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Abstract 

The great improvement in the current technology, particularly in the field of artificial intelligence, has effectively contributed to solving 

many problems, especially in the medical field. More recently, skin cancer (melanoma) has become one of the most dangerous cancers 

threatening human life, although it can be treated more frequently at early detection. Unfortunately, only highly-trained specialists can 

diagnose the disease accurately. Therefore, in this paper we have introduced various software technologies to detect and diagnose skin 

cancer through images, thus saving lives and reducing the spread of the disease, as well as reducing unnecessary traditional eradication 

of non-carcinogenic areas. Our method combines image processing techniques (image enhancement, hair removal and segmentation 

using Otsu's thresholding), feature extraction techniques (Gray Level Co-Occurrence Matrix (GLCM) features and color moments 

features) and commonly used classification methods, such as Weighted KNN, Cubic SVM, Medium Gaussian SVM, and Multi-Layer 

Perceptron (MLP) trained by some of the common swarm intelligent techniques like Artificial Bee Colony (ABC), Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Teaching Learning Based Artificial Bee Colony (TLABC), and Modified Teaching Learning 

Based Artificial Bee Colony (MTLABC) which is the proposed algorithm in this paper. Experimental results for 996 dermoscopy dataset 

images, show that the classification accuracy and the convergence of the trained Neural Network (NN) using the proposed MTLABC 

is better than the other evolutionary algorithms used in this study for the same purpose. At the same time, the experimental results show 

that the classification accuracy of the trained NN using the proposed MTLABC is better than the results of commonly used classification 

methods.  

Keywords: TLABC, Modified TLABC, melanoma detection, multi-layer perceptron, classification methods, metaheuristics. 

1. Introduction 

Melanoma is a type of very serious skin cancer. It appears on one part and can spread to other parts of a body. It is linked with skin 

exposure to ultraviolet (UV) light. It is typically first noticed as a new mole or from the changes happening to an existing one, most 

commonly in body parts that receive direct sunlight exposure. The mole may be large and appear irregular in shape. Some may have 

multiple colors or be itchy or bloody. The National Cancer Institute reports that solitary 2 percent of all skin malignancies are melanoma, 

so it is uncommon. It is additionally perilous. Of a wide range of skin malignant growth, melanoma is the deadliest. In 2017, the National 

Institute of Health (NIH) gauges that there will be 87,110 new instances of melanoma and 9,730 deaths. The rate of melanoma has 

expanded in the ongoing years, yet it is not obvious to what degree changes in the environment, in behavior, or early identification is 

included [1, 2]. 

To reduce the dangers of melanoma, early detection is needed, unfortunately only a highly trained expert can detect melanoma, by 

using special equipment. This makes the task of detection costly, and time-consuming. Dermoscopy with high-resolution imaging of 

the skin is one of those methods which reduce the reflection of the skin surface allowing the experts to see deeper to the skin structure. 

This requires especially highly trained expert clinicians. However, the accuracy of the detection process is based on the trained degree 

of experts. The number of registered dermatologists in the Middle East & North Africa is rare, so are highly trained expert clinicians, 

which make the strongly serious deadliest cancer out of the catch. 
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In order to solve this problem and make the task of detection easier, a highly trained neural network classification approach is 

created. The approach has been created to be used as a diagnose tool to help those clinicians who are not highly trained, and it can be 

used by patients which helps them in the early detection for their moles. 

In the literature, there are many researches about skin cancer using different kinds of methods. One of them presents a computer-

aided algorithm that checks the ABCD features of an image after the segmentation stage. The extracted features are used to classify the 

image by using the TDS Index [3]. The other research proposes a system for identifying melanoma skin disease with the Otsu 

thresholding that portions the injury from the whole picture. For more segmentation, the boundary tracing algorithm has been utilized. 

ABCD features have been extracted and the Stolz algorithm has been utilized for the classification stage [4]. ABCD features are not the 

only features which give good results in skin cancer detection application, also GLCM could be used to extract some features such as 

Entropy, Correlation, Contrast, Homogeneity, Energy, Standard Deviation, Mean, Solidity, Perimeter,  Equivdiameter, Area, 

ConvexArea, Manhattan Distance, Euclidean Distance, Hamming Distance, and Minkowski Distance. GLCM features have been used 

in many types of research at the stage of extracting features but the classification stage was different as the following: neural networks 

[5], support vector machine [6], multilayer perceptron classifier [7]. SVM and k-NN classifiers are used for the classification stage with 

both GLCM features and color features in the feature extraction stage [8]. 

As described above, the Artificial Neural Network (ANN) is used in the classification stage for skin cancer detection. ANN is a 

nonlinear and non-parametric model, which is used to solve different types of classification problems. Nonetheless, the convergence of 

the ordinary training algorithms, such as Back Propagation is slow and not always guaranteed. Therefore, we need efficient optimization 

strategies to attain faster convergence and higher accuracy rates [9]. 

Swarm intelligence, which exploits the collective ability of swarm algorithms are popular in solving optimization problems. Also, 

many studies introduce hybridization between different types of these algorithms, for example, a particle-bee algorithm that integrates 

the advantages of intelligent behavior of bird swarms and honey bee [10]. Another example is a PS-FW which is a hybrid between 

fireworks algorithm and PSO particle swarm optimization [11]. Also, hybrid optimization algorithms, which are based on ABC and 

some other methods, have been developed [12-15]. These hybrid systems have more impact because of their advantages over their 

individuals. 

The power of these hybrid algorithms comes from their individuals that imitating the best features in nature. The success of the 

hybridization leads the researchers to try different strategies in the global and local search methods to improve the exploitation and 

exploration of the individual. 

In this work, we will first introduce the proposed techniques in the image processing and feature extraction stage. Then we will 

describe the original TLABC algorithm and its implementation to train the multi-layer perceptron NN. After that, we will formulate the 

implementation of the modification we proposed to enhance the accuracy of TLABC. Finally, we will perform a comparison between 

commonly used classification methods, and MLP trained by some of the common swarm intelligent techniques like ABC, GA, PSO, 

TLABC, and MTLABC. 

2. Proposed techniques in image processing and feature extraction 

2.1. Pre-processing Step: 

In this step, the sample images are enhanced and improve the restoration of the sample, and any external noise is removed, such as 

hair. The methods that have been used in this stage are as the following: 

 Image contrast enhancement and image rescaling. 

 Hair removing using some morphology operations and vision enhancement. 

 

 

 

     a- Before pre-processing                                  b- After pre-processing 

Fig. 1. Sample in the pre-processing step 

2.2. Segmentation Step: 

In this step, a sample taken from the previous step is segmented to separate the lesion area from the background area. In this stage, 

a morphological operation is used followed by the Otsu's thresholding algorithm. After applying the Otsu's thresholding method and 

getting the binary mask, the mask then multiplied by the three color channels (Red, Green, and Blue) to extract the region of interest. 
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                a- Before segmentation                                     b- using thresholding                         c- result segmentation (lesion Area) 

Fig. 2. Sample in the Segmentation step 

2.3. Feature Extraction Step: 

In this step, the lesion sample is taken from the previous step, and its features are extracted and then saved in a vector-matrix. The 

model that does this process is divided into two parts. The first part for computing the GLCM (Gray Level Co-Occurrence Matrix) and 

calculating its features, where the derived features from GLCM are four features (Energy, Contrast, Entropy and Homogeneity) from 

each lesion image The next part is for calculating color features called color moments, this part is dividing image color channels into 

three channels (red, green, and blue). From each channel, three features can be extracted. So the total number of features extracted from 

each image are 13 features. 

3. TLABC Algorithm  

TLABC is hybridization between TLBO and ABC algorithm which combines the advantages of both (the exploration of ABC and 

the exploitation of TLBO). It effectively employs three hybrid search phases as follows [16]: 

3.1. Teaching based employed bee phase 

Here each employed bee uses a hybrid of TLBO and mutation operator of differential evolution to search a new food source, which 

can develop the variety of search tendencies extraordinarily, and upgrade the searchability of TLABC.  

3.2. Learning-Based Onlooker Bee Phase 

In this stage, an onlooker bee chooses a sustenance source to search out as indicated by the selection probability which is determined 

to utilize Eq. 6. After that, the onlooker bee finds out new food sources using the TLBO's learning strategy. 

3.3 Generalized Oppositional Scout Bee Phase 

In this stage, if a nourishment source cannot be improved further for a specific period time, it is viewed as depleted and would be 

relinquished. At that point, an arbitrary candidate solution and the generalized oppositional solution of it are created. The best solution 

of them is utilized rather than the old depleted nourishment source. The TLABC pseudo-code is shown in Algorithm 1. 

4. Lévy Flight Local Search Algorithm 

The Lévy Flight Local Search is one of the stochastic search algorithms which use a random walk to update its solutions. The step 

walks are defined as random step lengths, which have a particular probability distribution. These step lengths can be drawn from a Lévy 

distribution, which is stated in Eq. 6.  

             L(s)~|s|−1−β                                                                                                                      (6) 

Where (0 < β ≤ 2) and s is the step length which can be calculated by Eq. 7.                                          

  s =
u

|v|1/β
                                                                                                                                    (7) 

Where u and v are drawn from Gaussian distributions.                        

           σu = {
Ѓ(1+β)sin⁡(πβ/2)

βЃ[(1+β)/2]2(β−1)/2
}
1/β

, σv = 1⁡⁡                                                                                           (8) 

The ith individual solution is updated using: 

       xij
′ (t + 1) = xij(t) + step_size(t) ∗ U(0,1)                                                                                        (9) 

The step sizes of Levy flights are too ornery, that is, they may be used for both exploration and exploitation by changing this step 

size. The main steps of the LFLS is shown in Algorithm 2 [17]. 
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Algorithm 2: Lévy Flight Local Search Strategy 

 

Insert the optimization function Min f(x) and β; 

An individual xi will be selected randomly then initialize t=1 and σv = 1; 

Compute σu using Eq. 8 

WHILE (t < ε ) do 

     Use Eq. 7 to compute step size; 

     Use Eq. 9 to generate a new solution xi
′ then calculate f(xi

′);  
     IF f(xi

′) < f(xi) 
          xi = xi

′ ; 

     END IF 
     t=t+1; 

END WHILE 

Return the 𝒙𝒊 

 

Algorithm 1:  Teaching Learning Based Artificial Bee Colony 

Step 1: Initialize the population by Eq. 1.  

xi
j
= xmin

j
+ rand(0,1)(xmax

j
− xmin

j
)                                                               (1) 

Start by doing the initialization and normalization process of the dataset to be in the range [-10, 10]. 

Select an appropriate number of Input, Output and Hidden neurons for the NN according to the dataset. 

Set a suitable maximum number of iterations to train the NN. 

REPEAT 

Step 2: Teaching based employed bee phase: To train the NN move the employed bees onto their food sources by 

using the hybrid of TLBO and mutation operator of differential evolution in Eq. 2. 

𝑢𝑖,𝑑 = {
𝑥⁡𝑖,𝑑

⁡𝑜𝑙𝑑 + 𝑟𝑎𝑛𝑑2⁡(𝑥𝑡𝑒𝑎𝑐ℎ𝑒𝑟,𝑑 ⁡− ⁡𝑇𝐹 ⁡.⁡⁡𝑥𝑚𝑒𝑎𝑛,𝑑), 𝑖𝑓⁡𝑟𝑎𝑛𝑑1 < 0.5

𝑥𝑟1,𝑑 + 𝐹⁡.⁡⁡(𝑥𝑟2,𝑑 ⁡− ⁡𝑥𝑟3,𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (2) 

Pass the obtained food sources to train the NN. 

Calculate the NN’s mean square error and compute its classification accuracy. 

         IF The new food sources are better than the older 

              Replace the new instead of the old solutions 

         ELSE  
                     Increase the failure 

                END IF 
Step 3: Learning based onlooker bee phase: Determine the nectar amounts of food sources by Eq. 3. 

Pi =
fit(𝑥𝑖)

∑ fit(𝑥𝑖)
SN
i=1

                                                                                                      (3) 

Using the roulette method, some onlooker bees will be selected to move onto the food sources according to the 

selection probability of Eq. 3. 

The selected onlooker bees will move onto the food sources using the TLBO's learning strategy in Eq. 4.  

𝑢𝑠 = {
𝑥𝑠 + 𝑟𝑎𝑛𝑑⁡. (𝑥𝑠 ⁡− ⁡𝑥𝑗), 𝑖𝑓⁡𝑓(𝑥𝑠) ≤ 𝑓(𝑥𝑗)

𝑥𝑠 + 𝑟𝑎𝑛𝑑⁡. (𝑥𝑗 ⁡− ⁡𝑥𝑠), 𝑖𝑓⁡𝑓(𝑥𝑗) > 𝑓(𝑥𝑠)
                                              (4) 

Pass the obtained food sources to train the NN. 

Calculate the NN’s mean square error and compute its classification accuracy. 

         IF The new food sources are better than the older 

              Replace the newer instead of the older solutions 

         ELSE  
                     Increase the failure 

                END IF 
Step 4: Generalized oppositional scout bee phase:  An arbitrary candidate solution and the generalized 

oppositional solution of it are created using Eq. 1 and Eq. 5 respectively. 

xi,j
GO = k⁡. (a𝑗 + b𝑗) −⁡𝑥𝑖,𝑗                                                                                           (5) 

The best solution of them is utilized rather than the old depleted nourishment source. 

UNTIL requirements are met. 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  229 

5. The proposed modification of TLABC Algorithm (MTLABC)  

As mentioned above, TLABC has a good balance between exploration and exploitation but actually this modification will 

significantly enhance its performance. The proposed modification of TLABC Algorithm is a kind of low-level integrative hybridization 

between TLABC and Levy Flight algorithm. The good exploration of ABC attracts a lot of researchers to hybrid it with many other 

swarm algorithms as we mentioned above. Some of them keep both the equations of searching and the framework of ABC too, but the 

others keep just the framework of ABC. In TLABC hybridization just the framework was keeping, so, in this paper, we modified the 

search operaters defined by Eq. 10 and Eq. 11. The pseudo-code for this modification is shown in Algorithm 3. 

6. Computational Results 

The inputs to the NN are the thirteen features of the lesion sample. The outputs are the class labels that classify the lesion to one of 

two classes (Melanoma or Normal). A number of hidden nodes is 15 with one hidden layer. The dataset is divided into 85% training and 

15% testing. The tenfold cross validation is performed and the average of ten folds is recorded as the classification accuracy. We 

compared MTLABC with other models like TLABC, ABC, GA, and PSO for the same purpose of classification and the results of all of 

them are summarized in terms of convergence curves of mean square error in Fig. 3. Table 1 illustrates the accuracy of NN classification 

after training using these algorithms for 1000 evaluations. 

The following configuration was considered in the experiments: 

 The initialization within the search space was uniform random. 

 Limit = 100. 

 The Number of food sources SN = 50. 

 The range search was inside the interval [-10, 10]. 

 The configurations for other algorithms are the same as the proposed algorithm.   

Algorithm 3:  Modified Teaching Learning Based Artificial Bee Colony 

Step 1: Initialize the population by Eq. 1.  

Start by doing the initialization and normalization process of the dataset to be in the range [-10, 10]. 

Select an appropriate number of Input, Output and Hidden neurons for the NN according to the dataset. 

Set a suitable maximum number of iterations to train the NN. 

REPEAT 

Step 2: Modified employed bee phase: To train the NN moves the employed bees onto their food sources by using 

the hybrid of ABC’s employed bees strategy and mutation operator of differential evolution in Eq. 10. 

𝑢𝑖,𝑑 = {
𝑥𝑖,𝑗 + rand(0,1)(𝑥𝑖,𝑗 − 𝑥𝑗,𝑘), 𝑖𝑓⁡𝑟𝑎𝑛𝑑1 < 0.5

𝑥𝑟1,𝑑 + 𝐹⁡.⁡⁡(𝑥𝑟2,𝑑 ⁡− ⁡𝑥𝑟3,𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

Pass the obtained food sources (weights) to train the NN. 

Calculate the NN’s mean square error and compute its classification accuracy. 

         IF The new food sources are better than the older 

              Replace the new instead of the old solution 

         ELSE  
                     Increase the failure 

                END IF 
Step 3: Learning based onlooker bee phase: Determine the nectar amounts of food sources by Eq. 3. 

Using the roulette method some onlooker bees will be selected to move onto the food sources according to the 

selection probability of Eq. 3. 

The selected onlooker bees will move onto the food sources using the hybrid of TLBO's learning strategy and the 

LF local searching strategy in Eq. 11.  

𝑢𝑖,𝑗 = {
⁡⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡rand1 < 0.5

xs+rand⁡.(xj⁡−⁡xs),&⁡𝐢𝐟⁡f(xj)>f(xs)

xs+rand⁡.(xs⁡−⁡xj),&⁡𝐢𝐟⁡f(xs)≤f(xj)
⁡⁡

xij(t) + stepsize(t) ∗ U(0,1),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡⁡⁡⁡⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

Pass the obtained food sources to train the NN. 

Calculate the NN’s mean square error and compute its classification accuracy. 

         IF The new food sources are better than the older 

              Replace the newer instead of the older solutions 

         ELSE  
                     Increase the failure 

                END IF 
Step 4: Generalized oppositional scout bee phase: An arbitrary candidate solution and the generalized 

oppositional solution of it are created using Eq. 1 and Eq. 5 respectively. 

The best solution of them is utilized rather than the old depleted nourishment source. 

UNTIL requirements are met. 
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All experiments were implemented 30 times with different random seeds, and all classification algorithms in this paper are coded 

in MATLAB R2018b. Table 1 shows the classification accuracy of the trained MLP using TLABC, ABC, GA, PSO and the proposed 

MTLABC on the testing dataset.  

The proposed MTLABC enhances the performance of the training of the NN to overcome the local minimum of the NN since it 

enhances the possibility of exploiting and exploration of TLABC because of the diversity resulted from the used searching equations in 

both employed and onlooker bees’ phases. This is illustrated by the continuously decreasing in Mean Square Error (MSE) values during 

the training as shown in Fig. 3. Figure 3 shows the result of a sample of the 30 experiments such that the results of the remaining 29 

experiments show the same trend.   

 

Table 1. Classification Rates of MLP trained using TLABC, ABC, GA, PSO and the proposed MTLABC on the testing dataset  

 Classification Accuracy % 

                      Training 

No Of.          Algorithm 

Experiment 

 

MTLABC 

 

TLABC 

 

ABC 

 

GA 

 

PSO 

1 72.28916 77.71084 74.09639 71.68675 69.27711 

2 77.10843 76.50602 73.49398 70.48193 75.30120 

3 80.12048 75.30120 78.31325 74.09639 71.08434 

4 77.71084 71.08434 75.30120 71.68675 71.68675 

5 75.90361 73.49398 74.09639 71.68675 68.67470 

6 73.49398 75.30120 72.28916 73.49398 71.08434 

7 74.69880 74.09639 68.07229 72.28916 70.48193 

8 76.50602 74.69880 70.48193 70.48193 68.07229 

9 73.49398 76.50602 71.68675 68.67470 68.67470 

10 73.49398 74.69880 77.10843 74.69880 68.07229 

11 74.69880 75.30120 72.28916 73.49398 72.28916 

12 74.09639 75.30120 73.49398 74.09639 66.26506 

13 75.90361 73.49398 75.90361 77.10843 67.46988 

14 75.90361 74.09639 74.09639 67.46988 74.09639 

15 72.89157 75.90361 73.49398 71.68675 66.26506 

16 77.10843 74.09639 74.69880 70.48193 68.67470 

17 76.50602 72.28916 71.68675 72.89157 71.08434 

18 74.69880 73.49398 72.89157 69.27711 68.07229 

19 75.30120 75.30120 76.50602 63.25301 71.08434 

20 76.50602 74.09639 73.49398 71.68675 73.49398 

21 71.68675 77.10843 70.48193 72.89157 70.48193 

22 77.10843 68.07229 75.90361 71.08434 68.07229 

23 72.28916 72.89157 73.49398 74.09639 74.69880 

24 74.09639 75.30120 71.08434 69.27711 72.89157 

25 74.69880 74.69880 74.09639 75.30120 70.48193 

26 76.50602 74.69880 72.28916 69.87952 66.26506 

27 74.69880 75.30120 75.30120 69.87952 66.26506 

28 75.30120 74.69880 75.30120 72.28916 72.28916 

29 74.69880 74.69880 72.28916 75.30120 68.67470 

30 74.09639 74.09639 71.08434 73.49398 65.66265 

Mean 75.12050 74.47790 73.49400 71.80720 69.89960 

Standard deviation 1.83910 1.82090 2.20920 2.72820 2.68700 

Max 80.12050 77.71080 78.31330 77.10840 75.30120 

Min 71.68670 68.07230 68.07230 63.25300 65.66270 

According to the results in Fig. 3, which is a sample of convergence curves of the training process, the proposed MTLABC has the 

best convergence speed over all other training algorithms used in this paper. Also, the accuracy of the NN classification increases as the 

number of evaluations increases even if it exceeds a large number of evaluations, unlike some of the other algorithms. The reason for 

this increase is due to the advantages of using different kinds of the searching process in each phase of algorithm phases.  
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Fig. 3.  Sample of convergence curves of mean square error while training process of MLP using TLABC, ABC, GA, PSO, and the 

proposed MTLABC 

The same dataset also used to train commonly used classification methods for the same purpose. Table 2 illustrates the comparison 

between the classification accuracy of the best three methods and the average of the classification accuracies of the proposed MTLABC 

which is clarified in Table 1. As it is clear from Table 2, the average of the classification accuracies of the proposed algorithm is better 

than all commonly used classification methods. 

 

Table 2. Comparison Between The Proposed MTLABC and Commonly Used Classification Methods In Terms Of Classification Rates 

Classification Accuracy % 

MTLABC Weighted KNN [19] Cubic SVM [20] Medium Gaussian SVM [20] 

75.1205 74.1 73.6 73.4 

6. Conclusions and Recommendations 

In this paper, we concentrated on the modification of Teaching Learning Based Artificial Bee Colony algorithm, which is more 

efficient than the original TLABC on training multi-layer perceptron NN for the dermoscopy dataset of 996 lesion images. This 

modification uses the advantages of LF algorithm to improve the exploitation of TLABC. The experiments are performed on the dataset 

[18] after applying image processing techniques (image enhancement, hair removal and segmentation using Otsu's thresholding), feature 

extraction techniques (GLCM features and color moments features). The results of this work show that the accuracy of the NN classifier 

which is trained by using the proposed MTLABC is more accurate than TLABC, ABC, GA, PSO algorithms. The results also show that 

the accuracy of the NN classifier trained by using the proposed MTLABC is more accurate than commonly used classification methods 

on the same dataset. We recommend to use this proposed algorithm to train NNs on other applications, especially those whom their 

dataset more complicated.  
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