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Ozet

Bu caligmada, ¢ok amacl lineer kesirli programlama problemlerinin (CALKPP) ¢dziimleri i¢in uygun bolgedeki herbir kesirli amag
fonksiyonunun optimal noktalarinda amag¢ fonksiyonlarinin birinci dereceden (] -Taylor seri agilimlari sunulmustur. Q-Analizde, ( -
Taylor serisi ( -Tiirevlerine gore bir fonksiyonun ( -Serisine genislemesidir. CALKPP problemi, kendisine denk olan ¢ok amacl lineer
programlama problemlerini (CALPP) problemine indirgendi. Amag fonksiyonlarinin agirliklarinin esit oldugu kabulii altinda CALPP
¢oziildii. Boylece problem tek amaca indirgenmis oldu. Sunulan metot ile elde edilen ¢éziimler etkin ¢dziimlerdir. Bu sayede CALPP

problemlerinin ¢éziimiindeki karmagiklik giderilmis olundu ve sunulan metodun etkinligini gostermek i¢in bir problem iizerinde
uygulanmasi yapildi.

Anahtar Kelimeler: Cok amagli programlama, Cok amagli lineer kesirli programlama, Q-Analiz, Q-Taylor serisi.

Q-Taylor Method for Multiobjective Fractional Programming
Problem

Abstract

In this work, we have proposed a solution to Multi Objective Lineer Fractional Programming Problem (MOLFPP) by using the first-
order g-Taylor expansion of these objective functions at optimal points of each fractional objective functions in feasible region. In g-
calculus, g-Taylor series is a g-series expansion of a function with respect to g-derivatives. MOFPP reduces to an equivalent Multi
Objective Linear Programming Problem (MOLPP). The resulting MOLPP is solved assuming that weights of these objective functions
are equal and considering the sum of the these objective functions. Thus, the problem is reduced to a single objective. The proposed
solution to MOFPP always yields efficient solution. Therefore, the complexity in solving MOFPP has reduced and to show the efficiency
of the g-Taylor series method, we applied the method to a problem.
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1. Introduction

The fractional programming problem (FPP), which has been used as an important planning tool in recent years, is applied to
different disciplines such as engineering, business, finance, economics, etc. FP is generally used for modeling real life problems with
one or more objectives such as profit/cost, inventory/sales, actual cost/ standart cost, output/employee etc.

In the literature, different approaches appear to solve different models of Fractional Programming Problem (FPP). They are that
FPP can be optimised easily. But, in the great scale decision problems, there is more than one objective, which must be satisfied at the
same time as possible. However, most of these are fractional objectives. It is diffucult to talk about the optimal solutions of these
problems. The solutions searched for these problems are weak efficient or strong efficient.

The multiobjective fractional programming problem (MOFP) is considered in the literature. [2, 5, 6, 8, 9]. Multiobjective Linear
Fractional Programming Problem (MOLFPP) pose some computational difficulties, so they are converted into single objective FPPs
and then solved using the metod of Bitran and Novaes [1] or Charnes and Cooper [3].

In this paper, we proposed a solution to MOFPP using the first order q -Taylor polynomial series method at an optimal point of each
fractional objective function in feasible region.

2. Preliminaries

Definition: If the numerator and denominator in the objective function as well as the constraints are linear, we have a linear
fractional programming problem (LFPP) as follows:

Optimize CXt+a ,
dx+p

@.1)

IA

st.: xeS =<{x|Ax b, x>0

>

where A isareal MXN matrix, e R™, XeR" and S isa nonempty and bounded set. For some values of X, 0X + f may
be equal to zero. To avoid such cases, is generally set to be greater than zero.

Charnes and Cooper [3] showed that if the denominator is constant in sign on the feasible region, the LFPP can be optimized by
solving a linear programming problem. However, in many applications, there are two or more conflicting objective functions which are
relevant, and some compromise must be bought between them. Such types of problems are inherently multiobjective linear fractional
programming problems and can be written as:

Optimize Zk(x):m, k=1..K (2.2)
kX+ k
<

st.: xeS=3x|Ax| =|b, x>0

>
where S, A,b and X are as defined in problem (2.1),and VX €S, d, X+ £, >0 (k=1,...,K).

Definition: Let g € (0,1). A g - natural number [n]q is given by

[n], = 11__2 ,neN (2.3)
The factorial of a (] -number [n]q is defined by
[O]q =1, [n]q!:z[n]q.[n—l]q...[l]q (2.4)

g -Pachammer symbol is:
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(z-a)” =1, (z-a)? =]](z-aq'), keN. 2.5)

i=0

Definition: : Let f :D c R — R be a continuous function. In (| -calculus [4], the ( -derivative of f is defined by the

operator
D, (f(x):= W,x;to,qﬂ, (2.6)
D, (f(0)):=lim(D, (f (x))). 2.7)

Notice that f should be continuous at the point ¢.X forall X € D and g € (0,1).

Definition: Let f : D < R — R be a multivariable continous function, the (| -partial derivative of f is given by

D, f(x)_f(Q(éx)i) Xf(x), x. #0, 2.3)

X:=(x X% x)eD, i=1..,n

.....

Dy, T(X) |=0= IM(D,, (T (X)) (2.9)

Where Qi acting on R" is an operator defined by

Qi (X XgyerXiroey X3 ) 1= (X Xy ooy G Xy X)) (2.10)

Lemma: Operators D i=1,2,...n are R -linear operators.

Q.5 !

Definition: Higher order (] -partial operator is defined by

Dm+n LX) -D”‘ (Dn f(x)) (2.11)
' J
where
;"X*“X = D’“*n“m,m n=0,12,. (2.12)

] 1%

Definition: Let a = (al, [ PO an) eR" bea arbitrary, but fixed and f:D C R" — R be a continous. If f has all the qg-
partial derivations at @, then the (] -differential corresponding to @ is defined by

d, F(x,8) = (4 —8).D,, +(x,—~8,).D,, +..+(x,—a,).D,, ) (a) (2.13)
and higher order the ( -differential:

4% £ (x,) =((%, ~2).D,, +(X,~8,)Dy, +..+(x,~a,).D,, ) f(a)

k! n i
:T“*n][h]ﬁ]!D@ ,,,,, 5 @102

(2.14)

Notice that a continous function f (X) in a neighborhood of @ that does not include any point with a zero coordinate, has also

continous (] -partial derivatives.

Lemma: Let f :D c R" — R be a function having all ( -diferentials in some neighborhood of & € D . Then  -Taylor
expansion of f at @ is given by [7]
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= dg f(x,a)
(x) = (2.15)
kzz(; (k]!
3. Q-Taylor Linerization Method for Objectives
In this section, we consider the MOLFP.
If Z, (X) =M, k=1..,K, then
kX+ k
Max Z(X) =(Z,(X), Z,(X),.... Z, (X)), (3.1)
<

st.: xeS =<x|Ax b, x>0

\%

where S, A,b and X are as defined in problem (2.1),and VX €S, d, X+ £, >0 (k=1,...,K).

We will transform the model (2.16) to a new model obtained by the following three steps:

Step 1: Determine X: = (X:l,...,X:n) which is the value that is used to maximize the Kth objective function
Z, (x) (k=1,...,K) and n is the number of the variables.

Step 2: Transform each objective functions by using first-order g-Taylor polynomial series as follows:

Z.()=L (x)= Z [(]X|X) o(n?)
=Z,(x) {(x1 - x;‘l)DqﬁZk(x:) +.. (X, —x;‘n)DqX Zk(x;)} (3.2)

= Zk (X:) + jil(xj - X:j )quj Zk (XE)

Step 3: Find satisfactory X = (Xi* , ..X: ) by solving the reduced problem to a single objective.

Note that problem is solved by assuming that weights of the objective are equal. Thus, the problem (3.1) reduces the following
MOLPP

Max L(X) = (L, (X), L,(X),..., L, (X)),

<
(3.3)

st.: xeS =4{x|Ax b, x>0;.

\Y%

We assume that the weights of objective functions in problem (3.3) are equal, then the problem (3.3) is transformed to the following
linear programming problem:

Max P(x) = (L (x) + L,(X) +...+ L (%)),

<

(3.4)

st.: xeS={x|Ax| = |b, x>0¢.

v
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In problem (3.4), set X is non-empty convex set having feasible points. The optimal solution of problem (3.4) gives the efficient solution
of MOLFPP (3.1).

4. Numerical Example
Example: We consider an example

X +X,—4
6% +%,+3
Maximize Z,(x) = 222> -5

X, +1
3%, + X, =17
-3x, +16

Subject to - X +X,<3

Maximize Z,(X) =

Maximize Z,(x) =

X +X, <7
X, <4
X, <4
X, X, 20

Itis observed that Z, <0,Z, <0,Z, <0 for each X in the feasible region. If the problem is solved for each of objectives one by one

Zj(1,4)=_T13,and Z*(4,1) =1 and Z:(4,3) =1,

Thus, we determine the first-order q-Taylor polynomial series (for = 0.99) for the objective functions Z,(X), Z,(X) and Z,(X),
then the following linearized forms of the objective functions are obtained:

LO)=Z,(L4)+| (4 —D)Dy Z,(1,4)+ (X, ~4)D,, Z,(L4) |
L(0=Z,(4 1)+ (4 =4)D,,Z,(4,1) + (%, ~1)D,,, Z,(41)

L (0 = Z(4,3)+] (4 - 4)D,, Z,(4,3)+ (5, ~3)D,, Z,(4.3) |

where from (2.8) and (2.9) are

D, Z,(1,4) =-0.041612174

D, Z,(1,4) =0.083095917

D, Z,(4,1)=0.254

D,.,Z,(4,1) =0

D, Z,(4,3) = 0.36407767

D,,,Z5(4,3) =025
Thus we get

L, (x) = —0.041612174x, +0.083095917x, —0.3676945709
L, (X) = 0.254x, —2
L, (x) = 0.36407767x, +0.25x, —2.70631068
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and

P (%)= L, (X)+ L, (X) + Ly(X) = 0.572465496, +0.333095917x, —5.074005251

Thus, the final form of the MOLFP problem is obtained as follows:
Maximize P(x)

Subject to X +X,<3
X +X, <7
X, <4
X, <4
X, X, = 0.
The problem is solved and the solution of the above problem is as follows:

X, =4,X, =3 and Z,(X) =-1/6, Z,(x) =—1and Z,(x) =-1/2

4. Conclusions

In this paper, we computed the solutions of MOLFPP using an efficient method which is based on (] -calculus theories (in particular,
first-order ( -Taylor series). MOLFPP is reduced to MOLPP by first-order ( -Taylor series. We assumed that the weights of the
objective are equal. Then, the proposed solution method was applied to a numerical example to test the effect of first-order ( -Taylor
series method. The results show that the proposed method is more effective.
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