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Abstract 

Determining the types of DNA and proteins, examining their similarities, etc., remains among the challenging problems in the research 

field. For this reason, the data obtained and the use of this data are also limited. In this study, we combined the power of computer 

science in data processing with biology. We classified the DNAs of transcription factor proteins found in cruciferous Brassica plants 

and identified the DNAs related to the synthesis of transcription factor proteins in the plant. We compiled the dataset from the Plant 

Transcription Factor Database (PlantTFDB). We used the code dictionary structure in the preprocessing part and provided a fast and 

successful model using Bidirectional LSTM and Bidirectional GRU networks. Our model has 90.40% test accuracy and 86.75% 5-fold 

cross-validation accuracy. Using LSTM in the layer with fewer units and GRU in the layer with more units in the model provided a 

shorter training time for the model. In addition, although the prepared model classifies the transcription factor DNAs of Brassica plants, 

it will also be successful at a certain level in the transcription factor DNAs of other plants. The prepared model stands out as an important 

innovation that has been added to the literature in terms of its field of study.  
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Brassica Bitki Türlerinde Transkripsiyon Faktörü DNA'sının Derin 

Öğrenme ile Sınıflandırılması 

Öz 

DNA ve protein türlerinin belirlenmesi, benzerliklerinin incelenmesi vb. araştırma alanındaki zorlu problemler arasında yer almaktadır. 

Bu nedenle elde edilen veriler ve bu verilerin kullanımı da sınırlıdır. Bu çalışmada bilgisayar biliminin veri işlemedeki gücünü biyoloji 

ile birleştirdik. Turpgillerden Brassica bitkilerinde bulunan transkripsiyon faktörü proteinlerinin DNA'larını sınıflandırdık ve bitkideki 

transkripsiyon faktörü proteinlerinin sentezi ile ilgili DNA'ları belirledik. Veri setini Bitki Transkripsiyon Faktörü Veritabanından 

(PlantTFDB) derledik. Önişleme kısmında kod sözlüğü yapısını kullandık ve Çift Yönlü LSTM ve Çift Yönlü GRU ağlarını kullanarak 

hızlı ve başarılı bir model sağladık. Modelimiz %90,40 test doğruluğuna ve %86,75 5-kat çapraz doğrulama doğruluğuna sahiptir. 

Modelde daha az birimli katmanda LSTM ve daha fazla birimli katmanda GRU kullanılması model için daha kısa eğitim süresi 

sağlamıştır. Ayrıca hazırlanan model Brassica bitkilerinin transkripsiyon faktör DNA'larını sınıflandırsa da diğer bitkilerin 

transkripsiyon faktör DNA'larında da belli bir düzeyde başarılı olacaktır. Hazırlanan model, çalışma alanı açısından literatüre katılmış 

önemli bir yenilik olarak öne çıkmaktadır.  

 

Anahtar Kelimeler: Biyoinformatik, DNA sınıflandırma, Derin öğrenme, Çift yönlü, LSTM, GRU. 
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1. Introduction 

Deoxyribo Nucleic Acid (DNA) is the hereditary genetic 

information found in almost all living things. "The information in 

DNA is stored as a code made up of four chemical bases: adenine 

(A), guanine (G), cytosine (C), and thymine (T)." DNA is formed 

by the different sequencing of the A, G, C and T codons in every 

living thing. The DNA of almost every cell in the body of every 

living thing is the same. The ordering of these codons directly 

influences the creation and diversity of each organism, that is, 

each part of the organism. The order of these mentioned bases (A, 

G, C, T) ensures the diversity of the organism and each part of the 

organism and the survival of the organism. This structure is 

similar to the formation of different words with a different 

arrangement of letters and the formation of different sentences 

and texts with the arrangement of these different words 

(WATSON & CRICK, 1953). 

The rules used to transform the information encoded in 

genetic material, namely DNA and mRNA, into proteins are 

called genetic code. The genetic code defines nucleotide triplet 

sequences called codons that determine which amino acid will be 

added during protein synthesis (Shu, 2017). 

The gene is an essential physical and functional part of 

heredity. Genes formed from DNA through the genetic code, 

amino acids, and therefore the sequencing of amino acids serve as 

instructions for making molecules called proteins. In humans, 

genes range from a few hundred DNA bases to more than 2 

million bases (WATSON & CRICK, 1953). The 3D structure of a 

DNA fragment is given in Figure 1. The helical structure in this 

3D representation consists of the four chemical bases, A, G, C, 

and T, and are arranged reciprocally. This ordered chain structure 

is the structure that makes up DNA. 

 

Fig. 1 An exemplary DNA 3D structure (Narayana et al., 1991) 

 The process, which is the first step of gene expression from 

the gene's DNA to the production of the primary RNA transcript, 

is called transcription. Transcription and subsequent process steps 

drive protein production. Here, the necessary information for 

protein production is provided from DNA. These transcription 

factors bind to specific DNA sequences in gene regulatory regions 

and control the transcription of the DNA sequences to which they 

bind. The function of transcription factors (TF) is to regulate the 

gene expression necessary for the survival of the cell and the 

organism (Karin, 1990; Latchman, 1993). Transcription factors 

manage many vital processes, such as development, growth, 

intercellular communication, and environmental response, 

together with DNA connection (Riaño-Pachón et al., 2007). 

Since each different transcription factor protein will produce from 

a different DNA sequence, classifying the DNAs that produce 

these proteins will play an important role in the preliminary 

research of the proteins produced. The data processing power of 

computer science is frequently used to support biological studies 

on DNA and proteins. The first joint computer science and 

biology studies were statistics-based (Baldi & Brunak, 2001). The 

most important of these studies can be shown as Hidden Markov 

Model (HMM) (Eddy, 1996) based studies (Gromiha, 2010) and 

Basic Local Alignment Search Tool (BLAST) (Altschul et al., 

1990). Some of these studies, in which predictions are made by 

subtracting the sequences of nucleotides or amino acids and their 

probabilities of being in certain positions, with the support 

provided by statistical science, require additional information 

such as various labels (Price et al., 2018; Strodthoff et al., 2020). 

After the statistics-based studies, various artificial neural 

networks, machine learning applications, and computer science 

innovations have successfully found their place among the studies 

in the field. Examples of these studies are Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), and Naive Bayes 

Classifier-based studies (Huerta et al., 2000). In later studies, with 

the development of the concept of deep learning, models prepared 

with Convolutional Neural Networks (CNN) and Recurrent 

Neural Networks (RNN) based Long Short-Term Memory 

(LSTM), and Gated Recurrent Unit (GRU) come to the fore (Du 

et al., 2016). 

Looking at the developments in the field, we designed a deep 

learning model based on Bidirectional LSTM and Bidirectional 

GRU to classify the DNA sequences of TFs of Brassica plants. 

Thanks to the model we designed, we classified the TF DNAs of 

Brassica plants without needing additional information except for 

DNA sequences, with a short training period. Thus, we created a 

piece of preliminary information about the TF proteins to be 

synthesized for the studies in the field of biology. 

The remainder of the article is organized as follows: Chapter 2 

includes a literature review, chapter 3 includes the methods used, 

chapter 4 the results of the experimental study, chapter 5 the 

discussion and conclusion, and finally, chapter 6 references. 

2. Related Studies 

Classification and analysis of previously discovered or newly 

discovered DNA sequences is still a challenging problem. When 

the literature is examined, it has been seen that various studies 

have been carried out for the classification of DNA sequences. 

Biological studies, experiments and analyzes constitute the basis 

of these studies. These biologically-based studies are relatively 

time-consuming, costly, and more prone to human error. After 

biological-based studies, it is statistical-based studies or artificial 

intelligence studies from the power combination of biology and 

computer science [12]. 

In one study, the prediction of DNA N6-methyladenosine 

regions among plant species was studied with a model prepared 

based on CNN and bidirectional LSTM (Tang et al., 2022). In 

another bidirectional GRU-based study, DNA N4-methylcytosine 

regions in the mouse genome were estimated by Jin et al. (Jin et 

al., 2022). In a Word2Vec-based deep learning study, it was aimed 

to identify DNA N4-methylcytosine regions(Fang et al., 2021). 

Support vector machines (SVM) were used in a study on DNA 

and amino acid approaches for human authentication with deep 

transfer learning (Sakr et al., 2022). In a study on predicting 3D 

chromatin interactions from DNA sequence using Deep Learning, 
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CNN, LSTM and GRU networks were studied and the transfer 

learning method was applied (Piecyk et al., 2022). In a study on 

the classification of viruses such as COVID, SARS, MERS, 

dengue, hepatitis and influenza, a hybrid model based on CNN 

and LSTM was prepared (Gunasekaran et al., 2021). 

When the literature is examined, although different studies 

have been carried out in different DNA studies, no deep learning 

study has been observed in TF DNAs, especially in TF DNAs of 

plants belonging to the Brassica species. The code dictionary 

preprocessed model we have prepared classifies the DNA 

sequences that make up the TF proteins in Brassica plants and 

provides a solution to the problem of detecting and classifying the 

source DNAs of the proteins to be formed. 

3. Material and Method 

TF proteins play a very important role in the regulation of 

vital functions in the life of Brassica plants. The expression of 

these TF proteins also depends on the information in the DNA of 

these TFs. For these reasons, knowing the biological and 

bioinformatic structure and classes of Brassica plants enables 

them to dominate many features of the plant. Looking at the 

literature, no deep learning studies were found about the TF DNA 

of Brassica plants. This situation reveals the importance and 

necessity of the classification of these DNAs. To create a data set 

to be used in this study, the data were downloaded and processed 

in scattered form from PlantTFDB, one of the large databases 

related to TFs. 

PlantTFDB is a comprehensive and public database designed 

by a team of researchers to provide communication with the plant 

genome, TFs in gene families, and additional information about 

these TFs. The PlantTFDB website contains individual DNA and 

protein sequences and individual TF listings for each family and 

transcription factor (Jin et al., 2017). 

3.1. Structure of the DNA Sequences 

DNA sequences are genetic material that consists of a cascade 

of nucleotides. There are different symbols in the literature 

denoting adenine (A), guanine (G), cytosine (C) and thymine (T) 

nucleotides and other states other than these defined nucleotides 

(“Nomenclature for Incompletely Specified Bases in Nucleic 

Acid Sequences. Recommendations 1984. Nomenclature 

Committee of the International Union of Biochemistry (NC-

IUB).,” 1986). Symbols other than these 4 basic nucleotides are 

very few and have been ignored in the prepared model. Just as 

letters form words and words form sentences, so the ordering of 

the symbols of nucleotides creates DNA sequences. The resulting 

DNAs are also divided into classes according to their functions. 

3.2. Data Preprocessing 

The data downloaded from PlantTFDB, together with the 

sequences and their families, are collected in a single file and the 

data set is created. DNA sequences with a structure such as 

"AATGCAATTT...", expressed in characters, must be digitized to 

be given to the deep learning model. Numbers from 1 to 4 are 

assigned to 4 nucleotides in 14384 DNA sequences. For other 

negligible cases, the number 0 is assigned. Figure 2 shows the 

frequency with which nucleotides are found in sequences. 

 

Fig. 2 Nucleotide frequency 

In this way, the sequences are digitized. The length of the 

digitized sequences should be equalized for the deep learning 

model to have a healthy training process. For this reason, it was 

decided to calculate the average length of the sequences and 

determine the sequence size as 1070. The graph showing the 

average lengths of the sequences is presented in Figure 3. 

 

Fig. 3 Average lengths of the sequences 

 Among the sequences digitized in this way, the longer ones 

were shortened to 1070, and the shorter ones were extended by 

filling in 0's at the end (Bileschi et al., 2022). Then, the classes of 

the sequences, that is, the 58 families to which the DNAs belong, 

were coded with one-hot encoding, just as stated in the study of 

Yang et al., and all the data were prepared (Yang et al., 2018). The 

data prepared and separated as 80% train, 10% validation and 

10% test are ready to be given to the deep learning model. 

3.2. Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) 

LSTM and GRU networks use sequential information in the 

data and make predictions by storing historical states and long-

short-term dependencies, which are structurally similar and 

provide almost the same results. In LSTM, there are input, output 

and forget gates (Greff et al., 2017). On the other hand, in GRU, 

forget function is done with a key, not a gate (Gao & Glowacka, 

2016). GRU has a relatively faster training and working time 

compared to LSTM since there is a missing gate compared to 

LSTM. These models can process long texts and data and 

successfully detect long-term dependencies and which 

information will be forgotten, thanks to the gates they contain and 

the calculations they make (Şeker et al., 2017). 

In evaluating the prepared model, accuracy, precision, recall, 

f-score criteria (Luque et al., 2019) and a 5-fold cross-validation 
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method were used (Xiong et al., 2020). In addition, the train and 

validation accuracy and loss graphs of the model and the ROC 

curve were also used (KILIC, 2013). 

The embedding layer of Keras was used in the prepared 

model, and the vector size was determined as 256. A 128-unit 

layer Bidirectional LSTM and a 256-unit layer Bidirectional GRU 

are used in the model. Since GRU is relatively fast compared to 

LSTM, more units are preferred in GRU than LSTM. Table 1 

shows the design details of the model. 

 

Table 1. Example of a table 

Layer Output Shape Param # 

Embedding (None, 1070, 256) 1280 

Bidirectional LSTM (None, 1070, 256) 394240 

Bidirectional GRU (None, 512) 789504 

Dropout (0.25) (None, 512) 0 

Flatten (None, 512) 0 

Dense (None, 256) 131328 

Dropout (0.25) (None, 256) 0 

Dense (Classification) (None, 58) 14906 

3. Results and Discussion  

The data set used consists of 14384 sequences. In order to 

allocate more data for training, the data set is divided into three 

parts, 80% train, 10% validation and 10% test, with the Python 

Scikit-Learn library. A value of 0.001 was used in all layers as the 

learning rate in the model. The batch size value is set to 256 

because long arrays are used. ADAM is used as the optimization 

function. Since a 58-class data set was used, the categorical cross-

entropy function was chosen as the loss function. The model 

completed its excellent training in 28 epochs. The evaluation 

results of the model are as follows: 

 Accuracy: 90.40% 

 Precision: 90.37% 

 Recall: 89.34% 

 F-score: 88.77% 

 5-fold cross-validation: 86.75% 

 Train time: 16.85 min. 

Figure 4 shows the accuracy and loss graphs of the model, 

and Figure 5 shows the ROC curve. 

 

Fig. 4 Accuracy and loss graphs for deep learning model 

 

 

 Fig. 5 ROC curve for deep learning model 

 

The results in Table 2 and the graphs in Figure 4 and 5 showed 

that the model successfully classified TF DNAs in plants 

belonging to the Brassica species and made an important 

contribution to the literature. The proximity of all curves to the 

upper left corner in Figure 5 shows that the model has successfully 

classified all 58 classes. 

When we look at the literature, although there are studies such 

as the N6-methyladenosine region determination study of Tang et 

al. (Tang et al., 2022), the study of Sakr et al. including DNA and 

amino acid approaches (Sakr et al., 2022), and the detection of 

DNA of viruses such as COVID and SARS, it is possible to 

determine the DNA of transcription factors. No study could be 

seen on the transcription factor DNAs of plants of the genus and 

Brassica species. In this study, which we have done on this gap in 

the literature, we have succeeded in classifying the DNA of 

transcription factors in Brassica species. The model I prepared 

includes 1 layer of Bidirectional LSTM and 1 layer of 

Bidirectional GRU. Thanks to these layers, the structures and 

motifs of long DNA sequences can be captured, and various long- 

and short-term dependencies can be detected, resulting in a 

successful classification. In this way, we were able to have 

preliminary research information and classification information 

of the proteins to be synthesized from these DNAs. In addition, 

with this model, we filled a gap in the literature.
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4. Conclusions and Recommendations 

By preparing this study, we classified the DNAs that 

synthesize the transcription factors that greatly affect the life 

cycles and functions of plants belonging to the Brassica plant 

species according to the transcription factor type. Thanks to this 

classification and model, the time to be spent with biological 

experiments, human-induced errors, and high costs have been 

tried to be avoided. In addition, thanks to this speed and success, 

more work can be done. This prepared model stands out as an 

important innovation that has been added to the literature 

regarding Brassica plants. 
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