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Abstract

This study aims to explain the dynamics of a competitive problem affected by toxicants. The effect of toxicants on ecological systems
is an interesting topic for mathematical modelling. Discretization of the nonlinear problem is inevitable for right approximation of its
solutions due to the difficulty of finding analytical solutions. In this work, a continuous time two species competitive problem was
transformed into a discrete time problem. Because, it is very important to create a discrete model that will protect the properties of the
original continuous model and the dynamics will be independent of step size. Also, in this study, the dynamic behaviour of a competitive

system under the influence of toxicants were investigated. Lastly, the stability properties of each fixed point of the corresponding discrete
problem have been examined using some theoretical results.
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Zehirli Maddelerle Rekabetci Bir Problemin Lokal Analizi

Oz

Bu calisma, zehirli maddelerden etkilenen rekabetgi bir problemin dinamiklerini agiklamayir amaglamaktadir. Zehirli maddelerin
ekolojik sistemler iizerindeki etkisi matematiksel modelleme igin ilging bir konudur. Analitik ¢6ziimleri bulmak zor oldugundan,
problemin ¢oziimlerine dogru yaklasim igin lineer olmayan problemin ayriklastirilmasi kaginilmazdir. Bu ¢aligsmada siirekli haldeki iki
tiir igeren rekabet¢i problem ayrik haldeki probleme doniistiiriilmiistiir. Ciinkii orijinal siirekli modelin 6zelliklerini koruyacak ayrik bir
model olusturmak ¢ok 6nemlidir ve modelin dinamikleri adim boyutundan bagimsiz olacaktir. Ayrica bu ¢caligmada zehirli maddelerin
etkisi altindaki rekabetci bir sistemin dinamik davranisi arastirilmistir. Son olarak, ilgili ayrik problemin her bir denge noktasinin
kararlilik 6zellikleri bazi teorik sonuglar kullanilarak incelenmistir.

Anahtar Kelimeler: Kararlilik, Zehirli maddeler, Rekabetci sistem.
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1. Introduction

The effect of toxic substances on ecological systems is an
interesting topic for mathematical modelling. The uncontrolled
contribution of toxic substances to the nature causes the extinction
of many species and many others are at the threshold of
extinction. Freedman and Shukla [1], Chattopadhyay [2],
Samanta [3], Biswas and Bairagi [4], Das et al. [5] and others
worked the effects of toxicants on different ecosystems. Recently,
nonlinear ordinary differential equations are often used to
illustrate the interaction between two species. Due to the
diffuculties of analytical solutions of these problems,
discretization has become inevitable in order to reach
approximate solutions.

Numerical methods based on finite difference approximations can
be used to predict competitive population dynamics. But
disadvantage of these methods is that their accuracy and stability
depend on the step size [6]. However, these methods do not
guarantee positive solutions for positive initial conditions. On the
other hand, using nonstandard finite difference (NSFD) method in
the proposed discrete system, this problem can be eliminated.
Therefore, it is very important to create a discrete model that will
protect the properties of the original continuous model. Dimitrov
and Kojouharov [7,8,9], Shokri et al. [10], Banda et al. [11],
Sajjad et al. [12] and many others have used nonstandard
techniques developed by Mickens [13].

In this paper, we analyze the following competitive
problem that is affected by toxic substances in [14]:

d
d_j = x(Ky — ayx — B12y — v1xy)
(1)
d
d_f = y(K; — ayy — Bo1x — V2xy)

where x(t) and y(t) denote the population densities at time t.
Ky, K5, a1, ay, Bi12, B21, ¥1 and y, are positive constants. K; is
the intrinsic growth rate of species I, a; indicates the competition
coefficient of species i, f5;; measures the impact of species j upon
the growth rate of species i (i # j; i,j = 1,2) and y; represents
the toxicant coefficients.

2. The Discrezation of a Competitive
Problem

First of all, we must install the discrete version of the
continuous problem with NSFD method. The NSFD method is
based on two basic factors [15, 16]:

o AX _ Xg41-Xgk
O %= om

where @(h) = h + 0(h?).
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(i1) nonlinear and linear terms may need a nonlocal
presentation.

Building a numerical scheme for equation (1), we discretize
the time variable at t,, = nh, t(= 0) where h(> 0) is the
time step size. To represent the stability analysis of discrete
time model, we can employ the following discretizations:

2
X2 Xk, Y2 Vks X7 XgXgy1, XY 2 Xgy1Vkos

and

2
VX = Vi+1Xk+1, XY 7 Xk+1Vks V™ 7 Ve Vi+1-

Thus, positive solutions can be found. By using NSFD
scheme, we can obtain the discrete system:

Tkl Tk k——KX — A1 XX, —,Bx Vk — V1XrX, )%
U) 14k 1Mk k+1 124k+1)k 1 krMk+1)k
(2)

kl, k_Ky X2V Vk+ ﬁx+)"+

() 2)k 2)kJk+1 21 k+1)k+1

—VoXk+1VkVk+1

where @ (h) depends on the step size h and it is called
denominator function. Let us suppose h; = ¢@(h). Then
system (2) becomes

X (1 + hiKy)
[1+ hyaix, + hy oy + havaxe il

Xk+1 =

3)

yk(l + hi1K3)
[1 + h1a2yk + h1ﬂ21xk+1 + hlyzxk+1yk].

Vi+1 =

Since all parameters are positive and the initial values are positive,
the solution of the discrete system (3) remains positive.

3. Equilibrium Points and Local Stability
Analysis
The competitive problem (1) has four equilibrium points:
* * K * K; * * *
E; = (0,0),E} = (a—i 0),E5 = (o, a—i) and E} = (x*,y").

If we take X, = X, = x and y, 1 = y, = y at system (3), the
fixed points are satisfying the following equations:

Xk(1+h1Kq) _

X = =X
K41 ™ [14hy aq g +ha Broyi+ha yaxyid ks
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Ye(1+ hyK3)

y = = y ,
ot [1+ hiayyi + hiBriXisr + hiVaXir1 Vil .

Ky = a1 X + Bi2Yk + ViXeVi » 4
K; = a;Yi + Boi X1 + Vo X1 Vi - %)

In this case the fixed point (x*, y*) is satisfying:
Ky = a;x" + By + ix7y",

and

Ky = ayy™ + PorX™ +y2x7y" .

Jacobian matrix of system (3) evaluated at an arbitrary fixed

point (xk,, yk) is found by

OXpy1  0Xpyq
| 9x Oy
](xk" yk) | OVke1 OVisr
0xy 0y
where
(1+ hyK7)

Ji1 (X yi) =
11 Vi [1+ hyayx, + hyBroyi + hivaxeye]

(1 + hiKD)x (hyay + hyiyi)
[1+ hyayxy + hyBr2Yi + hivixeyel?’

—xg(1+h1K1)(h1B12+h1y1Xk)

x =

J12(xe Vie) [1+hy@yxp+hy B12Vik+haviXeyi)?’

o1 G vi) = —Yk(1+h1Kz)(h1 B21th1Yayid) )11

213 Tk [1+hi@zyi+hyBaa Xk +hva Xk yil?’
J22 (X, Vi)

_ 1+ nK>)
[1+ hyazyi + hy B Xk + hyyaxi Y]
_ (1 + hKy)(hyay + hyyaxe + hi(Bar + V2Yi) Jaz
[1+ hiazyi + hifarxi + hiyVaxiyi]? ’

Assume that A; and 4, are the eigenvalues of the Jacobian
matrix.

Lemma 3.1 The fixed point (x;, y,) of system (3) is defined
stable (sink) if |[A; | <1, |A, | < 1 and unstable (source) if
[4: 1 > 1, |A; | > 1. It is defined unstable (saddle) if |1 | >
1, |A;1<1or|A;| <1, |A;|> 1and non-hyperbolic if
|4 | =1or |4, | =1[7].
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Theorem 3.1 The fixed point E7 is a source.

Proof. At the fixed point Ef , Jacobian matrix is

1@ = (e Jah)
where

Ju(ED) =1+ Ky,

J12(ED) =0,

J21(Ef) =0,

Jo2(EY) =1+ K, .

The eigenvalues are A, = 1+ hyK; and 4, = 1+ K, .

Since the eigenvalues are positive and they are greater than
one, the fixed point E7 is a source.

If we take v, = Y41 = 0and x, = x4, = 0 at equation
(4), we can obtain x; and y, as follows:

K1 K3
X =— ==
L Vi az

Theorem 3.2 The fixed point E; = (%, 0) is stable (sink)
1

if ;—1 < % and it isn’t a source. The fixed point E; =
21 2

(ﬁ, o) is a saddle if 2= > % and it is unstable. The fixed
ay Bz1 Kz

.  _ ﬁ . ~ s e @1 — ﬂ
point E; = (al' 0) is non-hyperbolic if = 1 [4].
Proof. At the fixed point E; , Jacobian matrix is

o (a(ED (B
J(E2) = (/21(15;) Jzz(E;))’

where

h1Kq
(1+h1K1)’

]11( E;) =1

J12(E3) = “haKi(B1za1ty1Ky)

(1+hyKp)a,?
]21( ES) =0,
_ 14h4Ky
J22(E3) = PRELZTR
ag

hyKq _ 1+h4Ky

(1+hiky) > 72 7 g 4maKaBa1 -
a

The eigenvalues are 4 = 1 —

Since |A4] is less than one for any hy > 0, E; isn’t a source. If

;—1 < % (for any h; > 0), |1,] <1 and E; becomes stable.
21 2

Also, if ;—1 > %(for any h; > 0), |A,| > 1. Thus E; isasaddle.
21 2

ay

On the other hand, if
B21

K .
=K—1 , |42 =1 and E; is non-
2

hyperbolic.

Theorem 3.3 The fixed point E5 = (0, %) is stable (sink) if
2

ﬁ<&

. . . K2\ .
and it isn’t a source. The fixed point E3 = (0, —2) isa
Ky ay az
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saddle if %2 > 212 and it is unstable. The fixed point Ej =

2 az

(0, I;—z) is non-hyperbolic if % = i—lzz [4].

Proof. At the fixed point E3 , Jacobian matrix is

o (Ja(ED Jia(ED
J(E3) = (JZI(E;) JZZ(E;))’

where
 1+hyKy
J11(E3) = PRILSIZTR
az
J12( E;) =0,
Kz((h1ﬁ21+h1)’2§—§)]11
*) az
]21(E3) - (1+h1K7) ’
N _ q K>
]22(E3) - 1 (1+h1K2) .

. 1+h,Kq hiKp
The eigenvaluesare A, = ———%— , A, =1 ——=— |
& 1 1+—hlk:l22‘812 » 2 (1+h1K3)

Since |A,] is less than one for any h; > 0, E; isn’t a source. If

K1 < P (for any hy > 0), |4;] <1 and E; becomes stable.

K> a_z

Also, if % > iﬁ (for any hy > 0), [A;] > 1. Thus E; isasaddle.
2 2

K1 _ P12

) is non-
az

On the other hand, if [A1] =1 and E3

hyperbolic.

Lemma 3.2 Let A; and A, are the eigenvalues of the Jacobian,

o @YD) @y
Gy = <121(x*.y*) lzz(x*,y*)) '

Then |4; | < 1 (i = 1,2) if the following situations are hold:
(1) 0 <det(J(x*y9)) <1,
(2) 1+det (J(x*, ")) +tr(J(x*,y")) >0,
(3) 1+det (J(x*,y")) —tr(J(x*,y%)) > 0[17,18].

Theorem 3.4 The fixed point E; = (x*, y") is stable if the
conditions of Lemma 2 satisfy.

Proof. Using the equations K; = a;x™ + B1,¥" + y1x™y",
ayx" +y1x"y" =Ky — frpyT and Ky = apy” + forx” +
YaXy", Ky = Borx”™ = apy” +yox"y”

the Jacobian J(x*, y*) at the fixed point E; can be finded by:
e-ISSN: 2148-2683

thl
1 + thl

Ky — Bi2y”
K1 ’

Juxhy)=1-

_ hiKy  x"(Biz +y1x7)
1+ K, K, ‘

Ji2(x*,y") =

h K,

Vv (Bo1 +v2¥ 1
Kz !

J21(x*,y") =

and

hiK; Ky — Bo1x”
1+ hK, K,
_ Y hi(Ba1 +v2Y") )1z
1+ K, '

Jo2(x%y) =1—

It is clearly seen that, J;,(x",¥*) , Jo1(x", y*) are negative and
0 <Ji1(x%y") <1, Joo(x",y7) > 0.

Thus,

det (](x*,y*))

_ hK, Ky = Bix”
=1 -
1+ h K, K,
—J {y*hl(ﬁu + sz*)} _ Ky x"(Byz +71X7)
1 1+ hK, 1+ hK, K,

_ hiKy  x*(Biz +v1x7) hiKy,  y*(B21 +v2y )1
1+ K, K, 1+ K, K,

hK, K,— x*
183 2ﬁ21}<1

0<det(](X»y))=]11{1_1+h11<2 K,

This shows us that the first condition of Lemma 2 is satisfied.
Since J;;(x*,y*) > 0and J,,(x*,y*) > 0,tr (](x*,y*)) > 0. As
det (](x*,y*)) > 0 and tr (](x*,y*)) >0,

Thus, the second

1+det (J(x*,y9) +tr(J(x",y")) > 0.
condition is satisfied.

The calculations below show us that

1+ det (](x*,y*))
—tr(J(x",y")
—141— hK; Ky — Bo1x” _ h Ky Ky — 12y’
1+ hK, K, 1+ hK; K
h.K; hiK; Ky — B1oy" Ky — Borx”
1+ K 1+hK, K K,
hKy Ky —B1y” _ hK, Ky — Boix”
1+ hK; K; 1+ K, K,
Y'hi(Bar +72y") MKy x"(Biz +y1x")
1+ mhK, 1+RhK K, ’

1
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1+ det (](x*,y*))
—tr(J(x",y7)
_ h,K; hiK, Ky — B1oy" Ky — Borx”
1+hK 1+ 0K, K K,
Y hi(Bor +72y") MKy x"(Brz +v1x")
T 1+mK, 1+RhK K,

Using the equations K; — B,y = a1 x* + y1x*y* and K, —
Bo1X" = ay" +y,x7y"

1 + det (](x*,y*))
—a(J(x",y")
B hlzx*y*
= (1 + i K) (1 + hKy) {(a1ay — B2112)
+ x*(a1¥2 = B21v1) + ¥ (a2y1 — Biz +¥2)}

It can be easily shown that 1 + det (J(x*,y")) — tr(J (x*,¥")) >
0 . So the proof is complete.

4. Conclusion

In this study, it was aimed to observe the dynamic behaviours
of the competitive problem with toxicants. Stability analysis of
fixed points of the discretized problem were made with the help
of some important theoretical evidence. We believe that these
analysis will be useful to researchers for the theory of competitive
problems.
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