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Abstract

In this paper, soliton solutions of the generalized Dullin-Gottwald-Holm (gDGH) equation with parabolic law nonlinearity are
investigated. The gDGH describes the behavior of waves in shallow water with surface tension. There are only a few studies in the
literature regarding gDGH equation with parabolic law nonlinearity, and to our best knowledge, the unified Riccati equation
expansion method (UREEM) has not been applied to this equation before. Many soliton solutions of the considered gDGH equation
are successfully attained using the UREEM, which is a powerful technique for solving nonlinear partial differential equations. We
verify that the obtained analytical solutions satisfy the gDGH equation using Mathematica. Furthermore, some plots of the acquired
solitons are demonstrated with the aid of Matlab to examine the properties of the soliton solutions. The obtained results show that the
considered gDGH equation admits dark, bright, singular, and periodic solutions. This study may contribute to a comprehensive
investigation of the soliton solutions of the gDGH equation, which has practical applications in fields such as oceanography and
nonlinear optics.
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Parabolik Dogrusal olmayan Kanunlu Genellestirilmis Dullin-
Gottwald-Holm Denkleminin Soliton Co6ziimleri

Oz

Bu makalede, parabolik yasali genellestirilmis Dullin-Gottwald-Holm (gDGH) denkleminin soliton ¢dziimleri incelenmistir. ilgili
denklem yiizey gerilimli s1g sularda dalga davranigini modellemektedir. Literatiirde dogrusal olmayan parabolik kanuna sahip gDGH
denklemi ile ilgili sadece birka¢ caligma vardir ve literatiir aragtirmalarindan goriildiigii tizere bu makalede kullanilacak olan
birlestirilmis Riccati denklemi genigletme (BRDG) yontemi daha once bu denkleme uygulanmamistir. Bu g¢aligmada gDGH
denkleminin birgok soliton ¢6ziimii, dogrusal olmayan kismi diferansiyel denklemleri ¢ozmek igin gii¢lii bir teknik olan BRDG
yontemi kullanilarak basarili bir gekilde elde edilmistir. Elde edilen analitik ¢6ziimlerin gDGH denklemini sagladigi Mathematica
kullanarak dogrulanmistir. Ayrica, soliton ¢oziimlerinin 6zelliklerini ve davramigini incelemek igin elde edilen solitonlarin bazi
grafikleri Matlab yardimiyla ¢izdirilmistir. Elde edilen sonuglar, gDGH denkleminin karanlik, parlak, tekil ve periyodik gibi farkli
tirlerde ¢oziimler igerdigini gostermektedir. Bu ¢aligma, okyanus bilimi ve dogrusal olmayan optik gibi alanlarda uygulamalar1 olan
gDGH denkleminin soliton ¢6ziimlerinin kapsamli bir sekilde incelenmesine katki sunabilir.

Anahtar Kelimeler: Soliton ¢dziimleri, s1g su, dogrusal olmayan dalga dinamigi, karanlik soliton.
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1. Introduction

Nonlinear partial differential equations (NLPDES) are mathematical equations that describe physical phenomena in a wide range
of scientific fields, including physics, engineering, chemistry, biology, and economics (Farlow, 2012), (Levy & Shearer 2015), (Braun,
1983b), (Zachmanoglou & Thoe, 1986). The ability to model complex systems and predict their behavior is critical in modern science
and engineering and NLPDEs are a powerful tool for achieving this goal. NLPDEs can be used to model a variety of physical
phenomena, such as fluid flow, heat transfer, wave propagation, and electromagnetism (Farlow, 2012), (Levy & Shearer 2015),
(Braun, 1983b), (Zachmanoglou & Thoe, 1986).

In 2001, Dullin et al. introduced an equation that models shallow water waves with surface tension, later called the DGH equation
(Dullin et al., 2001). Due to advances in physics and mathematics, various extensions of the DGH equation have been generated and
investigated. For example; the dimensionless form of the generalized DGH (gDGH) equation was studied by (Biswas & Kara, 2010).
Zhang, Y., & Xia, Y. (2021) dealt with the gDGH equation with parabolic law nonlinearity.

This paper aims to obtain the soliton solutions of the gDGH equation with parabolic law nonlinearity. The equation can be given
by (Zhang & Xia, 2021b):

Zt - aZXXt + ZBZX + ()/Z + O-ZZ)Z.X' + AU‘ZXXX = a(ZZxZXX + ZZXXX)' (1)

where z = z(x, t). Here, x, t denote spatial and temporal variables, respectively. «, 8,y, g, and u are constants with real values. The
term yz + gz?2 stands for parabolic law nonlinearity. Besides, y and o are coefficients of the parabolic law nonlinearity form that
occurs in optical fibers.

Yang et al. (2022) studied exact soliton solutions of the gDGH equation with cubic power law nonlinearity. They also investigated
the bifurcations of the solutions. Yin et al. (2013) presented painleve analysis of gDGH and KdV equations. Ina study by Leta and
Li (2017), the authors investigated the soliton solutions of the various exact soliton solutions and bifurcations. These studies highlight
the importance of the gDGH equation and its soliton solutions in understanding nonlinear wave dynamics in various physical systems
and exploring their practical applications in fields such as oceanography and nonlinear optics.

In the literature, to obtain soliton solution of the NLPDEs, there are powerful methods such as new Kudryashov (Kudryashov,
2020), auxiliary equation technique (Ozisik et al., 2022b), sine-Gordon equation (Yildirim, 2021), F-expansion method (Zhou et al.,
2003b), modified F-expansion method (Ozisik et al., 2023), the generalized unified method (Osman & Wazwaz, 2018), modified
extended tanh-function method (EI-Wakil et al., 2002), generalized Kudryashov (Cakicioglu et al., 2023) and Kudryashov’s
integrability approaches (Ozisik et al., 2022). In this paper, UREEM (Sirendaoreji, 2017), (Zayed et al., 2020) is used to extract
soliton solutions of gDGH equation with parabolic law nonlinearity.

The rest of the paper is structured as follows: In Section 2, we provide a wave transformation and apply UREEM to the
considered model. In section 3, we present some plots of the soliton solutions of the gDGH equation and give explanations of the
figures. In conclusion, we summarize our main findings and contributions.

2. Method
2.1. Wave Transformation

The following transformation in eq. (2) is employed to convert the gDGH with parabolic law nonlinearity into an ordinary
differential equation (ODE) that can be solved.

Z(x,t)=Z(f), f=x—l7t, (2)
in which v denotes the speed of the wave. So, we obtain:
(u—aZ+av)Z® + (2B —2aZ" + Z(y + 0Z) —v)Z' =0, (3)

where Z = Z(&). Here, Z', Z", and Z® are the first, second, and third order derivatives with respect to &, respectively.

2.2. Unified Riccati Equation Expansion Method
Assume that the eq. (3) possesses the solutions as follows (Sirendaoreji, 2017), (Zayed et al., 2020):
Z(§) = Ao + XL, 40" (), (4)

in which Ay # 0 and N denotes a balance number. Balancing the terms Z Z®) and Z2Z' in Eq. (3), we get N = 2. So, Eq. (4) is
converted into:

Z() = Ag+ A1 9(§) + 4, 9(§)?, ®)
where 4, # 0 and @ () represents the solution of the following equation:
@'(§) =co + c19(§) + c20%(§), (6)
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in which Eq. (6) has the following solutions (Sirendaoreji, 2017), (Zayed et al., 2020):
VA
¢, VA (kltanh (7 f) + kz)

»1(§) = — , ifA>0,
1 %2 e <k1 + kytanh (gf))
Pa() = 5 - Bt (7)) g
2 2, <k1 + kycoth (g@)
C1 1 )
€03(f)=—72—m‘ ifA=0,
-A
0 = =5+ VA (ks an (5 )7%) acs,
(k + kstan (¢ )
@s($) ———n(k4C0t (_ ) _ ks), ifA <0,

where A = ¢ — 4cyc, and kq, ky, ks, k4, k< are arbitrary constants. The solutions ¢, (§) and ¢, () are non-trivial and nondegenerate
if and only if k, = £k, k? + k% # 0. The solutions ¢,(§) and (&) are non-trivial and nondegenerate if and only if kZ + k2 # 0.
By collecting all terms with the same power of ¢ (£) in Eq. (3) and setting all coefficients to zero, the following system of equations is
obtained:

The coefficient of °(£):

co(—2ah2cocy + Ay (Ag(—ac? — 2acyc, +y) — 4ah,c3 + A20 + 2B + c2p + 2¢oCo 1 + actv + 2acyc,v — V)
+ 6A,coc,(—aAy + p+ O(V)) =0.

(7)
The coefficient of ¢ (&):
A2cy(24,40 — 50(c1 60cyC, + Y)
+ Aci(Ag(—ac? — 8acyc, + ) — 26ad,¢2 + Ado + 2B + c2pu + 8cycu + ackv + 8acyc,v — v)
+ 24,5¢0(Ag(—7ac? — 8acyc, + ) — 4ad,cé + A%o + 2B + 7cZu + 8cycop + 7actv + 8acyc,v — v) = 0.
(8)

The coefficient of p?(&):
A2¢; (24,0 — 3ac? — 20acyc, +v) + Alcyo
+ A1 (Ayco (6400 — 43ac? — 46acyc, + 3y)
+ co(Ao(=7ac? — Bacyc, +v) + A30 + 2B + 8cocop + 7c2 (1 + av) + Bacyc,v — v))
+ 24,¢,(Ag(—4ac? — 26acycy +v) — 19ad,c2 + A3 + 2B + 4cu + 26¢oc, 1 + 4aciv + 26acyc,v — v) = 0.

9)
The coefficient of o3 (&):
A3(c, (2400 — 15ac — 16acyc, +Y) + 44,¢40) + Adci0
+ 24,(Azc0 (2400 — 27ac? — 28acyc, +y)
+ ¢ (Ag(—19ac? — 20acyc, +Y) + A30 + 2B + 20cocopt + 19¢2 (1 + av) + 20acyc,v — v))
+ 34,6, (452400 — Tac? — 44acyc, +Y) + 4ci(—ady + p+ av)) = 0.
(10)
The coefficient of p*(&):
24%¢, (24,0 — 11ac?) + Adc,0 + A1 (Ayc,(6490 — 89ac? — 92acyc, + 3Y) + 543¢00 + 663 (—ad, + p + av))
+ 2A2c1(A (2440 — 12ac? — 74acyc, +v) + 27¢2(—ady + p + ocv)) = 0.
(11)
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The coefficient of ¢°(£):
A3(2¢,(2A490 — 47ac? — 48acyc, +Y) + 54,¢,0) — 10aA%c3 + 243¢cy0 + 24,¢,(—59a4 ci¢; + 12¢2(—ady + p+ av) +
2426) = 0. (12)

The coefficient of °(&):
Ay (Ayc,(5A 0 — 118ac,c;) — 50ad;c3 + 24%¢,0) = 0. (13)

The coefficient of 7 (&):
24A%c,(A,0 — 24ac?) = 0. (14)

When the system of algebraic equations that is given above is solved utilizing a computer algebra system, the following set is
obtained:

SET 1%,

a (y +20v + 3,/y?2 — 880 — 8aZc} + 64aZcyc,c? — 128a?cic? + 4017)

=" 20 !

4ac? + 32acoc, —y ++/—8B0 + y? — 8ac} + 64aZcyc,c? — 128a2cic? + 4ov
20 ’
_ 24acc,

1=
o )

24ac?
2 = = )

Ag ==

where
y% —8B0 — 8a’ct + 64a’coc,ci — 128acéc? + 4ov > 0.
Substituting the set above to Eq. (4) along with Eq. (2), we derive the following solutions of the gDGH equation in Eq. (1):
2
VA(ky tanh(2VA(x—tv) )+k VA(k, tanh(2VAGx—tv) )+k
24ac,c, | — (ks (21 ) 2)—C—1 + 24ac? | - (ks (21 ) 2)—2
2c2(k2 tanh(E\/Z(x—tv))+k1) 2c2 2¢, (kz tanh(E\/Z(x—tv)>+k1) 2¢;

)
o

71 (x, t) = Ag +

24ac,c, (_ \/Z(kl tan(%ﬁ(x—tv))+k2) _ C_1) + 240.’C22 (_ \/A_(k1 tan(%\/A_(x—tv)>+k2) o )2

2,500 t) = Ay + 2Cz(kz tan(%ﬁ(x—tv)>+k1) 2¢2 ZCZ(RZ tan(%\/Z(x—tv)>+k1) 2¢;

1]

o

24ac,c (—; — C—l) + 240c2 (_; _ C_l)z

Z3i(x, t) = Ay + 12\ (-tv)+ks  2c, 2 co(x—tv)+ks  2c, ’
o

2
VA (ky tan(JVA(Gx—tv) )k VA(ky tan(3VA(x—tv) -k
240(6162( A( 1tan<z Alx t”) 2) i)+24ac22< A( 1tan(2 A(x—tv ))Hj))—zc—clz)
1

ZE(x, ) = Ay + ZCz(kz tan<%\/z(x—tv)>+k1) 20, 2c2(k2 tan(%\/Z(x—tv)

)
o

2
24ac,c, (_ \/Z(kl tan(%\/Z(x—tv))—kz) 1 ) n 24—0(622 (_ \/Z(kl tan(%\/z(x—tv))—kz) e )

Zcz(kz tan(%\/Z(x—w)>+k1) 2 Zcz(kz tan(%\/z(x—tv))+k1) 2,

zst(x,t) = Ay +

o
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3. Results and Discussion

We successfully derived the soliton solutions of the gDGH equation with parabolic law nonlinearity using the UREEM. The
results of our study show that the gDGH equation admits dark, bright, singular, and periodic solutions.

Figure 1 presents diverse plots of the z;*(x,t) using the parameters v = 2,a = %,[)’ = %,y =4,u= é(—i /2(2)—1 — %) o=
1,co=1,¢,=3,¢c, = %,kl = 2, and k, = 1. It admits a dark soliton. Fig. (1-a) shows 3D demonstration of the soliton while Fig. (1-

b) illustrates 2D plot of the soliton for t, = 1,2,and 3. As can be deduced from Fig. (1-b), the soliton goes to the right on the
horizontal axis.

1 B
0 Or
=
k)
1 Eoall
ol = (z,1)
-2 2 (x,2)
z! (,3)
3 -10 -5

(a) (b)

Figure 1. Three and two-dimensional plots of z, * (x, t) (dark soliton)

Fig. (2-a) and Fig. (2-b) illustrate the effect of the parameters y and o on z, " (x, t) utilizing the parametersv = 2,a = %,[3 =

%,u = %(—23—5 /Z;J - g) co=1c¢ =3¢, = %,kl = 2, and k, = 1. Soliton amplitude increases in absolute value when y takes both

negative and positive increasing values. There is a downward displacement in the wings of the soliton (Fig. (2-a)). While the soliton
has a dark appearance for positive values of o, the soliton turns into a bright soliton character in the case of negative values of . In
this respect, ¢ has an important effect that changes the type of soliton. For positive increasing values of o, the amplitude decreases
depending on the increment. While it takes negative increasing values, the amplitude increases.

| 30 a=-0.1|-
o =-0.2
a=-0.3
207 o =01 ||
a=0.2
. 10} a=0.3 j
— — |
5 K 0f
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5 =01 || =20
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r X

(a) Foro=1 (b) Fory =4

Figure 2. The effect of the parameters y and ¢ on z;* (x, t)
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In Figure 3, we show the singular solutions z,*(x,t) of the gDGH equation for v =2,a =1—10,,8 =%,y =4,0=1pu=

%(—% Zzﬂ - g),co =1,¢,=3,¢c, = %,kl = 2,and k, = 1. Fig. (1-a) and Fig. (1-b) represent 3D and 2D demonstrations of the

solution, respectively. The wave goes to the right on the horizontal axis while ¢, = 1,2, and 3.

20 60 .
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40
R
B30
10 +Nw
1 20
o (@.1)
4 5 10 - 2 (,2)
0.5 23 (z,3)
-10 -5 0
t
10 0 x

(b)

Figure 3. Three and two-dimensional plots of z,* (x, t) (singular solution)

Finally, in Figure 4, we plot the solution z,*(x, t) of the gDGH equation for v = 2,a = %,,8 =-,y=4u= ;(—3 - i),a =
l,co=1,¢, =2,¢c, =1k, = 2,and kg = 1. It is a periodic solution.
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Figure 4. Three and two-dimensional plots of z,* (x, t) (periodic solution)

4. Conclusions and Recommendations

The UREEM was used in this paper to produce many analytical solutions of the gDGH equation with parabolic law nonlinearity,
that models shallow water waves. This work effectively provides dark, bright, singular, and periodic solutions. We tested that all
extracted solutions satisfied the main equation with the aid of Mathematica, which is a computer algebraic system. Moreover, 2D and
3D schemes are presented for a physical explanation of the obtained solutions. According to the results of the study, for future works,
the approach may be utilized to find analytical solutions to nonlinear evolution equations that model real-life problems.
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