Avrupa Bilim ve Teknoloji Dergisi European Journal of Science and Technology

Ozel Sayt, S. 214-224, Ekim 2019 P, Special Issue, pp. 214-224, October 2019
© Telif hakki EJOSAT a aittir AT A Copyright © 2019 EJOSAT
Arastirma Makalesi www.ejosat.com ISSN:2148-2683 Research Article

A Design Methodology for Cuttlefish Shaped Amphibious Robot

Erdem Arslan'”, Kadir Akca?

1 Erciyes Universitesi, Miihendislik Fakiiltesi, Mekatronik Miihendisligi Boliimii, Kayseri, Tiirkiye (ORCID: 0000-0002-4961-4922)
2 Erciyes Universitesi, Miihendislik Fakiiltesi, Mekatronik Miihendisligi Boliimii, Kayseri, Tiirkiye (ORCID: 0000-0002-1780-633X)

(This publication has been presented orally at HORA2019 congress.)
(First received 1 August 2019 and in final form 24 October 2019)
(DOI: 10.31590/ejosat.637838)

ATIF/REFERENCE: Arslan, E. & Akga, K. (2019). A Design Methodology for Cuttlefish Shaped Amphibious Robot. European
Journal of Science and Technology, (Special Issue), 214-224.

Abstract

Most of the engineering problems can be easily solved by using biomimetic designs. Biomimetic is the process of imitating live
animals to create new designs. For example, by mimicking the movements of a fish or snake, it is possible to transfer the desired
swimming or crawling movements to a robot. This research is based on an amphibious robot where the propulsion system is imitated
by a cuttlefish. In this study, to obtain the required sine wave motion for the cuttlefish's fin, crank-rocker mechanisms are used.
Additionally, a circular slot mechanism was used to move these crank-rocker mechanism up and down as in the cuttlefish fins. Since
the cuttlefish has two symmetrical wings, these crank-rocker and circular slot mechanisms are repeated symmetrically on both sides.
Two separate servo motors (one on the right and one on the left) were used to control the angular position of the crankshafts in
circular slots. These servo motors allow the fins to move up and down while the robot is in the water. They also serve to hold the
wings at a fixed angle in terrestrial mode. In similar applied robotic researches, dozens of servo motors are used to obtain the required
sine motion. This study proposes a propulsion system that can be operate with simple crank-rocker and circular slot mechanisms,
instead of using too many servo motors that are expensive and constitutes control complexity. In this study, a desigh methodology is
proposed for this new propulsion system. Various conditions have been considered in the design procedure. In the design criteria
section, the required force and velocity, the capacity to overcome obstacles and the motion requirements has been considered for an
amphibious robot. Furthermore, the requirements of a continuous movement for oscillating motion have been also considered. As a
result of this study, minimum crank number and crank angles were obtained for the undulating motion. It has been also considered the
necessary continuous balance condition, in order to make motion on land without tumbling. The calculation of the part lengths that
meets the design criteria is described in the mechanism synthesis section.
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Miirekkepbalig1 Sekilli Amfibi Robot icin Bir Tasarim Metodolojisi

Oz

Biyomimetik tasarimlar kullanilarak miihendislik problemlerinin ¢cogu kolay bir sekilde ¢oziilebilir. Biyomimetik, canli hayvanlari
taklit ederek yeni tasarimlar olusturma islemidir. Ornegin, bir balik veya yilanin hareketlerini taklit ederek, istenen yiizme veya
gezinme hareketlerinin bir robota aktarilmasi miimkiindiir. Bu arastirma, tahrik sisteminin miirekkep balig1 tarafindan taklit edildigi
bir amfibi robota dayanmaktadir. Bu calismada, miirekkepbaliginin yiizgeci icin gerekli olan siniis dalgasi hareketinin elde
edilmesinde, krank-rocker mekanizmalar1 kullanilmistir. ilaveten, bu krank ¢ubuk mekanizmasimin miirekkep baligi kanatlarinda
oldugu gibi yukar1 ve agag1 hareket ettirilmesinde dairesel bir slot mekanizmasi kullanilmigtir. Miirekkep baliginda simetrik iki kanat
bulundugundan, bu krank-rocker ve dairesel slot mekanizmalar1 her iki tarafta da simetrik olarak tekrarlanmigtir. Krank millerinin
dairesel slotlar igerisindeki agisal konumlarimin kontrol edilmesi igin, iki ayr1 servo motor (biri sagda ve biri solda) kullanilmustir.
Kullanilan bu servo motorlar robot su igerisindeyken, kanatlarin agagi ve yukar1 dogru hareket etmesini saglarlar. Ayrica karasal
modda kanatlar1 sabit bir agida tutmaya yararlar. Benzer uygulamali robotik ¢alismalarinda, gerekli siniis hareketini elde etmek igin
diizinelerce servo motor kullanilir. Bu ¢alismada, pahali ve kontrol karmagasi olusturan bu kadar sayida servo motor kullanmak
yerine, basit krank-rocker ve dairesel slot mekanizmalari ile ¢alisan bir tahrik sistemi onerilmektedir. Bu ¢alismada, bu yeni tahrik
sistemi icin bir tasarim metodolojisi Onerilmistir. Tasarim prosediiriinde ¢esitli kosullar g6z oniinde bulundurulmustur. Tasarim
kriterleri boliimiinde, amfibi bir robot igin gerekli kuvvet ve hiz, engellerin iistesinden gelme kapasitesi ve hareket gereksinimleri
dikkate alinmistir. Ayrica, salinim hareketi i¢in ihtiyag duyulan siirekli hareket gereksinimi de géz 6nitinde bulundurulmustur. Bu
calisma sonucunda dalgalanma hareketi i¢in gereken minimum krank sayis1 ve krank agilar1 elde edilmistir. Karada yuvarlanmadan
hareket gergeklestirebilmek adma gerekli olan siirekli denge sarti da g6z oniinde bulundurulmustur. Tasarim kriterlerini saglayan
parga uzunluklarmin hesaplanmasi, mekanizma sentezi boliimiinde agiklanmistir.

Anahtar Kelimeler: Biyomimetik, robot tasarimi, amfibi robot.

1. Introduction

An amphibian animal has the ability to move underwater and on land. Salamanders, otters and penguins are some of the species
capable of moving in these environments [1]. Accordingly, the purpose of building an amphibious robot is to produce a robot that can
walk on land and swim underwater. In other words, an amphibious robot is a device capable of moving in two different environments:
water and land [2]. Therefore, these robots can be used in various operations in areas that are not accessible to humans. Robots are
able to perform difficult and unusual tasks thanks to their rich movement and sensory abilities [3]. Today, there is a significant
increase in the assistance of robotic systems to people in different environments. For example, terrain mapping, exploration and
investigation. It can also be used in rescue or search operations [4]. Many studies have been done on robots imitated from living
creature in the past. For example, robot designs inspired by a snake [5], a turtle [6] or an insect [7-8] are built. The snake-robot is
imitated from a snake which propulsion mechanism is the body. In the second work, the turtle-robot’s propulsion is achieved with
legs. Another work inspired by a wavy fin fish is shown in Figure 1. In this figure, the rays of the fins are controlled by servo motors
to provide the necessary movements.

Figure 1. An amphibious robot propelled by undulating fins [18].

e-ISSN: 2148-2683 215



Avrupa Bilim ve Teknoloji Dergisi

The main features of these robots are their ability to move underwater and terrestrial. As can be seen from previous studies, the
main way to construct a robot inspired by living things is to imitate. For the use of robots integrated into nature, biomimetic design is
the main method of building valid robots with the abilities such as flying, walking or swimming [9]. Good biological understanding
and knowledge in the process of manufacturing biomimetic devices is essential to build robots with strong mobility. A diagram is
shown in Figure 2 to understand the construction process of biomimetic robots [10].
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Figure 2. The diagram of the process of building a biomimetic device [10].

For the aquatic movement of a robot, the use of a tail-like propulsion mechanism becomes common instead of a rotator propeller.
Some reasons of that are more efficiency and smaller steering radius at high speed [11]. The basic requirement for the fish to move
under water is based on an oscillatory movement. The undulating movement occurs in the fins through the rays. The rays can be seen
in Figure 3 and the required sinus wave motion in the fins can be seen in Figure 4.

Fin ray

Approximate pattern of the oscillatory
movement of the fin's rays

Figure 3. a) Fish model. b) Fin's rays. [12] Figure 4. The required sinus-wave motion in the fins.

According to several researches, although each fish species interacts differently with the aquatic environment, there are basically
two main swimming modes. Body and/or caudal fin (BCF) and median and/or paired fin (MPF) propulsion. In the BCF modes, the
fish body or the caudal fin is where the wavy movement occurs. The other kind of movement is named MPF which the undulating
movement occurs in the lateral fins [13]. Several swimming modes has been shown on Figure 5 and the difference between BCF and
MPF propulsion can be seen clearly.
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Figure 5. Swimming modes (a) BCF propulsion (b) MPF propulsion [13].
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A tail-like propulsion mechanism for an amphibious robot can be inspired from a cuttlefish because of the movement of the fins.
This specie’s locomotion mode is MPF which means that the undulating movement occurs in the lateral fins [14]. In Figure 6, the
wavy-like pattern can be seen in the cuttlefish’s fin. By mimicking this system, a design has been developed for two different
locomotion necessary in different environments. In other words, the MPF movement of the cuttlefishes has been imitated and used in
our robot to obtain the wave-like motion.

Figure 6. The oscillatory movement occurred on the lateral fin of a cuttlefish is shown.

In some cases, the design of biomimetic robots has several difficulties. When the robot comes to mind, it is considered as a
mechanism formed with rigid materials. However, it is difficult and not sufficient to simulate living things with a soft structure. The
researches in this new area known as soft robotics are mainly based on robots for the water environments or underground [15]. A few
researches have been encountered throughout the literature research. The balance condition and durability for the terrestrial
locomotion for an amphibious robot with fins has been not encountered.

Several researches have been made for the undulating movement of the fins. One of these works is about a mechanism controlled
by servomotors [16-18]. Because of the complex control of the servomotors several difficulties occur. In our design a basic crank-
rocker mechanism has been used in order to obtain the needed undulating movement. An illustration of this mechanism has been
shown in Figure 7.

of

The scope of this paper presents a design methodology about a robot propelled with undulating fins which provides strong
abilities such as aquatic and terrestrial movements. Throughout designing this mechanism, several conditions such as static stability
criteria and periodic motion requirements have been considered in order to generate a valid design. The capacity of overcoming
obstacles is another point that it has been focused. The previous researches use independent servo controllers. Instead of using this
complex robot design, our design is based on a simple crank-rocker mechanism. Besides, a circular slot has been designed for the
control of the robot’s elevation angle underwater. This mechanism also provides the ability of switching between the underwater and
terrestrial modes. As a result, the needed minimum crank number, the calculation of the angle and the placement of the crank have
been presented. Besides, the synthesis of the crank-rocker mechanism with the circular slot have been also presented.

Figure 7. Crank-rocker mechanism.

2. Design Criteria

2.1. Required Force and Velocity
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In order to obtain the desired movement underwater and on land, several parameters should be considered. These parameters are
shown on Figure 8. As presented in the Eq. 1 and Eq. 2, V,, 4. and F, are related to several parameters. Because of the non-
holonomic constraints, any equations for V,, 4. and F, are not possible to generate directly. Only while the slipping condition is
ignored, an approximated equation could be obtained. However, if the slipping condition will be ignored, several problems in the
control of the robot may occur.

B C

Figure 8. (a) 3D model of the fin mechanism. (b) Crank parameters. (¢) Fins’sine wave pattern parameters.
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2.2. Capacity to Overcome Obstacles

In this robot design, the capacity to overcome obstacles plays an important role. In the Figure 9, the h parameter can be seen on an
amphibious robot design which the fins are controlled with servo motors. The height h shown on the robot is directly related to the
ability to overcome obstacles.

Figure 9. The h parameter is shown on an amphibious robot which is Figure 10. The h parameter throughout the
controlled by servomotors [18]. crawling motion.

A variable height h can be achieved when designing amphibious robot with servomotors. This h height can be reduced or
increased by the control of the servomotors in the design showed in Figure 9. However, using a high number of servos leads to a high
cost and undesired weight. In our design the height h is fixed, but it offers a much lower cost and weight.

2.3.  Motion Requirements
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In order to make a valid design, several conditions must be considered for the mobility on land. The robot must move without
tumbling and possess a continuous balance. Therefore, the sine waves on the fin of the robot must be consecutive. In other words, it
should be periodic such as the cuttlefish’s fins shown in Figure 4. The required sequential wave pattern is shown in the diagram
shown in Figure 12. With the use of a flexible membrane, the view from the bottom will be such as it is shown in Figure 11.

N e Fin's rays

|‘Q‘;'| ...................................................................................
1 1
v !
- ~ L
Trajectory of the D
fin movement. Fin's rays. Flexible membrane
Figure 11. View from the bottom of the robot. Figure 12. Diagram of the fin s rays.

2.3.1. Underwater

The aquatic animals have the ability of moving through three rotational axes and three translational planes. These axes and planes
are intersected in the center of mass (COM). The COM should be considered as the point where the weight of the animal is. This point
is the balance point. The movement of the balance point provides to the animal the ability of translational and rotational movements
underwater [x]. In other words, as shown in Figure 13 it can be named as the six degrees of freedom. Different combinations of the
control planes of each degree of freedom provide a continuous stability for the animal. The placement and the design of the surfaces
should also be considered. The control of the surface by generating torques provides to the animal stability [12]. The forces used to
control are shown in Figure 13.

A Hold Dihedral -23 deg

B Rise Dihedral 35 deg

Yaw Slip

Figure 13. (a) The six degrees of freedom. (b) The fins orientation throughout the movement underwater. [12]

2.3.2. OnLand

Balance for any moment of movement is the most important requirement for stable movement. To achieve this, the contact points
with the ground are investigated. Where the fin touches the ground, the slope is 0. The points where the slopes are 0, are shown in
Figure 14.
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Figure 14. Contact points.

Accordingly, an area is formed between the points of contact. The CoG (center of gravity) of the robot must remain between this
changing area throughout the movement. Accordingly, the 4 points of the membrane must contact the ground for the necessary
balance. This requires 2 contact points on both sides. To achieve a total of 4 contact points between the membrane and the ground, 2
sine waves must occur on both sides of the membrane of the robot. As shown in Figure 11, the minimum contact points required to
contact the floor can be seen.

Contact points of the fin with the ground

Center of poligon (CoP) Center of gravity (CoG)

[ Amphibious robot body

Approximate trajectory of fin motion

Figure 15. Intersection of COG and COP

3. Design Methodology

Many problems can be encountered in designs made with servo motors. Difficult control and high cost are a few of them. But
with a simple crank-rocker mechanism the desired movement can be achieved. But it is not possible to make a sinusoidal motion by
using only one crank-rocker mechanisms. As shown in the Figure 3, the fin is controlled by many rays. It can be inferred that a crank-
rocker mechanism can be used for each rail, taking into account the minimum number of rails.

Due to the nature of the fin movement, when the mechanisms are placed in different phases and this mechanism is repeated, the
necessary condition for a repeatable sinusoidal movement is provided. Therefore, as mentioned earlier, there is a need of more than
one crank-rocker mechanism.

First, it is necessary to determine the minimum number of cranks required. In addition, in order to eliminate the place problem
caused by the placement of the other elements in the robot design, the calculation of the angle of the crank relative to the layout of the
crank is required. The mechanism should then be synthesized for the ray lengths and the circular slot.

3.1. Crank Number

In order to determine the minimum need of crank, 2 sine waves should occur in each fin at any time of the movement.
Accordingly, the Eq. 3 is generated. N,,;,, shows the minimum necessity of crank. 6, is the crank angle.
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In some cases, increasing this number is another option. As shown in Figure 16, when the use of more cranks, the membrane
resembles more to a sine wave. However, using more cranks brings more problem to be solved such as resistance.

Fin's rays Flexible membrane

Figure 16. Membrane approximated trajectory while using different number of rays. (a) 4 rays. (b) 8 rays. (c) 16 rays.

For the use of more cranks, the Eq. 4 has been generated for the number of crank (N). k is a whole number.

(4)

360°

N = Nmin+kx P

3.2.  Crank Angle and Placement

As seen in the equation, the crank angle is inversely proportional to the number of cranks. To obtain the 2 required sine waves,
decreasing the crank angle results in an increase in the number of cranks. As shown in the figure, 8 pins are used in the 90-degree
crank and 12 pins are used in the 60-degree crank to obtain approximately the same fin pattern.

( M\ ; s
A \ \ [” )
> L»C rank angle

Figure 17. 90-degree crank. Figure 18. 60-degree crank.

Crank angle

One of the problems encountered in this robot design is the problem that the mechanisms cannot be placed at equal intervals due
to the placement of the elements. As shown in Figure 19, it is possible to place it evenly in a large design. However, this problem is
frequently encountered in smaller robot designs. Since the cranks are not evenly distributed, it is essential to interfere with the phases
of the crank mechanism. For example, inserting a battery as shown in the figure will cause the displacement of the ray. For these
cases, the following Eq. 5 has been generated.
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Figure 19. Design with equal intervals. Figure 20. Design with inequal intervals.
O = O + 60 X =2 (5)

3.3.  Mechanism Synthesis

The crank-rocker mechanism used for sinusoidal movement is shown in the Figure 21 with its parameters. On this diagram, the
parameter S, is the angle between the position limits of the rocker.

Figure 21. Crank-rocker mechanism parameters [19].

The synthesis of this mechanism is shown in the following equations [19].

rn, =0Q0,1, = 0A,1; = AB, 1, = BQ (6)
@1 = cosTH{[r? + 1,7 — (3 +1,)%]/(2r17,)} )
@, = cosTH{[r? + 1,2 — (r; —12)%]/(2ri1y)} ®)
Sa = ¢1— @2 )

With these equations, the necessary mechanisms for swimming and crawling mode can be established. Figure 22 shows the
diagram of the mechanism for the vertical position of the fin. Accordingly, the diagram of the horizontally positioned mechanism of
the fin is shown in Figure 23.
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Figure 22. Diagram of the mechanism for the crawling mode. Figure 23. Diagram of the mechanism for the swimming mode.

As shown in Figure 24, a circular slot mechanism has been developed for the height control of the fins and the mode transition
between the modes swimming and crawling. By means of a servomotor, the shaft where the rays are placed can be moved and brought
to the desired position.

Circular slot

' \\ Circular slot

Figure 24. The circular slot mechanism.

In addition, the parameter h, which is directly proportional to the capacity to overcome obstacles, can be calculated as a result of
this mechanism synthesis. The parameter L, is the length of the ray. The h parameter shown in the Figure 25 is the distance between
the highest point where the fin can reach and the point where the fin is in contact with the ground. This distance can be calculated with
Eq. 10 below.

h = Lyay [1— cos(S4/2)] (10)

Circular slot

\

Crank-rocker mechanism

Figure 25. The length of the rays with the parameter h and the crank-rocker mechanism.

4. Results and Discussion

As a result, an amphibious robot design methodology capable of both swimming mode and crawling has been presented. In this
design process, conditions that should be considered for both land and water environments were introduced. As this study is about a
soft robot design, a small number of studies investigating terrestrial motion have been found in the literature. In this regard, the points
to be considered in the design process have been focused. The stability of this robot for terrestrial movement and also the conditions
for a continuous movement without tumbling have been introduced.

In previous studies, the wave motion of the fins has been achieved by means of servo motors. Since the servomotor drive is
expensive and complex to control, this robot drive system has been designed and presented with the help of a simple crank-rocker
mechanism. In this work, crank number calculation, crank placement and crank angle calculations have been introduced. Moreover,
the calculation of obstacle overcoming capacity and the mechanism synthesis with circular slot mechanism have been presented.

e-ISSN: 2148-2683 223



Avrupa Bilim ve Teknoloji Dergisi

5. References

[1] Yang, Q., Yu, J., Ding, R., & Tan, M. (2008, October). Body-deformation steering approach to guide a multi-mode amphibious
robot on land. In International Conference on Intelligent Robotics and Applications (pp. 1021-1030). Springer, Berlin, Heidelberg.

[2] Yang, Q., Yu, J., Tan, M., & Wang, W. (2007, December). Preliminary development of a biomimetic amphibious robot capable
of multi-mode motion. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 769-774). IEEE.

[3] Yu, J., Tang, Y., Zhang, X., & Liu, C. (2010, December). Design of a wheel-propeller-leg integrated amphibious robot. In 2010
11th International Conference on Control Automation Robotics & Vision (pp. 1815-1819). IEEE.

[4] Boxerbaum, A. S., Werk, P., Quinn, R. D., & Vaidyanathan, R. (2005, July). Design of an autonomous amphibious robot for surf
zone operation: part | mechanical design for multi-mode mobility. In Proceedings, 2005 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics. (pp. 1459-1464). IEEE.

[5] Crespi, A., Badertscher, A., Guignard, A., & ljspeert, A. J. (2005). AmphiBot I: an amphibious snake-like robot. Robotics and
Autonomous Systems, 50(4), 163-175.

[6] Song, S. H., Kim, M. S., Rodrigue, H., Lee, J. Y., Shim, J. E., Kim, M. C., ... & Ahn, S. H. (2016). Turtle mimetic soft robot with
two swimming gaits. Bioinspiration & biomimetics, 11(3), 036010.

[7] Yildirim, S., & Arslan, E. (2012). Design and Dynamic Analysis of Six Legged Walking Robot. Journal of Computer Science and
Control Systems, 5(1), 112.

[8] Yildirim, S., & Arslan, E. (2018). ODE (Open Dynamics Engine) based stability control algorithm for six legged robot.
Measurement, 124, 367-377.

[9] Wang, W., Yu, J., Ding, R., & Tan, M. (2009, August). Bio-inspired design and realization of a novel multimode amphibious
robot. In 2009 IEEE International Conference on Automation and Logistics (pp. 140-145). IEEE.

[10]Hu, T., Shen, L., Lin, L., & Xu, H. (2009). Biological inspirations, kinematics modeling, mechanism design and experiments on
an undulating robotic fin inspired by Gymnarchus niloticus. Mechanism and machine theory, 44(3), 633-645.

[11]wang, Z., Hang, G., Li, J., Wang, Y., & Xiao, K. (2008). A micro-robot fish with embedded SMA wire actuated flexible
biomimetic fin. Sensors and Actuators A: Physical, 144(2), 354-360.

[12]Fish, F. E., & Lauder, G. V. (2017). Control surfaces of aquatic vertebrates: active and passive design and function. Journal of
Experimental Biology, 220(23), 4351-4363.

[13]Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal
of oceanic engineering, 24(2), 237-252.

[14]Peter, B., Ratnaweera, R., Fischer, W., Pradalier, C., & Siegwart, R. Y. (2010, May). Design and evaluation of a fin-based
underwater propulsion system. In 2010 IEEE International Conference on Robotics and Automation (pp. 3751-3756). IEEE.

[15]Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: a bioinspired evolution in robotics. Trends in biotechnology, 31(5),
287-294.

[16]Low, K. H., & Willy, A. (2006). Biomimetic motion planning of an undulating robotic fish fin. Journal of Vibration and
Control, 12(12), 1337-1359.

[17]Siahmansouri, M., Ghanbari, A., & Fakhrabadi, M. M. S. (2011). Design, implementation and control of a fish robot with
undulating fins. International Journal of Advanced Robotic Systems, 8(5), 60.

[18]Pliant Energy Systems - Swimming Skating Crawling Robot. Retrieved from https://www.pliantenergy.com/home-1

[19]Hassaan, G. A., Al-Gamil, M., & Lashin, M. (2013). Optimal kinematic synthesis of a 4-bar planar crank-rocker mechanism for a
specific stroke and time ratio. International Journal of Mechanical and Production Engineering Research and Development, 3(2), 87-
98.

e-ISSN: 2148-2683 224


https://www.pliantenergy.com/home-1

