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Abstract 

The highest total color difference values (∆E) were found in the panels produced with the similar proportions of waste paper and OCC 

into gypsum (A4: 6.09; B4: 5.79). These boards have also show highest CIE whiteness reduction (A4: -33.19; B4: -28.44). With the 

help of FTIR, some chemical groups are modified to some extent but similar functional groups were observed in surface of boards. 

For A- and C-type boards, similar TGA degradation trends (spectra) were observed while the B-type panels show markedly higher 

mass loss, especially at initial temperature stage (100-120 0C). This is probably because of the presence of some non-cellulosic 

materials (i.e. starch, silica, etc.) and the high rate of lignin in sheet structure of OCC material. The flame propagation characteristic of 

the surfaces of all test boards shows that the flame did not reach the threshold limit of 150 mm. These indicates, even if the source of 

fire is not removed, flame did not reach the threshold limit that boards that could be classified as non-flammable material class 

according to TS EN-ISO 11925-2 standard. 

The heat insulation properties of the test sample were found to be lowered with addition of lignocellulosic material to the gypsum 

structure. It was seen that waste paper ratio in gypsum structure higher than 10% (A3 to A6 boards) show better insulation properties 

than counterpart OCC (B-types) and secondary fiber based (C-types) gypsum boards. In general, reduction heat transfer in average 

values of samples attracted attention as compared with control specimens. Interestingly, the boards are indicated best insulation 

properties as mentioned above, show higher mass loss too. The highest mass loss for A-type boards found to be 3.52% (A6), for B-

type boards 3.46% (B6) and for C-type boards 3.28% (C8).  

Keywords: Waste paper, FTIR, TGA, gypsum board, heat insulation. 

Atık Selülozik Karışımı Kaynaklardan Üretilen Alçı Esaslı Levhalar: 

2. Bölüm. Kimyasal ve Teknolojik Özellikler 

Öz 

En yüksek toplam renk farkı (∆E) benzer üretim şartlarında atık kağıt ve eski oluklu muykavvalardan üretilmiş levhalarda (A4: 6.09; 

B4: 5.79) gözlemlenmiştir. Bu levhalara aynı zamanda en düşük CIE whiteness değerleri göstermiştir (A4: -33.19; B4: -28.44). FTIR 

tekniği yarımıyla levhaların yüzeylerindeki kimyasal gruplar incelenmiştir. A ve C tipi levhaların diagramları benzerlik göstermekle 

birlikte B tipi levhaların TGA diyagramları oldukça farklı olduğu anlaşılmıştır. Özellikle başlangış sıcaklık değerlerinde (100-120 0C) 

B tipi levhaalrın ağırlık kaybı diğer A ve C tipi levhadan daha yüksektir. Bu durum muhtemelern atık oluklu mukavva (B tipi levha) 
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yapısında selülozik liflerden ayrı olarak daha yüksek oranda nişasta, silika, lignin bulunmasından ileri gelmesindir.  Deneme 

levhalarının yüzeyine uygulanan alevin, tüm levhalar için kritik eşik değer olan 150 mm seviyesine gelmediği gözlemlenmiştir. Alev 

uzaklaştırıldıktan sonra dahi, yüzeydeki yayılma kritik sınır değerine ulaşmamıştır. Buradan üretilen deneme levhalarının TS EN-ISO 

11925-2 standardına göre yanma malzeme sınıfına dahil edilebilir.  

Deneme levhalarının ısı yalıtım özellikleri incelendiğinde, alçı yapısına lignoselüloik hammaddenin ekllenmesinin olumlu katkı 

yaptığı anlaşılmıştır. Levha yapısında %10 dan daha yüksek atık kağıt eklenmesinin (A3-A6 levhalar) aynı üretim şartlarındaki atık 

oluklu mukavva (B tipi) ve sekonder lif esaslı (C tipi) deneme levhalarından daha yüksek ısı yalıtımı sağladığı anlaşılmıştır. Genel 

olarak ısı transfer ortalama değerleri kontrol örneğine göre daha iyi olduğu görülmüştür. İlginç olarak en yüksek ısı izolasyonu 

sağlayan örnek aynı zamanda en yüksek kütle kaybı göstermiştir. En yüksek kütle kaybı A tipi levhadalarda %3,52 (A6), B tipi 

levhalarda 3.46% (B6) ve C tipi levhalarda  3.28% (C8) olarak ölçülmüştür.  

Anahtar Kelimeler: Atık kağıt, FTIR, TGA, Alçı levha, Isı yalıtımı 

 

1. Introduction 

The use of alternative cellulosic sources such as; agricultural and forest residues, secondary wood materials (wastes) or fast-

growing annual plants have become important issue considering convert these low value materials in value added products. In this 

regard, there is plenty of literature finding available for industrial applications of that raw materials processing into composite panels 

or paper-based products (Atchison, 1993; Ndazi et al., 2006; Rials and Wolcott 1997; Youngquist et al., and 1997).  However, the 

products obtained from these alternative sources may have some properties which are different from the characteristics of the 

conventional wood-based panels. They could, for example, exhibit some degree of resistance to fire, as a better sound and heat 

insulation material, and could be used as a building material in with inexpensively and effectively (Arslan and Sahin 2016, Sahin et al. 

2018; Kaya and Sahin 2018). 

Waste paper is a general name given to all kinds of paper, cardboard and paperboard that are completed its use. Due to 

technological developments and industrial improvements, using waste paper has become important topic for economic and 

environmental factors (Kaya, 2015). Especially in the last 50-60 years, post-consumer waste paper products have been becomes an 

important source for the paper industry. Moreover, one of the most important benefits of waste paper recovery is the production of 

cellulose raw material which is more economical production with the help of less harmful processes in the environment for paper 

industry (Baipai 2013 and 2018).  

However, during the recycling process, some important changes occur in the structure of cellulose. Thereby, cellulose is inherited 

and the water swelling property is irreversibly reduced. Because intensive hydrogen bonds are formed in crystalline structure, 

resulting the markedly modification of elasticity and plasticization properties of the fibers (Atalla, 1992; Brancato, 2008; Hubbe et al., 

2007). As a result of those changes, the flexibility and plasticity of the fibers is reduced and the hardness/brittleness increases and 

generally known as ‘hornification’’ (Kaya, 2015; Minor, 1994). Moreover, when once drying of the cellulosic fibers, re-treatment of 

the microfibrils with water again not effective as virgin fibers. In addition, without any sorting or grading of post-consumer waste 

paper products, the recycling process may result in loss of quality of recovered cellulose fibers and process efficiency (Thompson, 

1992; Wistara and Young 1999).  

The use of waste papers directly or as recycled fibers (secondary fibers) for composite panel industry might not require high-cost 

papermaking procedure (i.e. re-pulping, energy and capital intensive multi processes) rather than direct utilization as a raw material 

source for composite panel industry.  

However, reduction of forest assets and environmental pressures leads increased sensitivity of people to the environment that 

make the use of waste paper more attractive. In first part of this study, it was invesitgate the physical and mechanical strength 

properties of gypsum-based composite panels that were made from the mixtures of three different cellulosic raw material sources 

(waste paper/OCC/secondary fiber) at various propertions with gypsum. In the second part of that study, the determination of some 

chemical and technological properties of those panels have been investigated and given in below.  

2. Materials and Methods 

2.1. Materials 

The detailed description of cellulosic raw materials and gypsum with their specifications, with gypsum-based experiemental panel 

manufacturing procedures could be found first part of this study. However, the board’s code numbers and cellulosic additive of waste 

paper (A); OCC (B) and secondary fiber (C) with gypsum ratio at various proportions have also given in first part of this study. 

2.1. Methods 

A single flame combustion tests were carried out for determining ignitability of experimental panels. In this regard, a flame 

combustion test system was conducted according to TS EN-ISO 11925-2.  A single-source small flame applied at 45o slope and 

distance of 20 mm from the middle of samples was initiated. The total test duration was 60s. At the end of test, whether the specimen 

ignition occurs or not at the flame spreads in the vertical direction more than 150 mm above (the flame application point). A visual 

observation of the sample was made and results recorded as positive or negative. 
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A Shimadzu (IR Prestige-21 series) FTIR spectrophotometer was used to evaluate the chemical groups present in the boards was 

made from selected samples. Thermogravimetric Analysis (TGA) is carried out using a Perkin Elmer SII instrument in order to 

measure changes in properties of experimental panels as a function of increasing temperature (with constant heating rate).  

The natural weathering tests were conducted on 50x50x10 mm samples from experimental panels were exposed to weathering 

process for two months, The surface color changes were determined with X-Rite SP68 Spectrophotometer using CIE L*,a*,b* 

standard (1976).  

3. Results and Discussions 

The surface color parameters (∆; differences) according to the CIE L*a*b* (1976) standard, which were measured before and 

after natural weathering process under external atmospheric conditions for 60 days, are given in Table 1. It is very difficult to explain 

all color parameters and relationships to each other. But it is the most commonly used method in the literature to explain total color 

difference (∆E) of samples (Sahin and Arslan 2011; Sahin et al. 2011). It was realized that the highest and lowest total color 

differences were calculated in the experimental panels produced with the same proportions of waste paper-OCC into gypsum matrix. 

When increase waste paper and OCC into panel structure, an increase trend was found for both (A&B) type boards. The highest color 

differences of 6.09 and 5.79 for A4 and B4 boards found, respectively. As expected these experimental panels have also show highest 

CIE whiteness reduction (A4: -33.19; B4:-28.44). But for C-types, the highest total color difference of 4.37 and CIE whiteness 

reduction of -20.92 were observed in C7 panel.  

  Table 1. Color properties of experimental panels after natural weathering process (60 days) 

Board code ∆L ∆a ∆b ∆E CIE Whiteness 

Waste paper/gypsum-based experimental panels 

A1 -1.2 -0.65 -2.18 2.57 7.85 

A2 -0.52 -0.12 0.29 0.61 -2.73 

A3 -3.17 0.56 3.65 4.87 -2.81 

A4 -2.44 0.81 5.52 6.09 -33,19 

A5 -3.39 0.91 4.12 5.41 -28.83 

A6 -0.67 0.44 2.97 3.08 -16.4 

OCC/gypsum-based experimental panels 

B1 -1.2 -0.65 -2.18 2.57 7.85 

B2 0.59 -0.22 -0.23 0.67 2.51 

B3 1.5 -0.76 2.98 3.42 18.42 

B4 -5.48 -0.22 1.87 5.79 -28.44 

B5 -4.3 -0.11 3.68 5.66 -22.09 

B6 -3.57 -0.63 3.5 5.04 -26.06 

Secondary fiber/gypsum-based experimental panels 

C1 -1.2 -0.65 -2.18 2.57 7.85 

C2 0.14 -0.59 -1.18 1.33 6.23 

C3 -1.62 -0.59 1.27 2.14 -10.29 

C4 -3.86 -0.82 -0.82 4.03 -3.87 

C5 -1.82 -0.42 0.14 1.87 -3.15 

C6 -3.14 -0.39 1.26 3.41 -13.58 

C7 -3.69 -0.64 2.25 4.37 -20.92 

C8 -0.25 -1.05 -0.17 1.09 0.33 

 

The combined effects of panel density and cellulosic additive level on surface total color difference properties is shown in Figure 

1.  As explained above, all three cellulosic additives markedly effects on surface color changes some level. However, it has clearly 

realized that waste paper and OCC addition with increasing panel density markedly effects on color reduction (increasing total color 

difference) (Fig. 1A& B) while less effect on secondary fiber-gypsum based experimental panels (Fig.1C). 
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Figure 1. Cellulosic additive and board’s density effects on surface color properties of experimental panels (A: A-types; B: B-types;  

C: C- types) 

        The comparative Fourier Transformation Infrared Spectroscopy (FTIR) spectra presented in Figure 2.  As it is known, FTIR 

technique is a widely used method in determining the solid material surface functional groups. In this study, it was aimed to determine 

the functional groups on the surfaces of the experimental panels produced by adding different proportions of cellulosic raw materials 

to the gypsum structure. Generally, peaks in the range of 1030-1060 cm-1 and 1145-1162 cm-1 are assigned to C-O and C-O-C tension 

in polyscaharides (cellulose & hemicellulose). However, 1500-1610 cm-1 are C=O and COO-symmetric tension vibrations in aromatic 

rings that considered to a characteristic peak for lignin components (Pandey, 2005; Demir, 2019). It was proposed that the peaks in the 

range of 1360-1380 cm-1 were C-H degradation in polysacaharides and the change in that peak indicator for the change in the 

hydrophilic property of cellulosic material (Can and Sivrikaya 2017). Similarly, C-OH bands in the range of 2900 through 3100s cm-1 

indicator of –OH groups in cellulosic materials that some changes (decrease or increase) in that region were shown property changes. 

In our study, the structure of lignin and hemicellulose looks like modified some degree in water-gypsum mixture environment. Those 

in a weak alkaline condition could be affects some cell wall compenents especially polysacahardies and oligomers. While the gypsum 

is freezing, its volume is narrowed to around 7% that called calcination to evaporate the water of the gypsum (Demir, 2019), in the 

open air, in a weak alkalen conditions could be affects some cell wall compenets. Although it is difficult to explain all the chemical 

changes in the board matrix structure with the help of FTIR but similar functional groups were observed in FTIR spectra as seen in 

Figure 2. 

 
Figure 2.  Fourier Transformation Infrared Spectroscopy (FTIR) of experimental panels 
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However, one of the most commonly used approaches is TGA (Thermal Gravimetric Analyzer) method for determining 

temperature-time degradations of the components of the composite materials (Kaya, 2015). In this regard, temperature-dependent 

TGA mass-change micrographs at the temperature range of 25-900 oC is shown in Figure 3. 

The degradation values obtained in the TGA graph are explained in four different temperature zones. Zone 1 is assigned to be a 

heating zone and approximately 7-10% mass loss is caused by drying due to the moisture inside the material up to 100-110 oC. Zone 2 

is considered to be the water is completely removed from the cell wall in the cellulosic fibers between 110-250 oC. Above this 

temperature, the cellulosic material is considered to degrade significantly. Zone 3 is assigned to completely break down of cellulosic 

substances as rapidly in the 300-360 oC range and the mass loss occurs approximately 75-80%. At these temperature levels, the 

constituents have become solid to gas state rapidly and cell structures significantly degraded. Zone 4 is considered to some non-

organic residues such as; ash or char and the mass loss of the sample reached to above 90% at the temperature range of 400-900 oC. 

When Figure 3 carefully reviewed, it was realized that both A5 and C5 (Fig. 3 A&C) experimental panels looks like similar 

degradation trends. However, the graph of B5 (Fig. 3B) show a very high mass loss, especially at initial temperature ranges (100-120 
0C). It is presumed that this is probably due to the presence of some non-cellulosic materials in the structure of OCC and the high rate 

of lignin in sheet structure. Because both A- and C- type panels produced from fully bleached kraft paper particles (A) and recovered 

fibers (C) while OCC typically contains higher lignin in sheet structure with some non-cellulosic additives such as starch, sodium 

silicate and hemicellulose substances that easily degraded with temperature rather than cellulose (Fengel and Wegener, 1984). 

Moreover, corrugated cardboards consist of at least three sheets (one corrugated layer) with two surface plain papers. Various types of 

papers could be useful at inside or outer surfaces (liner papers). Some example of these papers as; kraft liner, test liner, NSSC and 

fluting etc. (Biermann, 1993; Smook, 1994). Hence, corrugated boards have different properties and characteristics compare to office 

papers. Due to fully bleached kraft waste paper particles (A) and recycled office paper fiber (secondary fibers) (C) utilized in this 

study, they are typically containing more than %90 cellulose in their sheet structure. It is well known that cellulose is more resistant 

temperature degradation than other lignin, hemicellulose and starch (Biermann, 1993; fengel and Wegener, 1984).  

 
Figure 3.  TGA spectra of gypsum based experimental panels  (A: Waste paper-gysum; B: OCC-gypsum; C: secondary 

fiber-gypsum). 

 

     TGA analysis at four different temperature degradation and mass loss properties are given in Table 2. It was divided four different 

temperature level as; starting temperature (Tb) 122 0C, first maximum temperature (Tm1) 406 oC, second maximum temperature 

(Tm2) 650 0C and last final temperature (Ts) 692 0C. When the Table 2 carefully overviewed, the lowest mass loss at all temperature 

levels was in the boards produced from the OCC-gypsum mixture. It has also realized that the initial degradation temperature (Tb) for 

all boards close to each other (115-122 0C) while there is very different last final temperature (Ts) levels (692-891 0C) were observed 

for experimental boards.  

   Table 2.  The TGA analyses of experiemntal panels 

Board code Tb 

(oC) 

Mass 

loss 

(%) 

Tm1 

(oC) 

Mass 

loss 

(%) 

Tm2 

(oC) 

Mass 

loss 

(%) 

Ts 

(oC) 

Mass 

loss 

(%) 

A1-B1-C1 122 7.0 406 8.0 - - 692 12.7 

A5 119 5.0 329 11.0 700 36 850 45 

B5 115 4.75 348 4.84 690 24 883 31 

C5 117 4.0 347 12 676 35 891 49 
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According to the TS EN-ISO 11925-2 standard, the flame propagation characteristic of the surfaces of the experimental panels as 

a result of combustion tests with single flame source is shown in Figure 4. It was observed that the burning pattern on the surface of 

all test boards produced by adding three different cellulosic raw material sources to the gypsum structure did not reach the threshold 

limit of 150 mm that specified in the standard value. The test boards showing the closest behavior to this limit were observed in 

secondary fiber-added experimental panels (C6, C7 and C8). This is expected because gypsum is considered to be A class material as 

a non-flammable class. In other words, these non-flammable materials do not carry out any flame, even if the source of fire is not 

removed. The findings and the appearance in Figure 4 support this hypothesis. But some flammable materials in gypsum may result 

some level flammable behavior as realized in this study. But the test boards still a non-flammable class (A) while flame did not reach 

the threshold limit of 150 mm. 

 

 
Figure 4. The flame propagation characteristic of experiemental panels. 

 

For determining thermal insulation properties, the temperature values passing to the back surfaces were measured in accordance 

with DIN 4102 standard for 30 seconds intervals and for a total of 300 seconds. For this test, measured values are shown as a thermal 

insulation value with a total mass loss in Table 3. Generally, in all panel types and production conditions (A1 to A6; B1 to B6; C1 to 

C8), it has been observed that the addition of lignocellulosic material to the gypsum structure has a negative effect on the heat transfer 

properties of the test boards (improving thermal insulation properties). The highest insulation properties (lowest heat transfer rate) in 

all three types of boards are found to be 68.2 oC for A6, 76.2 oC for B6, 79.4 oC for C8 boards, respectively. It is realized that waste 

paper ratio higher than 10% (A3 to A6) show better insulation properties than both counterpart OCC (B- types) and secondary fiber 

based (C-types) gypsum experimental panels.  

However, mass loss values (burning behavior characteristics) which occurred as a result of the process with the single flame 

source of the boards for 5 minutes (300 seconds) also presented in Table 3.  Generally, the increase in the ratio of the lignocellulosic 

additive into gypsum effects on mass loss increasing. The highest mass loss on these three different type boards were measured as 

3.52% for A6 board, 3.46% for B6 board and 3.28% for C8 board. Interestingly these boards are also indicated best insulation 

properties as mentioned above.   With having this measurement, it could be concluded that the addition of waste paper, OCC and 

secondary fibers into gypsum matrices have improved heat insulation properties of some level. However, values for mass lost 

particularly high mainly due to increasing cellulosic raw material content. This is probably gypsum that could be interaction waste 

paper and OCC particles to form some mechanical bonding, which resulted in easy removing of gypsum particles with those esay 

burned cellulosic materials compared with only gypsum based panels (control).Thereby, cellulosics might be easily burned while it 

has effects on gypsum lost during degradation of those easily burned materials. The result found in above support this hypthoses.   

 

After the determining thermal insulation properties with DIN 4102 standart a total of 300 seconds, the surface apperance of 

experimetal test boards are presented in Figure 5. It can be seen that although some degradation and char formed, all these panels look 

like acceptable heat insulation properties with some level mass loss.  
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  Figure 4. Combustion behavior of test boards for total of 300 seconds. 

 

 

 

 

Table 3. Heat insulation and mass loss properties of test boards 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 show correlation effects of panel density and cellulosic additive level on mass loss properties of experimental panels.  As 

mentioned above,  cellulosic additives effects on panels insulation properties positively but mass loss is also increased. However, it 

could be seen that in all conditions and additional level of these raw materials, increasing panel density and raw material sources 

increasing effects on mass loss (Fig 5. A,B and C). This trend looks like  more-less similar for all three type experimental boards. 

 

Time 

(Second) 
0 60 120 180 240 

300 Mass loss  

(%) 

Waste paper/gypsum-based experimental panels 

A1 16.9 64.9 93.0 124.9 133.7 135.4 1.64 

A2 14.4 51.9 78.3 100.9 105.2 148.3 1.85 

A3 12.2 20.2 51.7 60.8 67.2 68.7 2.35 

A4 12.6 22.2 61.0 73.0 78.2 78.3 2.37 

A5 13.6 16.9 41.4 66.6 72.7 74.6 2.48 

A6 10.4 15.6 30.4 57.8 67.6 68.2 3.52 

OCC/gypsum-based experimental panels 

B1 18.1 93.3 127.1 137.9 160.8 161.0 1.51 

B2 15.7 51.0 83.8 96.1 100.5 125.1 1.35 

B3 14.1 24.6 61.5 66.7 75.9 90.8 1.49 

B4 12.4 30.4 62.7 72.4 72.8 80.4 2.75 

B5 11.7 26.4 58.3 66.4 75.9 98.0 2.9 

B6 9.4 26.1 39.6 73.2 85.1 76.2 3.46 

Secondary fiber/gypsum-based experimental panels 

C1 17.2 52.8 78.2 86.6 112.3 123.8 1.32 

C2 15.5 22.3 50.4 71.2 78.6 84.9 1.61 

C3 15.1 26.5 48.7 73.8 82.5 104.0 1.56 

C4 13.9 24.5 69.7 86.7 89.9 107.4 2.2 

C5 13.5 30.8 60.7 80.6 86.9 98.1 2.15 

C6 28.3 45.3 76.4 84.2 86.6 87.6 3.09 

C7 13.2 17.0 38.1 61.8 67.9 84.7 3.13 

C8 12.2 17.7 53.6 70.6 79.9 79.4 3.28 
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  Figure 5. Cellulosic additive and board’s density effects on mass lost of test boards (A: A-types; B: B-types;   

   C: C- types) 

 

 

4. Conclusions 

The experimental result show that the production of gypsum-based panels technically feasible. However, there are many reasons 

for manufacturing gypsum-based composite materials that are stronger, lighter, or less expensive when compared to traditional 

materials. However, since increasing demand on wood material, this is leading to the need to investigate sustainable materials to 

replace existing ones.  This is possible to use low value lignocellulosic materials in gypsum structure. Hence, paper wastes may 

exhibit some advantages, such as availability, low cost, non-hazardous nature, and low density. Although the waste paper-gypsum 

compatibility loooks like low, but addition of some chemical subtances could be improved for that to provide adequate bonding 

capacity to gypsum-based composites. 
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