ANN model. 

For the testing data set, MSE, MAE, RMSE and 𝑅2 values were found as 1.26 x 10−4, 0.0898, 0.1496 and 0.99918, respectively. 

Regression between measured viscosity and ANN predicted viscosity values for testing data set was also studied and a very fine 

𝑅2(=0.99918) value, which is almost unity, was obtained, as found for training data set. As shown in Figure 5(a) that testing data points 

dispersed very uniformly around the linear least-square fit line in the regression plot, indicating equally updated weights between 

interconnected nodes, as observed for ANN training.  

 

Table 5. Additional performance indices of the best ANN model 

 

Data set Number of data RMSE (cP) MAE (cP) VAF (%) 

Training 143 0.0102 0.0068 99.9977 

Testing 61 0.1496 0.0898 99.7738 

 

In order to interpret how errors are greatly minimized in ANN testing, the residuals and their distribution were further investigated 

with a histogram plot. For each testing data point, the residuals were calculated and they randomly dispersed around zero with very 
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small homogeneous deviations on both sides of zero (see Figure 5(b)), showing that developed ANN model is unbiased and it is able to 

predict dynamic viscosity with high performance. The main reason why slightly higher errors arouse in ANN testing is possibly due to 

the number of data set used in testing (61 data points) is less than the amount of training data set (163 data points). Small prediction 

errors possibly as a result of a nature of data sets used in ANN testing, as mentioned and also found for ANN training. As shown in 

Figure 5(c), the majority of data points used in ANN testing accumulated around zero with a very small divergence, which is in a good 

agreement with the results shown in Figure 5(b). It was also observed that residuals found by using the ANN method varied from -0.756 

to 0.125. Residuals of testing data were found to be 0.881 in total.  

As distinct from MSE, MAE, RMSE and 𝑅2 values employed in performance evaluation of ANN testing phase, Variance Accounted 

For (VAF) between predicted and measured data points, represented by Equation 7, was additionally computed to interpret the 

performance of the developed network model (Erzin & Cetin, 2013). 

 

                                                                                                𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑦 − �̂�)

𝑣𝑎𝑟(𝑦)
] × 100                                                                                (7)  

 

where var represents variance, y is measured value and �̂� is the predicted value. If VAF and RMSE values are close enough to 100% 

and 0, respectively, the performance of the developed ANN model can be treated as excellent (Erzin & Turkoz, 2016). Computed VAF 

values together with other performance indices including RMSE and MAE are present in Table 5.  

 

 
 

Figure 5. Performance assessment of ANN testing: (a) regression plot, (b) residuals, the difference between ANN predicted viscosity 

and measured viscosity values, (c) residual distribution histogram  

 

Table 6. Details of the best ANN topology 

 

Network type Feed-forward neural network 

Number of neurons in input layer 5 

Number of hidden layers  1 

Number of neurons in hidden layer 8 

Number of neurons in output layer 1 

Transfer function in hidden layer Hyperbolic-tangent (tan-sig) 

Transfer function in output layer Hyperbolic-tangent (tan-sig) 

Training rule Bayesian regularization back-propagation algorithm  

Training termination  Minimum mean squared error (MSE) 

Momentum factor (𝜇) 0.05 

Learning rate 0.3 

Maximum number of epochs used in training 1000 

Epoch number achieved minimum MSE 546 

Performance goal  0.00000001 
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It can be seen from Table 5 that VAF and RMSE values for both training and testing were found to be quite close to 100% and 0, 

meaning that developed ANN model exhibits a very high prediction performance and these results can be easily verified with other 

performance indices obtained. All error parameters calculated in both training and testing phases (see Tables 2 and 5) were found very 

close to each other. It is known that in the case of over-fitting, testing errors and inter-connection weights would be much higher. In our 

analysis, as shown in Table 3, inter-connection weights and biases that we found in ANN training are very small, demonstrating that 

the data is not over-fitted. All details of the best ANN topology are additionally given in Table 6. 

    

Figure 6. Prediction performance of developed ANN model using testing data set: (a) a comparison of all measured viscosity values 

with ANN predicted viscosity values, (b) residual analysis 

 
As a final step of ANN performance analysis, ANN predicted viscosity values were compared with measured values. Figure 6(a) 

reveals that all ANN predicted 𝜂 values were found quite close to measured 𝜂 values, proving the usefulness and efficiency of the 

developed network model. The difference between these values was successfully minimized as most testing data points are approaching 

zero with random distributions around zero due to high performance and the robustness of the developed ANN model (see Figure 6(b)). 

To conclude, when all performance assessment parameters including MSE, MAE, RMSE, 𝑅2 and VAF, found in both training and 

testing phases, are taken into account, it is very clear that 𝜂 of aqueous gelatin solutions could be effectively predicted using ANN 

approach. One should also say that similar network models can be designed in order to forecast 𝜂 value of other biopolymer solutions 

by using the same input and output parameters in the specific data range we reported in this work. 

5. Conclusion 

In this study, a multi-layered feed-forward neural network (FFNN) was used to predict the dynamic viscosity of aqueous gelatin 

solutions having different mass concentrations. For this purpose, the experimental results of viscosity measurements were used in the 

development of the FFNN model. In network topology, five different input neurons (𝐶, 𝑤, 𝑀, �̇� and 𝜏) and one output neuron, 𝜂, were 

used, respectively. Employing 8 neurons in the hidden layer has yielded the highest 𝑅2 value, quite close to unity, and the least MSE 

value in both training and testing phases. Apart from MSE and 𝑅2, other performance indices, such as MAE, RMSE and VAF were 

used to evaluate the prediction performance of developed FFNN models. MSE, 𝑅2, MAE, RMSE, and VAF values were calculated as 

6.24× 10−7, 0.99999, 0.0068, 0.0102 and 99.9977, respectively, for training data set, and calculated as 1.26× 10−4, 0.99938, 0.0898, 

0.1496 and 99.7738, respectively, for testing data set. Using regression plots of training and testing data sets, the residuals between 

measured 𝜂 values and ANN predicted 𝜂 values were obtained and they randomly dispersed around zero with very small homogeneous 

deviations on both sides of zero since developed ANN model is unbiased and shows excellent performance. In addition, as a result of 

sensitivity analysis, �̇� was found as the most significant input neuron remarkably affecting the 𝜂 value of aqueous gelatin solutions. All 

taken together, we can conclude that ANN can be employed as a very powerful soft computing method for the prediction of dynamic 

viscosity of aqueous gelatin solutions. Our findings have demonstrated the applicability of ANN in the prediction of 𝜂 for a specific 

input-output data range. 
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