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Abstract 

Direct current (DC) motors have many difficulties when controlling angular velocity in a variety of applications. The perfect controller 

cannot be carried out by traditional control alone due to the nonlinear properties of DC motors, design constraints, and mechanical 

variations caused by the operation conditions. This study proposes a design for an artificial neural network based PID controller 

(ANNPID) to control the speed of a permanent magnet DC motor (PMDC) in two methods. A detailed analysis is performed based on 

the simulation results of both methods. The proposed controllers are numerically simulated for various test conditions including; set-

point changes, step changes in the load torque, and parameter variations, then the suggested techniques were compared in a comparative 

study with a traditional PID controller based on the transient response specifications and the performance indices to validate the 

performance of the controllers. The simulation results demonstrated that the controllers have improved dynamics, static performance, 

and less overshoot. The methods described here achieve control more effectively than the conventional control approaches under both 

nominal and disturbed test conditions over different operating ranges.  
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SMDA Motorun Hız ve Konum Kontrolü için PID Sinir Ağı 

Denetleyicinin Tasarım ve Benzetimi  
Öz 

Doğru akım (DA) motorları, çeşitli uygulamalarda açısal hız kontrol edilirken birçok zorluk içerir. DA motorların doğrusal olmayan 

özellikleri, tasarım kısıtlamaları ve çalışma koşullarından kaynaklanan mekanik varyasyon nedeniyle mükemmel kontrol tek başına 

geleneksel kontrol yöntemleri ile gerçekleştirilemez. Bu çalışma, sabit mıknatıslı bir DA (SMDA) motorun hızını iki yöntemle kontrol 

etmek için yapay sinir ağı tabanlı bir PID denetleyici tasarımı önermektedir. Her iki yöntemin benzetim sonuçlarına dayalı olarak detaylı 

bir analiz yapılmıştır. Önerilen denetleyiciler, ayar noktası değişiklikleri, yük torkundaki adım değişiklikleri ve parametre varyasyonları 

dahil olmak üzere çeşitli test koşulları için sayısal olarak simüle edilmiştir; ardından önerilen teknikler, denetleyicilerin başarımını 

doğrulamak için geçici tepki özelliklerine ve başarım endekslerine dayalı olarak geleneksel bir PID denetleyici ile karşılaştırılmıştır. 

Benzetim sonuçları, denetleyicilerin iyileştirilmiş dinamiklere, iyileştirilmiş statik performansa ve daha az en büyük aşmaya sahip 

olduğunu göstermiştir. Burada açıklanan yöntemler, farklı çalışma aralıklarında hem nominal hem de bozulmuş test koşulları altında 

geleneksel kontrol yaklaşımlarından daha etkili bir şekilde kontrol sağlamıştır. 

 

Anahtar Kelimeler: SMDA motor, PID Denetleyici, Yapay sinir ağları (YSA),  YSA-PID, Geçici tepki. 
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1. Introduction 

DC drives have historically been the backbone of applications that 

demand precise speed and position control, including robot 

manipulators and home appliances, because of their low 

complexity, excellent reliability, adaptability, and attractive cost 
(Bansal, 2013). The motor should be accurately controlled to 

provide the desired result, thus the speed controller must carry out 

a variety of functions under a wide range of load conditions. 

Efficient motor drive development is crucial for many 

applications in industry. Control's main goal is to improve the 

model's performance and enable reliable operation.  Although 

direct, easy, and reliable control is possible using a conventional 

control algorithm (PID), it is, however, have some drawbacks. A 

major problem in applying PID to speed controllers is the 

nonlinearity effects of DC motors. DC motors' nonlinear 

properties, such as friction and saturation, can affect the 

conventional controllers' performance. In some control systems, 

it can be hard to adjust the three PID controller 𝑲𝑷  , 𝑲𝑰 and 
 𝑲𝑫 parameters. The traditional PID controller, which is applied 

in nonlinear, time-varying, uncertainties, or large inertia systems, 

will not be very effective. It can produce a high starting current 

that might be harmful to the motor's control electronics, etc., so 

the need for intelligent control arises. 

       The last decade has witnessed a rapid acceleration in control 

and automation and the emergence of intelligent controller which 

is a type of control system that employs different computing 

techniques with artificial intelligence such as self-tuning 

regulators, artificial neural networks (ANN), variable structure 

control (VSC), sliding mode control (SMC), and model reference 

adaptive control (MRAC). There is currently a strong interest in 

control science and practice for integrating classical automated 

control methods with artificial intelligence methods to control 

complex and weakly formalized objects and processes( Vassilyev 

et al, 2017), such as artificial neural networks (ANN) with 

conventional methods that are capable of eliminating system 

nonlinearity, the impacts of parameter variations, unanticipated 

changes in load, and system disturbance. The distributed and 

inherent parallel design of an ANN can be effectively exploited in 

order to control electric motors. Without being knowledgeable of 

any predefined model, the use of ANN can give a nonlinear 

mapping between an electric drive system's inputs and outputs. As 

a result, the application of an ANN to superior performance motor 

drives will make the system more reliable, effective, and resistant 

to undesirable conditions of operation. Although the Artificial 

neural network's historical development dates go back to 1943, 

the utilization of the neural network for control systems is 

relatively recent. Antonio E. B. Ruano (1992) presented the 

artificial neural networks' usefulness for control systems and their 

ability to implement nonlinear mappings. On the other hand, there 

was a lot of research on controlling the speed of DC motors with 

different algorithms. A PI (Proportional integral) controller and 

FL (fuzzy logic) controller are used for controlling the speed of 

the PMDC motor (Tuna, 2015). A Fuzzy controller compared to 

the PI had an improved variable speed load control performance. 

Gucin et al (2015) presented a comparison of several tuning 

approaches for cascade Proportional Integral (Derivative) 

parameters of the controller for the (PMDC) motor drives. Cozma 

et al (2008) presented a control system depending on ANN and 

PID controllers for permanent magnet DC motor drives. Through 

a variety of auto-tuning techniques, the system offers an automatic 

assessment of the PID controller's variables. The employed neural 

controller is learned offline with data acquired from the system's 

experiments. The main challenge was to create a structure that 

could give the highest sample rate and the lowest time of 

response. Muthusamy et al (2012) presented a PMDC drive in a 

closed loop control by an inner controller of current and an outside 

PID with an ANN-based speed controller. A NABSC (neuro 

adaptive backstepping control) technique using Chebyshev 

polynomial with a single-layer based neural network is presented 

for the tracking of angular velocity for a permanent magnet dc 

motor which is feeding with a buck converter (Nizami et al, 2017). 

A novel adaptive backstepping control technique that integrates a 

single functional layer Legendre neural network into the DC-DC 

step down converter for a permanent magnet DC motor system is 

also presented (Gangula et al, 2022). The standard method for 

modeling a DC motor is to ignore the effects of nonlinearity and 

create a representation of the linear transfer function for the 

relationship between the input output characteristics of the direct 

current motor and the load it powers. This assumption is adequate 

and valid for classical control problems. However, if the DC 

motor slowly operates and rotates in both directions, or if the 

operating range is wide and the application requires high precision 

control, assuming the effects of nonlinearity on the system are 

negligible leads to intolerable, increasing modeling errors and 

degraded control performance, therefore, there are many studies 

involving nonlinearity in DC motor modeling(Liu et al, 2013; 

Ahmad, 2011). An intelligent control system composed of two 

different neural network controllers for PMDC motor that can 

deal with the system's nonlinearities and load changes to reach 

high efficiency of the overall system and improve its performance 

is presented. The analysis, design, and simulation of the proposed 

controllers are described. Good and robust control performance is 

achieved. This work is divided into four sections. Section 1 

presents an introduction and related investigations. The Material 

and method was exhibited in Section 2. Section 3 describes the 

results and discussion. Finally, the conclusions based on this 

research are shown in part 4. 

2. Material and Method 

2.1. PMDC motor modeling 

The DC motor used for this study is PMDC, which controls 

the speed by armature voltage control method. We aim in building 

the mathematical model for the PMDC motor to model and 

simulate it and to link the voltage provided to the armature to the 

motor's velocity, we use the system's mechanical and electrical 

dynamics as in (1-2),  
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        Where 𝑣 is the voltage source, 𝑅𝑎 is the armature resistance, 

𝑖𝑎 is the armature current, 𝑤𝑚 is the angular speed, 𝐿 is the 

inductance of armature, 𝐵 is the damping coefficient,  𝐾𝑣 is the 

velocity constant,  𝐾𝑡 is the torque constant,  𝑗 is the inertia of the 

rotor, and 𝑇𝐿is the torque of the mechanical load. The following 

equations (3-4) describe the transfer functions of the motor,   

 

𝐼𝑎(𝑠) =
−𝐾𝑉𝑤𝑚(𝑠)+𝑣(𝑠)

𝐿𝑎𝑠+𝑅𝑎
                                     (3) 

𝑤𝑚(𝑠) =
−𝐾𝑡𝐼𝑎(𝑠)−𝑇𝑙(𝑠)

𝑗𝑠+𝐵
 .                                   (4) 
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Figure 1. Nonlinear simulation model of PMDC motor. 

The parameters of the PMDC motor are in the Appendix. The 

assumption that the nonlinear effects on the system are negligible 

may result in poor control performance, so we design the control 

system by taking into consideration all the nonlinearities as a 

backlash, dead-zone, and friction(Gómez et al, 2020). The 

simulation model of the system with nonlinearities is presented in 

Figure 1. 

The following Figure represents the response of the system 

in an open loop. 

Figure 2. Open loop response of nonlinear model of PMDC 

motor. 

We notice here there is a big overshoot in the curve that is 

undesirable, so, it is crucial to design a speed controller of the 

DC motor at different desired speeds. 

2.2. Design of PID controller 

Proportional Integral Derivative (PID) control is one of the 

earliest control strategies used in all fields where closed-loop 

control is applied. It produces a control depending on an error 

signal. 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡) + 𝐾𝐷
𝑑𝑒

𝑑𝑡
                       (5) 

The weighted total of all these gains is used to change the 

process via controlling. We can tune the three constants of the PID 

controller algorithm to meet our specific operational needs. By 

tuning of PID Controller by Zeigler Nichols and after some other 

tunings we will fix the values of the PID parameters as 𝐾𝑝 = 35, 

  𝐾𝐼 = 260, 𝐾𝐷 = 0.05. 

2.3. Design and structure of ANN- PID controller 

The study of neural networks in control systems to enhance 

the degree of automated processes and the economy's 

effectiveness of industry is of great importance. The error between 

the system output and predicted values can be minimized by using 

neural network PID controllers in place of conventional PID 

controllers. We have designed the controller in two different ways 

depending on the inputs, outputs, and structure of the neural 

network. 

2.3.1. First controller 

The first controller tested in the study is made up of a classic PID 

controller plus a neural controller, which we denote as ANNPID1 

in short. It incorporates the advantages of neural and PID 

controllers. Traditional PID directly regulates the controlled  

object using a closed loop, while neural networks adjust their 

control gains𝐾𝐷, 𝐾𝐼  and  𝐾𝑝 based on the system's operational 

condition to achieve performance optimization. The model of the 

ANNPID1 controller with PMDC motor is shown in the Fig 3. 

  

 

 

 

 

 

Figure 3. ANNPID1 control system block diagram. 

       The inputs of the controller are the reference speed, the error 

signal, and the output signal. Where the outputs of the controller 

are: Derivative gain 𝐾𝐷 , Integral gain 𝐾𝐼, and proportional 

gain 𝐾𝑝. The function fitting is performed using a feedforward 

network with two-layer, whereas the transfer functions that we 

used are a linear transfer function, and a tan sigmoid transfer 

function for the output layer, and the hidden layer. The structure 

of this network is 3-10-3. The data are gathered from the 

traditional PID controller's closed loop response and were used to 

constitute a database to train the NN. We use a repeating sequence 

signal as a reference signal which has the sequence values of [0 

300 300 300 -300 -300]. 

2.3.2. Second controller 

The second controller which is denoted as ANNPID2 mimics 

a PID controller. It is designed to generate a control signal that is 

utilized to control the velocity of the PMDC motor. Three inputs 

are fed into the controller to generate a single output. The structure 

of ANNPID2 is depicted in Figure 4.  

 

 

 

 

 

 

Figure 4. ANNPID2 controller model. 

The inputs of the controller are the error signal between 

reference speed and actual value, the integration of the error 

signal, and the derivative of the error signal. Where the controller 

output is the control signal of the PMDC. The function fitting is 

also here performed using a feedforward network with two-layer, 

whereas the transfer functions that we used are a linear transfer 

function, and a tan sigmoid transfer function for the output layer, 

and the hidden layer. The structure of this network is 3-15-1. 

3. Results and Discussion  

In this work, the performance of a PMDC motor with different 

control strategies, two artificial neural networks, and 

conventional PID is evaluated on the basis of rise time 𝑡𝑟, settling 

time 𝑡𝑠, and maximum overshoot 𝑀𝑃. Three testing scenarios are 

carried out, which are set-point changes, disturbance rejection, 
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and uncertainty rejection. Three different objective functions 

which are, Integral Square Error (ISE), Integral Absolute Error 

(IAE), and Integral of Time Weighted Absolute Error (ITAE) 

performance indices are calculated for each case in order to 

analyze the performance of each controller.   

Figure 5. The response speed of the ANNPID1 (blue), 

ANNPID2 (purple), PID (green) with random reference speed 

input (red) 

Table 1. Performance indices of PID, ANNPID1, ANNPID2 with 

random reference speed inputs 

 PID ANNPID1 ANNPID2 

ISE 2.953 1.7 1.219 

IAE 2.423 1.839 1.293 

ITAE 14.02 7.312 5.483 

 

 

Figure 7. The response speed of  PID (blue), ANNPID1 (green), 

ANNPID2 (purple) with 300 rpm reference speed inputs (red) 

and change of parameters B=1.5, J=0.01    

Table 4. Transient Response Specification of PID, ANNPID1, 

ANNPID2 with unit step reference input and change of 

parameter 

 

Table 5. Performance indices of PID, ANNPID1 and 

ANNPID2 with unit step reference input and change of 

parameters

Figure 6. The response speed of  the second controller PID 

(purple), ANNPID1 (blue), ANNPID2 (green) with 270 rpm 

reference speed inputs (red) and [0 300 300 300 -300 -300] 

input load. 

Table 2. Transient Response Specification of PID, 

ANNPID1, ANNPID2 with disturbance 

 PID ANNPID1 ANNPID2 

Rise time  0.2203 0.0808 0.1671 

Settling time  9.3056 9.4040 9.3043 

Overshoot 11.0627 10.0554 10.9446 

Table 3. Performance indices of PID, ANNPID1, ANNPID2 

with disturbance 

 PID ANNPID1 ANNPID2 

ISE 3497 5730 2806 

IAE 119 118.9 100.4 

ITAE 560.6 560.8 472 

     To test the robustness properties of PID, and ANN controllers 

to set point variations, we used a random reference signal. The 

output responses of PID, ANNPID1, and ANNPID2 with random 

reference are shown in Figure 5. The transient response 

specifications and performance indices of random reference input 

are represented in Table 1. The proposed ANNPID2 has the 

smallest values of all performance indices. While the ANNPID1 

comes after it. PID controller has the worst values for 

performance indices. 

In order to test the robustness of the designed controllers to 

disturbance inputs, a random load torque signal is used with a 270 

reference speed. The output responses of PID, ANNPID1, and 

ANNPID2 with a step signal and a random load torque signal are 

given in Figure 6. The transient response specifications and 

performance indices with a random load torque t are represented 

in Table 2, Table 3. The proposed ANNPID2 has the smallest 

values of all performance indices.  Where the ANNPID1 has the 

smallest value of rise time and overshoot. 

To test the performance of presented controllers against the 

uncertainty rejection we have changed the value of B from 0.002 

to 1.5 and the value of j from 0.00471 to 0.01. The output 

 PID ANNPID1 ANNPID2 

ISE 2907 6119 2333 

IAE 38.12 37.41 27.04 

ITAE 47.92 43.02 31.11 

 PID ANNPID1 ANNPID2 

Rise time  0.4078 0.1341 0.2908 

Settling time  1.8243 1.6579 1.4866 

Overshoot 3.7650e-04 3.3307e-13 3.3307e-13 
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responses of PID, ANNPID1, and ANNPID2 with a change of 

parameters are given in Figure 7. The transient response 

specifications and performance indices with a random load torque 

t are represented in Table 4, Table 5. The two proposed controllers 

show improved performance for disturbance rejection. PID 

controller has smaller values for ISE than the ANNPID1.    

4. Conclusions and Recommendations 

This paper investigates the effectiveness of enhancing a 

controller design for a PMDC motor. The speed of the permanent 

magnet DC motor is controlled using the proposed ANN-based 

PID controller in two methods. The simulation model of the 

control system has been established based on an analysis of the 

mathematical model for the PMDC motor based on the electrical 

and mechanical equations for the PMDC. A nonlinear model of 

the PMDC motor is used. First, a PID controller is designed and 

the PID parameters are tuned using the Zeigler-Nichols method. 

Next, an ANN-based PID speed controller is designed. The 

performance of the proposed controllers is validated by subjecting 

the PMDC motor system to angular velocity tracking set points, 

load torque changes, and parameter variation tests, then several 

characteristics are studied, including the rise time, overshoot, 

settling time, and many performance indices that are all crucial 

for the development of the DC motor performance. 

The results show that the speed control of the DC motor by 

an ANN-based PID has better performance, high resilience, and 

good accuracy without oscillation. In comparison to conventional 

approaches, the controller also demonstrates good efficiency 

when tracking the motor speed, successful rejection of load torque 

uncertainties, and parameter variations. 
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Appendix 

   

Parameter Symbol Value 

Armature Resistance 
𝑅𝑎 0.5 Ω 

Armature Inductance 
𝐿𝑎 0.012 H 

Inertia of the Rotor 
𝑗 0.00471kg m2 

Torque Constant 
𝐾𝑡 0.5 Nm/A 

Velocity constant  
𝐾𝑉 0.5 Vs/rad 

Damping Coefficient B 0.002 Nms/rad 


