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Abstract 

In this paper the contact analysis of elastic layer supported by a wedge is considered in plane. The problem is formulated with closed 

formed integral equations. The length of the contact region, the pressure between the wedge and the layers, and the pressure between 

the layer and the punch are unknowns. Both the material and layer are elastic in this problem. This problem can be defined as a layer 

supported over two wedges with perpendicular angle. The upper surface of the layer is assumed as circle with a large radius. The 

thickness of the layer is finite. Singular integral equations are used in the formulation of the problem. The benefits of this formulation 

are the following: the problem can easily be generalized for the case of forces acting through many rigid punches. The solution gives 

the contact stress directly and the solution of the singular integral equations is an appropriate way in terms of numerical solution 

technique. The application of this problem is the train wheel that is contacted to the connection part of the rails. It is shown that the 

divergent terms at the kernels cancel each other by considering the equilibrium conditions. As a numerical example, the contact problem 

between the wheel and rails is investigated. 

Keywords: Contact problem, wedge, elastic layer, pressure, applied mechanics 

Kama ile Destekli Elastik Tabakanın Temas Analizi 

Öz 

Bu çalışmada düzlemde kama ile destekli elastik tabakanın temas analizi yapılmıştır. Bu problem kapalı formda integral denklemleri 

ile formüle edilmiştir. Temas bölgesinin uzunluğu, kama ve tabakalar arasındaki basınç ile tabaka ve panç arasındaki basınç problemin 

bilinmeyenleridir. Bu problemde hem malzeme hem de tabaka elastik kabul edilmiştir. Bu problem dik açılı iki kama tarafından destekli 

bir tabaka olarak tanımlanabilir. Tabakanın kalınlığı üst yüzeyin çok büyük yarıçaplı bir çember olduğu varsayımı ile sonlu olarak kabul 

edilmiştir. Problemin çözümü için tekil integral denklemleri kullanılmıştır. Bu formülasyonun yararları şöyle açıklanabilir ; problem 

basit bir şekilde kuvvetlerin bir çok panç tarafından etki ettirildiği durum için genelleştirilebilir. Çözüm temas gerilmesini direkt olarak 

verir ve tekil integral denklemlerinin çözümü sayısal çözüm tekniği bakımından uygun bir yoldur. Bu problemin uygulaması rayların 

birleşim bölgeleri ile temas eden tren tekerleği örneğidir. Denge koşullarını göz önüne alarak çekirdeklerdeki ıraksak terimlerin birbirini 

sadeleştirdiği gösterilmiştir. Sayısal örnek olarak teker ve ray arasındaki temas problemi rayların birbiri arasında aralıklı hali için 

incelenmiştir. 

 

Anahtar Kelimeler: Temas Problemi, kama, elastik tabaka, basınç, uygulamalı mekanik 
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1. Introduction 

In the late 19 th century [1-2] contact problem was first 

investigated. Boussinesq [1] investigated the contact of the punch 

to the elastic half plane and Hertz [2] investigated the contact of 

two elastic paraboloids. The results of Hertz problem obtained 

from experiments was presented in Dinnik [3]. In the following 

years Belyaev [4] found the points where the stress is maximum 

in elastic punch, and solved the problem of railways [5-6]. Various 

problems of half plane without friction forces can be found in 

Shtaerman [7]. The general solution methods of contact problem 

were investigated and various half plane problems with friction 

forces were solved in Muskhelishvili [8]. Frictional elastic contact 

with periodic loading was given by Barber et al. [9]. In addition 

frictional contact problem and anisotropic contact problem for 

layers were investigated by [10-12]. Sliding frictional contact at 

graded elastic medium was studied by Dag et al. [13]. Some of 

the thermal problems that are related with contact problem were 

analyzed by [14-15]. An anisotropic linear elastic layer and a rigid 

intender were investigated in terms of contact problem by Batra 

and Jiang [16]. The contact problem for layered medium 

supported by a wedge was presented in [17], and this reference is 

the companion study of this paper.  

A general technique is developed for the solution of a layer 

in this study. The layer is supported by elastic wedges. The load 

is applied by means of a frictionless rigid or elastic punch Yanik 

and Bakioglu [17]. For the punch cases, punch profile is known at 

the beginning. However, the radius of profile is assumed to be 

very larger than the contact region. The displacements and 

stresses at the contact region between the layer and support which 

are perpendicular to the layer surface, are assumed to be equal to 

each other. In addition the friction forces are neglected. Moreover 

the dependence of the unknown boundaries of the contact region 

to external load is investigated. The kernels which are obtained 

from the solution of the general problem is investigated in a 

detailed way. And it is shown that the divergent part of the two 

kernels cancel each other. In addition, appropriate ways for 

separation of the divergent terms and integration of them are 

investigated. One of the rail road problems is solved as a 

numerical example. 

2. Formulation of the Layer 

If we take into account a layer that is supported by an elastic 

wedge as shown in Fig. 1 , the wedge constants are 2 2, 
 
and 

the head angle is 0 . For the equilibrium condition of the system 

0<t0 condition must be satisfied. Contact stresses are taken into 

account only on the top and the bottom surfaces. In other words 

there is not any load outside the contact regions. Let us consider 

P which is applied to the top surface of the layer by means of an 

elastic punch. In this case elastic constants are 3 3,   and the 

contact region’s boundaries are ( ,a a ). Considering the elastic 

punch as an upper half plane, 3( )v x  displacement of the elastic 

punch profile can be expressed as  

                    3 3 1

3

1 ( )

4





 +
= −

 −

a

a

v p t
dt

x t x
              (1) 

 

Fig. 1 A layer supported by an elastic wedge. 

Where p1(t) is the unknown contact stress. If loads are applied 

directly to the top surface, neither there will be any contact on the 

top surface nor the problem will be a mixed boundary value 

problem. The elastic punch profile and the top surface of layer 

before the contact can be denoted as f3(x), f1(x) respectively. The 

vertical displacements of the layer is ( , )v x h . h is the height of 

the layer. This yields to 

            
1 3 3

( , ) ( ) ( ) ( )+ = +v x h f x v x f x                               (2) 

taking the derivative of Eq. (2) by considering f1(x) as constant 

and using Eq. (1) one can obtain 

          
3 31

3

1 ( )
( , )

4





+
= − +

 −

a

a

dfp tv
x h dt

x t x dx
                       (3) 

with necessary operations the following expression can be written 

2

31 1

22 1 21 2

1 1

( ) 42
( , ) ( ) ( , ) ( )   ( )

1 1



 
+ + =  

+ − +
  

v

a a

a a L

dfp t
dt K x t p t dt K x t p t dt a x a

t x dx
 

(4) 

here β1 can be expressed as 

   1 1 3 3 1 1 3 3 1(1 ) (1 ) / (1 ) (1 )        = + − + + + +  

(5) 

1 in the equation given above is defined as bi-elastic constant. 

This is a single constant which represents two elastic materials. In 

the rigid punch case, 3 →  and 1→1. Singular behavior of 

p1(x) can be obtained by investigating the first term of Eq. (4). 

The first term is the dominant part of the singular integral 

equation. p1(x) can be presented as given below [8,18]. 

1 1
( ) ( )( ) ( ) ( 1 Re( , ) 1)

 
 = − − −  p t g t a t t a (6) 

1/ 2 1/ 2 ( ) ( )    = + = − + = − + = − +N M N M  

(7) 

In the equation given above,  g1(t) is a continuous function with 

closed interval (  a t a ). The solution of the integral equation 

which appears in Eq. (4) contains an arbitrary constant C. M and 

N are integers and κ is the index of the problem. It must be either 

-1,0 or +1. Index of the problem can’t be determined by only 

considering mathematical point of view, in addition physical 

nature of the problem must be taken into account. Three cases of 

loading are considered as contact cases (see Fig. 2). In the first 

case (Fig. 2a), the load is applied by means of rigid punch. 

Derivatives of the contact curves have discontinuities. At the end 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  3 

points the stresses have singularities which are integrable. The 

index of the problem is κ=1. This yields to the following values 

like N=-1 and M=0. The unknown function can be defined by  

                       
1/2 1/2

1 1
( ) ( )( ) ( )

− −
= − −p t g t a t t a                   (8) 

For the case given above an additional condition must be used to 

obtain the constant C. The constant C appears in the solution.  The 

expression given below is used to determine C    

                                       
1
( ) =

a

a
p x dx P                              (9) 

In the second case, load is applied through a rigid or elastic punch 

(see Fig. 2b). There are no discontinuities in the derivatives of the 

contact curves. The stresses are bounded at the end points. The 

index of the problem is κ=-1. In addition  N=0 and M=1. The 

unknown function is 

                  
1/2 1/2

1 1
( ) ( )( ) ( )= − −p t g t a t t a                            (10) 

 

Fig. 2 Three cases of loading which are considered as contact 

cases 

In this case the constant C is zero. This case can be identified as a 

receding contact problem. Therefore Eq. (9) is used to determine 

the contact boundaries. In the third case the load is applied with a 

rigid punch as shown in Fig. 2c. There are discontinuities at the 

derivatives of the contact curves at one end. And stresses are 

bounded at the other end. The index of the problem is κ=0. 

Therefore N=0 and M=0. The unknown function can be presented 

as   

          
1/2 1/2

1 1
( ) ( )( ) ( )

−
= − −p t g t a t t a                              (11) 

Again the constant C is defined as zero and this case is a receding 

contact problem as well. Thus Eq. (11) is used to determine the 

contact boundaries. Bottom surface of the layer contacts the 

elastic wedge. In this case the elastic constants are 2 2, 
 
and 

the head angle is 0  as shown in Fig. 1. The surface curves of the 

layer and wedge are 
1( )f x  and 2 ( )f x  in a respective way. 

Moreover the vertical displacements are defined as ( ,0)v x  and 

2 ( )v x . The equilibrium equation of the displacements can be 

presented as   

        
1 2 2

( ,0) ( ) ( ) ( )+ = +v x f x v x f x                                     (12) 

Following necessary operations which are not shown here for 

space constraints the field equation of the layer can be written as 

 

31 1

22 1 21 2

1 1

2

22 2 21 1 2

2 1 1 2

( ) 42
( , ) ( ) ( , ) ( )            

1 1

( ) 1
( , ) ( ) ( , ) ( ) ( , ) ( ) 0       

1

(1 ) (1 ) / (1

a a b

a a b

b b a b

b b a b

dfp t
dt K x t p t dt K x t p t dt a x a

t x dx

p t
dt K x t p t dt K x t p t dt K x c t c p t dt b x b

t x



 





    

+ + =  
+ − +

+
+ + + − − =  

− −

= + − +

  

   

  1 1 3 3 1 1 3 3 12 1 1 2 ; (1 ) (1 ) (1 ) (1 )) (1 ) /            = + − + + + ++ + +

 

     (13) 

If the wedge is rigid then 2 →  and 1 → − . Therefore the 

last term of the second expression in Eq. (13) vanishes. If 0 =

, then the problem is a layer problem which lies on the half plane. 

The solution of an elastic layer lying on half plane under the effect 

of a load applied by frictionless rigid punch is defined as [19]. 

This problem is symmetric.  

32 1

22 1 21 2

1

2

22 2 21 1

( ) 4
( , ) ( ) ( , ) ( )        

1

( ) 1 1
( , ) ( ) ( , ) ( ) 0    

2 2





 

+ + =
− +

− −
+ + =

−

  

  

b a b

b a b

b b a

b b a

dfp t
dt K x t p t dt K x t p t dt

t x dx

p t
dt K x t p t dt K x t p t dt

t x

 

(14) 

In Fig. 1, considering the symmetry with respect to y axis, one can 

write 1 /v x   as 

1 1 2 2

22 2 22 2

1

21 1 21 1

4 ( ) ( )
( , 0) ( , ) ( ) ( , ) ( )

1

( , ) ( ) ( , ) ( )





− −

− −


− = + + +

+  − −

−
+ + 

−

   
b b b b

b b b b

v p t p t
x dt dt K x t p t dt K x t p t dt

x t x t x

a a
K x t p t dt K x t p t dt

a a

 

(15) 

In Eq. (15), after switching negative limits of the integral to 

positive limits, following equation can be obtained 

1 1

2 22 2 21 1

1

4 1 1
( , 0) ( ) ( , ) ( ) ( , ) ( )

1





− − −

− − −


− = − + +

+  − +

 
  
  
b b a

b b b

v
x p t dt K x t p t dt K x t p t dt

x t x t x
 

(16) 

where 

22 22 22 22

0

21 21 21 21

0

( , ) ( , ) ( , ) ( )[sin ( ) sin ( )]

( , ) ( , ) ( , ) ( )[sin ( ) sin ( )]

   

   





= + − = − + − −

= + − = − + − −





K x t K x t K x t k t x t x d

K x t K x t K x t k t x t x d

 

(17) 

with necessary manipulations Eq. (16) yields to the following 

expression 

22 2 21 1

1 1 1 1
( , ) ( ) ( , ) ( )

1 1

 

 

 − − 
− − − =  + + − +  

 
b a

b a

K x t K p t dt K x t p t dt
t x t x

 

(18) 

If the external forces are applied directly to the top surface then 

the hand side of Eq. (18) can be obtained. The solution for this 

symmetric case can be found in [20]. Above equation is the same 

with Eq. (12) which was given in [20]. The contact in this paper 
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is an example of smooth contact. In addition p2(t) function has 

finite values at both ends. The index of the problem is (-1). 

Therefore p2(t) can be expressed as  

                    
0.5 0.5

2 2
( ) ( )( ) ( )

−
= − −p t g t b t t b             (19) 

eventually the boundaries of the contact region can be determined 

by the following equation 

                           
2( ) = −

b

b

p t dt P                            (20) 

In the case when b=c smooth contact does not occur at point b. 

For this case p2(t) function can be expressed as 

    
1/2

2 2( ) ( )( ) ( ) 1 = − − = −p t g t b t t b p         (21) 

Where -β
 
is the strength of singularity at point b. For the rigid 

wedge case 1 = + ,  p=1/2 the strength of singularity at point b 

is β=-1/2. Consequently this is the expected result. Let us consider 

a single P force that is applied to the top surface of the layer at 

point t0 without punch. In this case second expression in Eq. (13) 

can be rewritten as 

2
22 2 2 21 0

( ) 1
( , ) ( ) ( , ) ( ) ( , ) ( )

1






+
+ + − − = −

− −   
b b b a

b b b a

p t
dt K x t p t dt K x c t c p t dt K x t p x t dt

t x
 

(22) 

Some necessary operations in Eq. (22) yield to 

2
22 2 2 21 0

( ) 1
( , ) ( ) ( , ) ( ) ( , )

1





+
+ + − − =

− −  
b b b

b b b

p t
dt K x t p t dt K x c t c p t dt PK x t

t x
  

(23) 

For the unknown b  and b  values following equation can be used 

                                 
2( ) = −

b

b

p t dt P               (24) 

If we divide both sides of Eqs. (22-23) with P the unknown 

function becomes p2(t)/P instead of p2(t).  So the boundaries of 

the contact region becomes independent from P however 

dependent to the point t0 where P is applied. When the loads are 

applied directly to the upper surface, loads can be expressed as 

                                  1 1( ) ( )=p t r t            (25) 

Where r is a multiplier that characterizes the amplitude of the 

loads and 1( )t
 is a function characterizing the distribution of 

the load. According to Eq.’s (24-25), if P is applied through a 

punch with flat bottom and parallel to layer surface, then the first 

equation in the right hand side of Eq. (13) will be zero. Therefore 

equation system can be defined as homogeneous equation system. 

The conditions for the solution of this equation system can be 

written as 

            
1 2( )      ;     ( )= − = − 

a b

a b

p t dt P p t dt P                         (26) 

The homogeneous equation system is solved with 

nonhomogeneous conditions. The first expression of Eq. (26) is 

the necessary condition for the first equation of Eq. (13) to have a 

single solution. The second expression in Eq. (26) is the condition 

to determine the boundaries ,b b of the contact region. If we 

consider
1 /p P  and 

 2 /p P as unknown functions, the boundaries 

of the contact region can be found independently from P force as 

seen from Eqs. (13 & 26). 

3. Numerical Example  

    The numerical example consists of a railroad problem. This 

problem is numerically solved in this section. As stated in [17] the 

tip of the gap between two rails is the most crucial part of the rails 

(see Fig. 3). In comparison with the wheel the gap is smaller. In 

this case the head angels of the elastic wedges are 90 degrees and 

the wheel can be considered as upper half plane.  

 

 

Fig. 3 Rail drawing [17] 

The surface curves of wheel and rails before contact can be 

denoted as f1(x), f2(x) respectively. The vertical displacements of 

these contacting curves are expressed as 1v  and 2v . Considering 

this information following expression can be obtained. 

2 2 1 1( ,0) ( ,0)      ;     
v df v df

x x a x b
x dx x dx

 
+ = +  

 
 

(27) 

The most critical stress for the rail is at x=a point. This stress is 

called cleavage stress which is very important for fracture 

mechanics. Stress intensity factor is written as 

          ( ) lim( ) ( )−

→
= −

x a
k a x a p x                                       (28) 

Making some necessary manipulations dimensionless form of 

k(a)
 
and g are presented as  

                     1/2( )( ) 2 ( 1)
2

/

k a b a R

Q R b a g


 +− −

=
−

           (29) 

                                     (30) 

Fig. 4 shows the change of the dimensionless stress intensity 

factor related to the dimensionless contact length. The curves are 

composed considering constant a/R. For a constant system 

geometry Fig. 4 shows that when the contact length increases with 
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respect to the increase of Q, stress intensity factor also increases. 

When R is constant the length of the contact region is constant as 

well, however the value of a increases. In this case the stress 

intensity factor also increases. k(a) can be expressed by the help 

of Fig. 4 as 

 

Fig. 4 Value of the dimensionless stress intensity factor related 

to dimensionless contact length for the constant a/R 

1
25

1

4 1
( ) ,

(1 )10

a b a
k a F

R R R





− 
=  

+  
       (31) 

where F2(a/R, (b-a)/R) is the dimensionless function which is 

shown in Fig. 4. Taking  as -0.226, the stress at the tip point of 

the rail can be calculated as 

0.226

1
20.226 5

1

( ) 4
( )    ;   ( ) ,    ;   

(1 )10





−   
  = −   

+    

k a R a b a
p x p x F r x a

r r R R
 

(32) 

From From Eq. 32 when r→0, the stress goes to infinity. The 

singularity of this case is equal to the value  -0.226.  The 

singularity is equal to the value -0.5 for the most critical case. That 

case is the rigid wedge case. 

 

 

 

 

4. Conclusions  

It has been obtained for the case of directly acting forces that 

the contact region boundaries are independent from the amplitude 

of the load, however dependent to the distribution. This is also 

same for the force acting through a rigid punch. For the other 

cases the boundaries of the contact region are related to the 

distribution and amplitude of the load. The singularity is related 

to the bi-elastic constant. In addition the most critical singularity 

is found for the rigid wedge case and the value is -0.5. When the 

head angle of the wedge is π, the problem can be defined as 

contact problem of elastic layer lying in half plane. Although the 

kernels in the singular integral equation are divergent, the 

divergent terms in the integrals cancel each other. Accordingly, 

K21 and K22 kernels can be studied as Fredholm kernels. Another 

effective method for calculation of the kernels is the usage of 

contour integration. Using the residues in the integration of 

kernels is appropriate as well. 
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