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Özet 

Bu çalışmada, çok amaçlı lineer kesirli programlama problemlerinin (ÇALKPP) çözümleri için uygun bölgedeki herbir kesirli amaç 

fonksiyonunun optimal noktalarında amaç fonksiyonlarının birinci dereceden q -Taylor seri açılımları sunulmuştur. Q-Analizde, q -

Taylor serisi q -Türevlerine göre bir fonksiyonun q -Serisine genişlemesidir. ÇALKPP problemi, kendisine denk olan çok amaçlı lineer 

programlama problemlerini (ÇALPP) problemine indirgendi. Amaç fonksiyonlarının ağırlıklarının eşit olduğu kabulü altında ÇALPP 

çözüldü. Böylece problem tek amaca indirgenmiş oldu. Sunulan metot ile elde edilen çözümler etkin çözümlerdir. Bu sayede ÇALPP 

problemlerinin çözümündeki karmaşıklık giderilmiş olundu ve sunulan metodun etkinliğini göstermek için bir problem üzerinde 

uygulanması yapıldı. 

 

Anahtar Kelimeler: Çok amaçlı programlama, Çok amaçlı lineer kesirli programlama, Q-Analiz, Q-Taylor serisi. 

Q-Taylor Method for Multiobjective Fractional Programming 

Problem 

Abstract 

In this work, we have proposed a solution to Multi Objective Lineer Fractional Programming Problem (MOLFPP) by using the first-

order q-Taylor expansion of these objective functions at optimal points of each fractional objective functions in feasible region. In q-

calculus, q-Taylor series is a q-series expansion of a function with respect to q-derivatives. MOFPP reduces to an equivalent Multi 

Objective Linear Programming Problem (MOLPP). The resulting MOLPP is solved assuming that weights of these objective functions 

are equal and considering the sum of the these objective functions. Thus, the problem is reduced to a single objective. The proposed 

solution to MOFPP always yields efficient solution. Therefore, the complexity in solving MOFPP has reduced and to show the efficiency 

of the q-Taylor series method, we applied the method to a problem.  

 

Key words: Multiobjective programming, Multiobjective linear fractional programming, Q-Calculus, Q-Taylor series. 
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1. Introduction 

The fractional programming problem (FPP), which has been used as an important planning tool in recent years, is applied to 

different disciplines such as engineering, business, finance, economics, etc. FP is generally used for modeling real life problems with 

one or more objectives such as profit/cost, inventory/sales, actual cost/ standart cost, output/employee etc.  

In the literature, different approaches appear to solve different models of Fractional Programming Problem (FPP). They are that 

FPP can be optimised easily. But, in the great scale decision problems, there is more than one objective, which must be satisfied at the 

same time as possible. However, most of these are fractional objectives. It is diffucult to talk about the optimal solutions of these 

problems. The solutions searched for these problems are weak efficient or strong efficient. 

The multiobjective fractional programming problem (MOFP) is considered in the literature. [2, 5, 6, 8, 9]. Multiobjective Linear 

Fractional Programming Problem (MOLFPP) pose some computational difficulties, so they are converted into single objective FPPs 

and then solved using the metod of Bitran and Novaes [1] or Charnes and Cooper [3]. 

In this paper, we proposed a solution to MOFPP using the first order q -Taylor polynomial series method at an optimal point of each 

fractional objective function in feasible region. 

 

2. Preliminaries 

Definition: If the numerator and denominator in the objective function as well as the constraints are linear, we have a linear 

fractional programming problem (LFPP) as follows:  

,
cx

Optimize
dx







          (2.1) 

. . :  = | ,  0s t x S x Ax b x

   
  

    
       

where A  is a real m n   matrix, ,mb R  nx R  and S  is a nonempty and bounded set. For some values of x , dx    may 

be equal to zero. To avoid such cases, is generally set to be greater than zero.  

Charnes and Cooper [3] showed that if the denominator is constant in sign on the feasible region, the LFPP can be optimized by 

solving a linear programming problem. However, in many applications, there are two or more conflicting objective functions which are 

relevant, and some compromise must be bought between them. Such types of problems are inherently multiobjective linear fractional 

programming problems and can be written as: 

 Z ( ) ,  1,...,k k
k

k k

c x
Optimize x k K

d x






 


        (2.2) 

. . :  = | ,  0s t x S x Ax b x

   
  

    
       

where , ,S A b  and x  are as defined in problem (2.1), and ,  0 (k=1,...,K)k kx S d x     . 

Definition: Let (0,1)q . A q - natural number  
q

n  is given by 

  
1

: ,  
1

n

q

q
n n N

q


 


                  (2.3) 

 The factorial of a  q -number  
q

n  is defined by 

         0 !: 1,  !: . 1 ... 1
q q q q q

n n n                  (2.4) 

q -Pachammer symbol is: 
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     
1

(0) (0)

0

: 1,  : ,  
k

i

i

z a z a z aq k N




      .            (2.5) 

 

Definition: :  Let :f D R R    be a continuous function. In q -calculus [4], the q -derivative of f  is defined by the 

operatör 

 
( . ) ( )

( ) : ,  0,  1,
( 1).

q

f q x f x
D f x x q

q x


  


                                                (2.6) 

    
0

(0) : lim ( )q q
x

D f D f x


 .                                                               (2.7) 

Notice that f  should be continuous at the point .q x  for all  and (0,1)x D q  . 

Definition:  Let :f D R R   be a multivariable continous function, the q -partial derivative of f  is given by 

( ( )) ( )
( ) : ,  0,

( 1).i

i
qx i

i

f Q x f x
D f x x

q x


 


                                                        (2.8) 

1, 2,...,:= ( ) ,  =1,...,nx x x x D i n  

=0
0

( ) | = lim( ( ( ))qx x qx
i i ix

i

D f x D f x


                   (2.9) 

Where iQ  acting on 
nR  is an operator defined by 

1, 2 1, 2( ,... ,..., ) := ( ,..., . ,..., )i i n i nQ x x x x x x q x x            (2.10) 

 Lemma: Operators . ,  =1,2,...q x
i

D i n  are  R -linear operators. 

 Definition: Higher order q -partial operator is defined by 

( ) := ( ( ))m n m n

m n m nqx x qx qx
i j i j

D f x D D f x
                  (2.11) 

where 

. .
= , , = 0,1,2,...m n m n

m n n mq x x q x x
i j j i

D D m n 
                                                               (2.12) 

 Definition: Let 1 2= ( , ,..., ) n

na a a a R  be a arbitrary, but fixed and : nf D R R   be a continous. If f  has all the q -

partial derivations at a , then the q -differential corresponding to a is defined by 

1 1 . 2 2 . .
1 2

( , ) = (( ). ( ). ... ( ). ) ( )q q x q x n n q x
n

d f x a x a D x a D x a D f a                            (2.13) 

and higher order the q -differential: 

( ) ( )

1 1 . 2 2 . .
1 2

( )

.. =
1 1 =0,...,

11 2

( , ) =(( ). ( ) ... ( ). ) ( )

[ ] !
= ( ) ( )

[ ] !.[ ] !...[ ] !

k k

q q x q x n n q x
n

n iq k j

i i k i j jin n jqx x
ni N q q n qj

d f x a x a D x a D x a D f a

k
D f a x a

i i i
 



     

 
   

 

                        (2.14) 

Notice that a continous function ( )f x  in a neighborhood of a  that does not include any point with a zero coordinate, has also 

continous q -partial derivatives. 

 Lemma: Let : nf D R R   be a function having all q -diferentials in some neighborhood of a D . Then q -Taylor 

expansion of f  at a  is given by [7] 
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0

( , )
( ) =

[ ] !

k

q

k q

d f x a
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k





  .          (2.15) 

 

3. Q-Taylor Linerization Method for Objectives 

In this section, we consider the MOLFP.  

If Z ( ) ,  1,...,k k
k

k k

c x
x k K

d x






 


, then 

 1 2 ( ) ( ), ( ),..., ( ) ,kMax Z x Z x Z x Z x            (3.1) 

. . :  = | ,  0s t x S x Ax b x

   
  

    
      

where , ,S A b  and x  are as defined in problem (2.1), and ,  0 (k=1,...,K)k kx S d x     . 

We will transform the model (2.16) to a new model obtained by the following three steps: 

Step 1: Determine 1= ( ,..., )k k knx x x  
 which is the value that is used to maximize the k th objective function 

( ) ( = 1,..., )kZ x k K  and n  is the number of the variables. 

Step 2: Transform each objective functions by using first-order q-Taylor polynomial series as follows:  

 
1

2

0

1 1
1

=1

( , )
( ) ( ) =

[ ] !

= ( ) ( ) ( ) ... ( ) ( )

= ( ) ( ) ( )

m

q k k

k k

m q

k k k q k k n kn q k k
x x

n

n

k k j kj qx k k
jj

d Z x x
Z x L x O h

m

Z x x x D Z x x x D Z x

Z x x x D Z x





    

  

 

 
    
  

 



                 (3.2) 

 Step 3: Find satisfactory 1= ( ,.. )nx x x  
 by solving the reduced problem to a single objective.  

Note that problem is solved by assuming that weights of the objective are equal. Thus, the problem (3.1) reduces the following 

MOLPP 

 1 2 ( ) ( ), ( ),..., ( ) ,

. . :  = | ,  0 .

kMax L x L x L x L x

s t x S x Ax b x



   
  

    
    

        (3.3) 

We assume that the weights of objective functions in problem (3.3) are equal, then the problem (3.3) is transformed to the following 

linear programming problem: 

 

 1 2 ( ) ( ) ( ) ... ( ) ,

. . :  = | ,  0 .

kMax P x L x L x L x

s t x S x Ax b x

   

   
  

    
    

       (3.4) 
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In problem (3.4), set X is non-empty convex set having feasible points. The optimal solution of problem (3.4) gives the efficient solution 

of MOLFPP (3.1). 

 

 

4.  Numerical Example 

Example: We consider an example 

1 2
1

1 2

1 2
2

2

1 2
3

1

1 2

1 2

1

2

4
 ( ) =  

6 3

5
 ( ) =

1

3 17
 ( ) =  

3 16

               3

                              7

                               4

4

   

x x
Maximize Z x

x x

x x
Maximize Z x

x

x x
Maximize Z x

x

Subject to x x

x x

x

x

 

 

 



 

 

  

 





1 2                            , 0x x 

   

It is observed that 1 2 30, 0, 0Z Z Z    for each x  in the feasible region. If the problem is solved for each of objectives one by one  

1

1
(1,4)

  13
Z  

 , and 
2
(4,1) 1Z     and 

3

1
(4,3)

  2
Z 

 . 

Thus, we determine the first-order q-Taylor polynomial series (for 0.99q  ) for the objective functions 1 2( ),  ( )Z x Z x and 3( )Z x , 

then the following linearized forms of the objective functions are obtained: 

1 1 1 1 2 1
1 2

( ) (1,4) ( 1) (1,4) ( 4) (1,4)qx qxL x Z x D Z x D Z     
 

 

2 2 1 2 2 2
1 2

( ) (4,1) ( 4) (4,1) ( 1) (4,1)qx qxL x Z x D Z x D Z     
 

 

3 3 1 3 2 3
1 2

( ) (4,3) ( 4) (4,3) ( 3) (4,3)qx qxL x Z x D Z x D Z     
 

 

where from (2.8) and (2.9) are  

1
1

1
2

2
1

2
2

3
1

3
2

(1, 4) 0.041612174

(1, 4) 0.083095917

(4,1) 0.254

(4,1) 0

(4,3) 0.36407767

(4,3) 0.25

qx

qx

qx

qx

qx

qx

D Z

D Z

D Z

D Z

D Z

D Z

 











 

Thus we get  

1 1 2

2 1

3 1 2

( ) 0.041612174 0.083095917 0.3676945709

( ) 0.254 2

( ) 0.36407767 0.25 2.70631068

L x x x

L x x

L x x x

   

 

  
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and  

  1 2 3 1 2( ) ( ) ( ) 0.572465496 0.333095917 5.074005251P x L x L x L x x x       

Thus, the final form of the MOLFP problem is obtained as follows: 

 ( )Maximize P x  

1 2

1 2

1

2

1 2

               3

                              7

                               4

4

                               , 0.

Subject to x x

x x

x

x

x x

  

 







 

The problem is solved and the solution of the above problem is as follows: 

1 2= 4, = 3x x  and 1 2 3( ) = 1/ 6,  ( ) = 1 and ( ) = 1/ 2Z x Z x Z x    

 

4. Conclusions  

In this paper, we computed the solutions of MOLFPP using an efficient method which is based on q -calculus theories (in particular, 

first-order q -Taylor series). MOLFPP is reduced to MOLPP by first-order q -Taylor series. We assumed that the weights of the 

objective are equal. Then, the proposed solution method was applied to a numerical example to test the effect of first-order q -Taylor 

series method. The results show that the proposed method is more effective. 
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