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Abstract 

In this article, the influence of simultaneous variation in blade root chord length and blade taper on the flight control effort of 

maneuvering helicopter is researched. For this intention, helicopter models which are complex, control-oriented, physics-based models 

and capturing the main-physics and essential-dynamics are benefited. The influence of simultaneous variation in the blade root chord 

length and blade taper (i.e., in both chordwise and lengthwise directions dependently) on the control effort of a maneuvering manned 

helicopter and also on the closed-loop responses are worked. Comparisons in terms of the control effort and peak-values with and 

without variations in the blade root chord and blade taper changes are followed. For helicopter control variance-constrained controllers 

(i.e. output variance-constrained controllers) are useful. Shortly, in also maneuvering flight conditions effects and benefits of 

simultaneous variation in blade root chord length and blade taper on the flight control effort is tried to be proved. 

  

Keywords: Maneuvers, Helicopters, Blade Root Chord Length, Blade Taper, Control Effort Saving, Flight Control System, Closed-

Loop Response. 

Pale Kök Veter Uzunluğu ve Pale Daralmasının Eş Zamanlı 

Değişiminin Manevra Yapan İnsanlı Helikopterin Kontrol Çabası 

Üzerindeki Etkisi 

Öz 

Bu çalışmada, pale kök veter uzunluğu ve pale daralmasının eş zamanlı değişiminin manevra yapan insanlı helikopterin kontrol çabası 

üzerindeki etkisi araştırılmıştır. Bu maksatla karmaşık, kontrol amaçlı, fizik temelli, temel fizik ve gerekli dinamikleri içeren helikopter 

modellerinden faydalanılmıştır. Pale kök veter uzunluğu ve pale daralmasının (hem veter açıklığı hem de uzunluk doğrultularında aynı 

şekilde) eş zamanlı değişiminin manevra yapan insanlı helikopterin kontrol çabası ve ayrıca kapalı çevrim cevaplarındaki etkileri 

çalışılmıştır. Kontrol çabası ve pik değerler için pale kök veter uzunluğu ve pale daralmasının gerçekleştiği ve gerçekleşmediği 

durumlarda kıyaslamalar yapılmıştır. Kısacası pale kök veter uzunluğu ve pale daralmasının eş zamanlı değişiminin manevralı uçuş 

koşullarında dahi etkileri ve faydaları ispatlanmaya çalışılmıştır. 

 

 

Anahtar Kelimeler: Manevralar, Helikopterler, Pale Kök Veter Uzunluğu, Kontrol Çabası Kazancı, Uçuş Kontrol Sistemi, Kapalı-

Çevrim Cevabı. 
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1. Introduction 

Methods for minimizing the control effort of a flight control system (FCS) of a helicopter were frequently and commonly examined 

in the literature(Bluman & Gandhi, 2011; D Fusato & Celi, 2006; Dario Fusato, Guglieri, & Celi, 2001; Luo, Liu, Yang, & Chang, 2003; 

Tugrul Oktay & Sal, 2015; T Oktay & Şal, 2015; Tugrul Oktay & Sultan, 2013a, 2013b, 2013c, 2014). Limited number of studies studies 

on the helicopter blade root chord length and blade taper have been done recently for different reasons(Kambampati, Ganguli, & Mani, 

2013; Tugrul Oktay & Sal, 2017; Özdemir & Kaya, 2006; Ozgumus & Kaya, 2007; Vu & Lee, 2015). For instance, in (Özdemir & 

Kaya, 2006), flapwise bending vibration analysis of a rotating, tapered cantilever Bernoulli–Euler beam (e.g., helicopter blade) was 

followed via benefiting the differential transform method. The effect of blade taper on natural frequencies was also worked. It was 

obtained that the natural frequencies of a rotating, tapered cantilever Bernoulli–Euler beam can be determined with high correctness via 

benefitting the differential transform method. In addition to the previous study, the effect of blade taper on the control effort of the flight 

control system of a helicopter was also studied in (Tugrul Oktay & Sal, 2017). In that article, blade root chord, blade taper and the gains 

of the output variance-constrained controller (OVC)-based helicopter FCS were the optimization parameters during straight level 

flight.It was obtained in this article that when blade taper is required to applied due to the performance reasons, blade root chord has to 

be used in order not to increase control effort.  

Numerous control approaches for the helicopter FCS have been found recently(Dalamagkidis, Valavanis, & Piegl, 2011; Hsieh, 

Skelton, & Damra, 1989; Li, Liu, & Song, 2011; Skelton, 1987; Skelton, Iwasaki, & Grigoriadis, 1998). The use of variance-constrained 

controllers is one these approaches(Skelton, 1987). These kinds of controllers have many advantages with respect to the other existing 

common controllers. One of these advantages is that variance-constrained controllers are enhanced LQG controllers and they include 

Kalman filters for state estimators. In this article, a specific variance-constrained controller, the OVC, is used for helicopter FCS during 

maneuvering flight. 

In this article, the simultaneous effect of the helicopter blade taper and blade root chord length on the control effort of the FCS of 

a helicopter during maneuvering flight is for the first time examined with OVCs. Furthermore, comparisons in terms of the peak values 

of closed-loop responses with and without variations in the blade root chord and blade taper changes are followed for the first time in 

the literature. 

2. Our Helicopter models 

In this article, the helicopter models summarized in (Tugrul Oktay & Sal, 2015; Tugrul Oktay & Sal, 2017; T Oktay & Şal, 2015) 

are benefited. These models are concisely summarized next. They captures the physics principles leading to dynamic models consisting 

of a finite set of ordinary differential equations. These models includes the fuselage, empennage, landing gear, fully articulated main 

rotor (i.e., with four blades), main-rotor downwash, and tail rotor. As a result, these models are accurately complex with a total of 29 

equations: 9 fuselage equations, 16 blade flapping and lead-lagging equations, 3 static main-rotor downwash equations, and an 

additional flight-path angle algebraic equation. In Figs. 1 and 2 the blade taper and balde root chord are illustrated. Their effect on 

control effort and closed loop responses will be examined in this article next. 

a.  

b.  

Fig. 1. Tapered Helicopter Blade a. Tapered Blade b. Both Tapered and Untapered Blades (Taken from (Tugrul Oktay & Sal, 2017)) 
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a.  

b.  

 

Fig. 2. Illustration of Variation in Blade Root Chord 

a. Just Tapered Blade b. Both Taper and Blade Root Chord Variations Applied (Taken from (Tugrul Oktay & Sal, 2017)) 

 

3. Variance Constrained Control 

For a clear continuous linear time invariant (LTI), stabilizable and detectable plant (Dalamagkidis et al., 2011; Hsieh et al., 1989; 

Li et al., 2011; Skelton, 1987; Skelton et al., 1998) 

p p p p pp
x A x B u w   ,

p py C x , z p pM x v               (1) 

and a positive definite input penalty matrix, 0R > ,  find a full order dynamic controller 

zc c cx A x F  , cp
u G x                                                 (2)                                  

to response the problem 

, ,
= ( )

T T

p cpA F G jc

min J E u Ru tr RGX G                          (3)                                           

expose to variance constraints on the output/outputs 

2 2
, 1,....,i i y

E y i n                                            (4)                                                                                                                                                                                                                                                              

Here y and z describe outputs of interest and sensor measurements, respectively, 
pw  and v are zero-mean uncorrelated Gaussian 

white noises with intensities of W and V, respectively, F and G are state estimator and controller gain matrices, respectively, cx  is the 

controller state vector, 
2

i  is the upper limit imposed on the i-th output variance, 
y

n  is the number of outputs, and additionally 

t
E lim E 

, and E is the expectation operator. In final, tr and 
T
 represent matrix trace and matrix transpose operators, 

respectively. The quantity of J usually called as flight control system energy or flight control system cost and it is calculated via 

benefitting also the state covariance matrix, c
j

X . After the algorithm(Hsieh et al., 1989; Skelton, 1987; Skelton et al., 1998) 

converges and the output penalty matrix Q is determined, OVC parameters are  

c p p pGA A B FM   , 1T

pF XM V


 , 1 T

pG R B K


             (6)                                                                                                                                                                                    
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    Here, X and K are solutions of solutions of two algebraic Riccati equations given next: 

 
1

0
T T

p p p pXA A X XM V M X W


                           (7a)                                                                                                                                                                                                                              

1
0

T T T

p p p p p pKA A K KB R B K C QC


          (7b) 

4. Results 

In this article, the effect of combined change in blade root chord length and blade taper on the control effort of the FCS of a helicopter 

is examined. For this intention, complex, control-oriented, physics-based helicopter models (see (Tugrul Oktay & Sal, 2015; Tugrul 

Oktay & Sal, 2017; T Oktay & Şal, 2015) for further information) are trimmed and linearized around hover helical turn, 40-knots helical 

turn and 80-knots helical turn maneuvering conditions are applied. OVCs are designed with output variance constraints on helicopter 

Euler angles of 10^(-4), while all four helicopter controls are used as inputs. The noise intensities are W=10^(-7) x I_25 and V=10^(-7) 

x I_4. 

      In Figs. 3, 4 and 5 for hover helical turn, 40 kts helical turn and 80 kts helical turn, control effort (J) as  functions of taper ratio (Ω) 

and root chord (Ԑ) is given. It can be seen from these figures that for any of maneuvering flight condition when taper ratio is applied, 

the control effort increases. On the other hand, if root chord is extended the control effort decreases. These results are similar with the 

results found for straight level flight as in (Tugrul Oktay & Sal, 2017). 

      In Figs. 6 and 7 effect of simultaneous variations in blade root chord and blade taper on some states and controls for 40 kts helical 

turn is given. Three scenarios are considered. The first one is original blade. The second one is for the situation that the taper ratio and 

root chord are applied in borders (version I). The third one is for the situation that taper ratio is chosen at the border and the root chord 

constant is chosen in order to keep blade area constant (version II). It is found that when it is required to use taper due to the performance 

reasons, the length of the blade root chord must also be increased in order to not rise the control effort of the FCS of the helicopter.  

5. Conclusions and Recommendations 

      In this study, the effect of combined variation in blade root chord length and blade taper on the flight control effort of 

maneuvering helicopter was investigated. For this purpose, helicopter models which are complex, control-oriented, physics-based 

models and capturing the main-physics and essential-dynamics are applied. For the helical turn maneuvering flight conditions it is found 

that when taper ratio is applied, the control effort increases. On the other hand, if root chord is extended the control effort decreases. 

Moreover, when it is required to use taper due to the performance reasons, the length of the blade root chord must also be increased in 

order not to rise the control effort of the flight control system of the helicopter for also maneuvering flight. Consequently, in also 

maneuvering flight conditions effects and benefits of simultaneous variation in blade root chord length and blade taper on the flight 

control effort were proved in this study. 
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Fig. 3. Hover Helical Turn Energy Results 

 

 

Fig. 4. 40 kts Helical Turn Energy Results 
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Fig. 5. 80 kts Helical Turn Energy Results 
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Fig. 6. Effect of Simultaneous Variations in Blade Root Chord and Blade Taper on some States for Helical Turn (40-knots, 0.1, 0.1) 
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Fig. 7. Effect of Simultaneous Variations in Blade Root Chord and Blade Taper on some Controls for Helical Turn (40-knots, 0.1, 0.1) 
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