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Abstract 

Quantum sensors play an important role in many branches of modern science, and they occupy a huge segment of the growing market 

for quantum devices. Quantum sensors use qubits and their analogs as detecting and analyzing quantum elements. Some sensors can 

be based on a single qubit, which is often presented as a system making its evolution on the so-called Bloch sphere. Different criteria 

are used to evaluate the efficiency of the sensing process. One of the most popular is the Quantum Fisher Information Matrix (QFIM) 

based on Fisher information. The magnitudes of the QFIM elements are strongly related to the precision of the sensing. As an analog 

of the classical Cramér theorem, one can define the quantum Cramér-Rao bound for the variance V, which is equal to V = 1/NF where 

F is the corresponding quantum Fisher information element, and N stands for the number of repeated sensory measurements. In this 

work, we develop our quantum Fisher information-based approach for a single feedback-driven qubit-type element for sensing 

external magnetic fields. We demonstrate the efficiency of our algorithm and discuss its further possible improvement. The approach 

developed here can be easily extended to other sensing schemes: collective spin systems and multi-qubit-based sensors. Alternative 

control algorithms can be applied to drive the probe state vector for maximization of the QFIM components. The particular choice of 

the control algorithm is defined by the specific experimental set-up.  
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Tek Dönüşlü Dinamik Araştırma Durumu ile Manyetik Alanı 

Algılama: Kuantum Fisher Bilgileri Yoluyla Algılama Hassasiyeti 

Üzerinde Kontrol 
Öz 

Kuantum sensörleri, modern bilimin birçok dalında önemli bir rol oynar ve kuantum cihazları için büyüyen pazarın büyük bir 

bölümünü işgal eder. Kuantum sensörleri, kuantum öğelerini tespit etmek ve analiz etmek için kübitleri ve analoglarını kullanır. Bazı 

sensörler, genellikle evrimini sözde Bloch küresi üzerinde gerçekleştiren bir sistem olarak sunulan tek bir kübite dayalı olabilir. 

Algılama sürecinin etkinliğini değerlendirmek için farklı kriterler kullanılır. En popüler olanlardan biri, Fisher bilgilerine dayanan 

Kuantum Fisher Bilgi Matrisidir (KFBM). KFBM öğelerinin büyüklükleri, algılama hassasiyeti ile güçlü bir şekilde ilişkilidir. Klasik 

Cramér teoreminin bir benzeri olarak, V = 1/NF'ye eşit olan V varyansı için kuantum Cramér-Rao bağı tanımlanabilir; burada F, 

karşılık gelen kuantum Fisher bilgi öğesidir ve N, tekrarlanan duyusal ölçümlerin sayısını temsil etmektedir. Bu çalışmada, harici 

manyetik alanları algılamak için tek bir geri bildirim odaklı kübit tipi eleman için kuantum Fisher bilgi tabanlı yaklaşımımızı 

geliştirmekteyiz. Algoritmamızın verimliliğini göstermekte ve olası iyileştirmelerini tartışmaktayız. Burada geliştirilen yaklaşım, 

toplu döndürme sistemleri ve çoklu kübit tabanlı sensörler gibi diğer algılama şemalarına kolayca genişletilebilmektedir. KFBM 

bileşenlerinin maksimize edilmesi için araştırma durumu vektörünü sürmek üzere alternatif kontrol algoritmaları uygulanabilir. 

Kontrol algoritmasına özgü yapılacak seçim belirlenen deneysel düzenek tarafından tanımlanır.  
 

Anahtar Kelimeler: Kuantum biti, Bloch küresi, Fisher bilgisi, Cramér-Rao sınırı, Kuantum algılama, İleri besleme kontrolü. 
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1. Introduction: Quantum Fisher 

Information for Sensing  

Quantum sensors play an important role in many branches 

of modern science: photonics, microscopy, gravitational wave 

detecting, and others (Laurenza et al., 2018; Koppenhöfer et al., 

2022); they occupy a huge segment of the growing market for 

quantum devices (ReportLinker, 2022). 

Quantum sensors use qubits and their analogs (Nielsen and 

Chuang, 2004) as detecting and analyzing quantum elements 

(Degen et al., 2017). Some sensors can be based on a single 

qubit, which is often presented as a system making its evolution 

on the so-called Bloch sphere (Bloch, 1946).  

Different criteria are used to evaluate the efficiency of the 

sensing process. One of the most popular is the Quantum Fisher 

Information Matrix (QFIM) based on Fisher information (Fisher, 

1922). In the quantum case, it can be defined via the Bures or, 

alternatively, the Hellinger distance between quantum states 

(Zhong et al., 2013). Here we use the Bures metric.  

For the vector parameter x encoding the density matrix ρ(x), 

the components of QFIM are defined as (Amari and Nagaoka, 

2000): 
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and for the diagonal elements as: 
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Here the sub-indices a,b numerate the elements of x, and La 

denotes the symmetric logarithmic derivative for the component 

xa. This derivative is a Hermitian operator with the expected 

value Tr(ρLa) = 0; and in general case it is defined for the 

density matrix ρ and an operator A as (Braunstein and Caves, 

1994): 

)}(,{
2

1
],[ ALAi    ,                   (3) 

with the commutator [X,Y] =  XY – YX, and anticommutator 

{X,Y} = XY + YX. For (1)-(2) one should take (Liu et al., 2019): 
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The magnitudes of the QFIM elements are strongly related 

to the precision of the sensing. As an analog of the classical 

Cramér theorem (Cramér, 1946), one can define the quantum 

Cramér-Rao bound (Nielsen, 2013) for the variance V, which is 

equal to: 

,
1
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where F is the corresponding quantum Fisher information matrix 

element, and N stands for the number of repeated sensory 

measurements.  

In this work, we develop our quantum Fisher information-

based approach (Borisenok, 2018) for a single feedback-driven 

qubit-type element for sensing external magnetic fields. We 

demonstrate the efficiency of our algorithm and discuss its 

further possible improvement. 

2. Quantum Sensing of An External 

Magnetic Field 

Let’s consider a magnetic field vector B represented by the 

spherical coordinate set of one magnitude B and two angles θ 

and φ as (B·cosθ·cosφ, B·cosθ·sinφ, B·sinφ). Here we suppose 

also for simplicity that one angle, let’s say φ, is known (Liu et 

al., 2019), such that our sensing deals with the estimation of B 

and θ.  

The magnetic field detection in this case may be organized 

via alternative algorithms: 

 A single-spin system (Pang and Brun, 2014; Liu et al., 

2015); 

 Collective spin system (Jing et al., 2015); 

 Two-qubit system: a probe qubit serves as a sensing 

element, while the companion ancilla qubit does not 

interact with the magnetic field (Yuan, 2016).  

Surely, the single-qubit sensing setup is the simplest from 

the point of its experimental realization. The interaction part of 

its Hamiltonian is given by Hint = −B·n0·σ, where 

  ,sin,0,cos0 n
                   

(6) 

and the vector σ consists of the Pauli matrix components 

(σx,σy,σz). Then the QFIM can be represented via the 

Hamiltonian components (Pang and Brun, 2014; Liu et al., 

2015): 
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in the form (Liu et al., 2019): 
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Here: 

  cos)cos(),sin(,sin)cos( BtBtBt 1n ,     (9) 

and rp is the Bloch vector of the probe state. 

Eqs (8) demonstrate the main handicap of the sensing with a 

single spin: the algorithm maximizes the Fisher matrix 

components FBB and Fθθ when the probe state vector rp is 
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orthogonal to both vectors n0 and n1. But in this case, the 

component Fθθ is bounded by the sine. Another handicap is the 

periodical vanishing of the components Fθθ and FBθ, when 

sin(Bt) becomes equal to 0.  

    As we mentioned above, the two-qubit sensing could be an 

option for precision improvement, but here we focus on the 

alternative approach for a single sensing element: making the 

probe state vector to be controlled to maximize the Fisher 

information components. In other words, we describe here the 

case of dynamical rp in the place of a static one. 

3. Sensing Magnetic Field with a Single 

Spin by A Dynamical Probe State  

For single-qubit-based quantum sensors, optimal and sub-

optimal feedback (closed-loop) control has already been studied 

in (Borisenok, 2018; Poggiali et al., 2018).  

Here we develop our approach (Borisenok, 2018), which 

also used the evaluation criteria based on the Fisher information, 

to adapt it to the efficient sensing of an external magnetic field. 

We apply here a feedforward (open-loop) form of the control 

taking the dynamical probe state vector rp(t) as a control 

parameter.  

To do it, let’s express the probe state vector via the angle 

parameter θp(t) as: 

 )(sin,0),(cos tt pp pr                 (10) 

(the magnitude of the vector is equal to 1). 

By (10) and (6),(9) one can present the vectors n0, n1 in the 

form: 
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The system (8) becomes: 
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Now let’s focus on FBB and Fθθ. From (12) one can learn 

easily that the maximization of both of them simultaneously has 

a conflict: different trigonometrical contributions from the 

variable θ. For this reason, we organize the controlled algorithm 

for θp in two stages: at the first stage we focus on the 

measurement of the amplitude B, and at the second one – on the 

angle variable θ. 

At the first stage, we define the feedforward control as: θp = 

νt, where the control frequency ν >> B, such that it covers all 

minima and maxima of sin(Bt) (it will be important for the 

second stage). 

From now we rescale the time variable t in the 

dimensionless units: νt, and the magnetic field amplitude is 

expressed in the dimensionless units B/ν (which must be <1). 

The Fisher information for FBB is limited by the growing 

magnitude 4t2, and in principle, it is increasing virtually for all 

ranges of θp, apart from the values close to the magnetic field 

angle θ. Having few measurements N, one can achieve good 

precision of the variance (5). 

In the second stage, we suppose to know the amplitude B, 

and we start this stage from an integer moment t = n (which 

starts close to sin(Bt) = 0 due to the magnetic field scaled in the 

ν units is: B << 1). We need to measure the angle θ close to the 

moment of the maximum for Fθθ for the given B.  

The maximum magnitude of cos(Bt) corresponds to: 
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For the numerical evaluation, we chose θ = π/4 and B = 0.2 

(in the dimensionless units of ν). Then the plot for the Fisher 

information FBB is given in Figure 1 (the first stage):
 

 

 

Figure 1. The Fisher information FBB vs time t. 

 

In Fig.1 one can easily observe the achievement of the 

maximum for the magnetic field amplitude Fisher information 

FBB around t = 10.
 
A similar investigation for the maximum we 

do for the magnetic field angle Fisher information
 
Fθθ. 

For the second stage, we obtain Figure 2:
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Figure 2. The Fisher information Fθθ vs time t.  

 

Thus, for the first stage, the measurements are taken around 

the time moment t = 10, and for the second stage – around t = 

11. 

4. Results and Discussion  

We develop a dynamical algorithm for the maximizing of 

the Fisher information in the process of detecting the amplitude 

and the angle of an external magnetic field. Our algorithm is 

numerically simple, open-loop and provides the best 

optimization of the variance parameters for single-spin 

measurements.  

Alternative control algorithms can be applied to drive the 

vector rp for maximization of the QFIM components. The 

particular choice of the control algorithm is defined by the 

specific of the experimental set-up and by the compromise 

between the precision of the control goal achievement and the 

optimization of the numerical complexity. 

Algorithms for the quantum detecting and evaluation of the 

magnetic fields also work for other sensing applications: 

quantum photonics, renewable energy, nuclear and geothermal 

energy, and many others (Crawford et al., 2021). 

5. Conclusions and Recommendations 

Open-loop algorithm based on a single spin/qubit 

measurements is able to provide a good variance of the 

measurements for external fields due to the maximization of the 

quantum Fisher information.  

Our approach can be extended for more advanced 

algorithms including different closed-loop realizations: optimal 

feedback, gradient methods, and forming target attractors in the 

dynamical system (Fradkov, 2007; Kolesnikov, 2014; Pechen et 

al., 2022). It also can be easily extended to other sensing 

schemes: collective spin systems and multi-qubit-based sensors. 

The effects related to quantum sensing at finite temperatures 

(Wu and Shi, 2021) should be studied additionally. 
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