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Abstract

This paper presents an evaluation of temperature effects on ultrasonic piezoelectric transducers for electronic flow measurement
devices. Transducers generates ultrasonic wave against electrical signals and electrical signals against ultrasonic waves due to their
bidirectional characteristics. Temperature dynamics of the physical environment is one of the most crucial parameters which a ffects
the electrical dynamics of the ultrasonic transducers. Due to the temperature related false sensor readings, flow me asurement process
for different temperature causes calibration errors. In order to identify the temperature effects on transducers characteristics and
constitute a generalized solution, a test procedure and data collection process are developed. Initially, two identical transducers are
located reciprocally on a flow meter body. Secondly, bodies are located on a test bench to get signal measurements for different flows.
A wireless communication data acquisition card is employed to collect ultrasonic signal measurements. Test procedure is repeated for
5 different temperatures and 13 flow rates. The created dataset is evaluated and visualized in MATLAB environment. A temperat ure
effect compensation process, which is based on machine learning algorithms, is proposed. This method considers time domain
information of transducer elements. Experiment temperature value and average values of Time-of-Flight (TOF) signals for each
transducers are considered to predict actual flow velocity. In this manner, machine learnin g algorithms linear regression, suppor vector
regression (SVR), Gaussian process regression (GPR) and artificial neural networks (ANN) are employed to construct the relation
between temperature variation and flow measurement. Compensation performance is investigated by considering the R?, root mean
square error (RMSE), mean absolute error (MAE ) and mean square error (MSE) model evaluation metrics. According to the results,
neual network based compensation algorithm gives the best result with R? = 0.95.

Keywords: Ultrasonic transducers, Flow metering, Compensation, Time-of-Flight Measurement.

Ultrasonik Akis Olciimiinde Sicaklik Etkisinin Incelenmesi ve
Kompenzasyonu

0Oz

Bu makale, elektronik akis Olgiim cihazlart igin ultrasonik piezoelektrik donistiiriiciiler lizerindeki sicaklik etkilerinin bir
degerlendirmesini sunar. Dontistiiriiciiler, ¢ift yonlii 6zelliklerinden dolay: elektrik sinyallerine kargi ultrasonik dalga ve ultrasonik
dalgalara kars1 elektrik sinyalleri iiretir. Fiziksel ortamin sicakhk dinamigi, ultrasonik donistiiriiciilerin elektrik dinamiklerini
etkileyen en Onemli parametrelerden biridir. Sicaklik degisimi kaynakli yanlis sensér okumalari, farkli sicakhiklar i¢in akis Olglim
islemi srasinda kalibrasyon hatalarina neden olur. Bu nedenle, doniistiiriici 6zellikleri tizerindeki sicaklik etkilerini belirlemek ve
genellestirilmis bir ¢d6ziim olusturmak igin bir test prosediirii ve veri toplama siireci gelistirilmistir. Baglangigta, bir akis 6lger govdesi
iizerinde karsilikli olarak iki 6zdes déniistiiriicii konumlandinlmustir. ikinci olarak, gévdeler, farkli akislar i¢in sinyal 6l¢iimleri almak

“Alkim Gokcen: BAYLAN M easurement Meters, Department of Research and Development, Izmir, Turkey, ORCID: 0000-0002-8131-388X,
a.gokcen@baylanwatermeters.com

http://dergipark.gov.tr/ejosat 113



http://dergipark.gov.tr/ejosat
mailto:a.gokcen@baylanwatermeters.com
mailto:b.yesil@baylanwatermeters.com

Avrupa Bilimve Teknoloji Dergisi

lizere bir test masasma yerlestirilmistir. Ultrasonik sinyal olglimlerini toplamak igin bir kablosuz iletisim veri toplama Kkarti
kullantlmigtir. Test islemi 5 farkhi sicaklik ve 13 debi i¢in tekrarlanmistir. Veri toplama sonucu elde edilen veri seti MATLAB

ortaminda degerlendirilip,

calisma kosullart belirlenmistir ve makine Ogrenmesi algoritmalarina dayali bir sicakhk etkisi

kompenzasyon modeli onerilmistir. Bu yontem, doniistiiriicii elemanlarmm zaman ekseni bilgilerini dikkate almaktadir. Gergek akis
hizin1 tahmin etmek igin her deney sicaklik degeri ve Ugus Siiresi (TOF) sinyallerinin ortalama degerleri dikkate almmaktadir.
Boylece, sicakhk degisimi ve akis Olglimii arasindaki iliskiyi olugturmak igin makine Ogrenmesi algoritmalarmdan dogrusal
regresyon, destek vektdr regresyonu (SVR), Gaussian siire¢ regresyonu (GPR) ve yapay sinir aglan (YSA) ku llanilmustir. Onerilen
modelin kompenzasyon performans1 R2, ortalama kare-kok hata (RMSE), ortalama mutlak hata (MAE) ve ortalama kare hata (MSE),
gibi hata metriklerinin hesaplanmasi ile incelenmistir. Sonuglara gére, YSA tabanh kompenzasyon algoritmasmnm R? = 0.95 metrigi

ile en iyi sonucu verdigi goriilmiigtiir.

Anahtar Kelimeler: Ultrasonik transduser, Akis 6l¢timii, Kompanzasyon, Ugus siiresi6lgtimii.

1. Introduction

Parameter change caused by temperature effect is a widely
countered disturbance phenomenon in the sensor and
measurement fields including biomedical (Sarjova et al., 2005),
process control (Mehta et al., 2022), measurement devices (Fang
et al, 2022) and embedded system designs (Rudnicki, 2020).
Transducers are commonly used cheap and easy to use sensor
elements to measure distance (Balasubramanian et al., 2022),
liquid flow (Yao et al., 2021), gas flow (Chen et al.,, 2021) and
pressure (MacAskill et al., 2021). However, change of
temperature has a significant role on transducer electrical
characteristics which causes false sensor readings and
measurement errors (Zibitsker et al., 2021). Calibration process,
due to the underlying problem, is underwhelmed to converge to
actual measurement. Identifying the behavior of the problemand
developing a method to eliminate temperature effects is a
crucially significant for the sake of true measurement process.
Related literature is investigated to study on different
perspectives on the problem. Huang and Young (2009) employed
an external sensor to measure the temperature of a distance
measurement system to compensate the ultrasound velocity
during the measurement process. Wang and Zhang (2010)
proposed to use a neural network model which considers the
temperatre sensor data and ultrasonic flow measurements to both
calibrate and compensate the measurements, and proved that the
measurement error decreased to 3% from 5.2%. Scale transform
and cross-correlation methods are employed by Harley and
Moura (2012) to find phase delay caused by the temperature
variations. Herein, they can find the optimal time domain
information of the ultrasonic waves. A methodology, that aims to
model temperature effects on signal amplitute and waveform of
the ultrasound to understand that how temperature affects the
measurement, is proposed by Jia et al. (2021). Huang et al.
(2021) employed the transducers to predict temperature value of
a specific medium where the ultrasound velocity is known and
used to extract temperature.

In this study, transducer complex dynamics are investigated
under certain temperature and flow conditions with a data
acquisition process. The problems defined in the literature focus
on the temperature change of the water however we focus on the
temperature effect on the transducer and its electrical
characteristics. Upstream and downstream signals, which
represents the electrical signals on transducers caused by
ultrasonic wave transmitted from other transducer, might be
evaluated to determine the working conditions. Thus,
transducers are placed inside of a brass flow meter body to
measure the stream signals during the flow. Through the
instrument of heat test bench, flow and temperature test
conditions are satisfied. Flow measurements, temperature
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measurements, Time Of Flight (TOF) values representing the
time domain features of stream signals and actual flow
measurements are collected using a data acquisition card. During
the test process, data are collected for different water
temperatures (10° C, 20° C, 30° C, 40° C, 50° C) and 13 flow
rates between 16 L/h and 5000 L/h.

Remaining parts of the paper is organized as follows: In
Section 2. transducer element and its mathematical dynamics are
explained. Problem is detailly defined, collected data are given
and proposed compensation method is explained. In Section 3.
the results of the experiment and compensation work are
presented. Conclusion and the future work of the study are
presented in the Section 4.

2. Material and Method

2.1. Ultrasonic Transducer and Flow Metering

Ultrasonic transducers are piezoelectric components used to
generate and/or receive the ultrasonic sound waves (Jaffe et al.,
1965). Pulsed ultrasonic transducers use electrical energy to
generate ultrasonic wave trains into the water medium. Reflected
waves, which might be called echo, are transformed into
electrical energy back by the ultrasonic transducers. The total
time during the transmission and reflection is considered to
compute distance or depth in a water medium. Based upon this
principle, ultrasonic transducers might be employed for flow
measurement process. Initially, reciprocal transducers are
located on a body (or transducer paths are connected with the
mirror reflecting the waves) to generate and receive waves
(Figure 1). Transducers are pulsed with a pre-determined
specific period of time. Received signals by the transducers are
employed to compute wave transmission time measure Time-of-
Flight (TOF). These waves are called Upstream (In the direction
of flow ) and/or Downstream (In the reverse direction of flow)
signals. This transmission/receiving operation might be
performed with an ultrasonic Time-to-Digital Conversion (TDC)
integrated circuit chip. TOF difference value, which might be
computed considering the time difference between downstream
and upstream signals, is considered to measure both direction
and amplitute of the flow with an offset compensation and
calibration process.

Transducer A

¥

Transducer B

Mirror

a) [a 2

N |
Mirror & # Mirror

Figure 1. Visual representation ofan ultrasonic flow meter.
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2.2. Time of Flight Measurement and Data
Collection

TOF of an ultrasonic wave in the direction of downstream
might be given as:

. D N L N L N D
(B>4) = Cy Co+vcos(a) Cy+vcos(a) C

where L is the distance between transducers, D is the diameter of
the pipe, a is the degree between pipe and mirror, C, is the speed
of ultrasonic wave in water, v is the flow velocity, and t(z- ») is
the downstream TOF value. In the same manner, upstream TOF
migh be calculated as:

LoD L L D @

o — vcos(a) + Co— vecos(a) + C_O

tB>a) * t(a>B)
4(L + D)2

- (Co — vcos(a))(CO + vcos(a)) @)
4Dcos (a) (L — CoL — Dvcos(a))

+ CS(CO — vcos(a))(CO + vcos(a))

Left side of the Eq. (4) may be assumed as zero, and substituting
(4) in (3) for €2 — v?cos*(a) gives temperature independent
flow velocity as:

AT (L+D)? ©)
v =

= *
tB>a) * t(a>B) Lcos(a)

Due to the flow calculation is not dependent on C,
variations, measurement is not affected by temperature variation.
However, the aim of this study is to eliminate temperature
effects on transducer electrical characteristics. To understand the
temperature related measurement behaviors and dynamics of the
transducer, flow measurements are performed for different
temperatures and velocities (Figure 2). TOF values for both
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where t(g. ) is the upstream TOF value. Due to the TOF value

is reverse proportional to the flow velocity, TOF Difference
(TOF DIFF) value migh be computed as:

AT = t(g>a) — t(a>B)

2L 2L
Co— vecos(a) Cy+ vcos(a) ®)
4Lvcos(a)

€2 —v?cos?(a)

Computing the flow velocity is directly affected by the
change of water temperature due to the sound velocity C, is
affected by temperature. To eliminate this dependency:

e-1SSN: 2148-2683

measurements and actual flow velocities are recorded to perform
a calibration process which eliminates the temperature variation
effects.
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Figure 2. TOF signal evaluation ofco

2.3. Temperature Compensation Process

Temperature parameter must be know to eliminate its effects
on transducer. Due to the C, parameter has a known correlation
with temperature, it migh be employed to estimate temperature
value. C, might be computed as:

4LC,
—v2cos?(a)

©)

tg>a) T t(a>p) = 2
0

due tothe CZ > v? cos?(a), equation (6) becomes:
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llected data during experiments.

4L
t>a) t t(a>B)

Co 7

Proposed compensation method is based on a machine
learning model which considers the water temperature correlated
parameter C,, flow measurement v to estimate actual velocity v
(Figure 3).
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Co Machine
Learning based v
v Compensation
Block

Figure 3. Block representation of proposed machine learning
model.

To perform this process, machine learning models are employed.
Linear regression is method which defines a linear mathematical
expression between dependent and independent variables to
perform a prediction process of the independent variable
(Weisberg, 2005). This model might be defined as:
where y is the model prediction, 8 represents model regression
parameters, and X represents model inputs.

Support \ector Regression (SVR) method employees a
mapping kernel function which projects feature space into a
higher dimensional hyperplane (Awad and Khanna, 2015). The
objective of constructing a Support \Vector Machine (SVM) is to
map features into a higher dimensional space (F) by employing
a kernel function. Estimation function of a general SVR might
be defined as:

5} = aiK(xi,xj)+ b (10)

where «a; represents the support vectors with i samples, and b
represents the bias term. Mapping function K is employed as
linear, quadratic and cubic, respectively.

Gaussian process regression is a non-parametric regression
method based on optimizing the distribution kernel function
hyper parameters (Wilson et al., 2011). Kernel function with
optimal parameters define a regression fit which maximize the
negative log-marginal-likelihood (NLML) of thetraining set.

In this framework, probabilistic approach to regression
between input-output relation might be defined as:

y=fx) +e (11)

where e term represents a Gaussian distribution.

Fundamentals of ANN is based on learning brain neuron
cells, and hypostatized in machine learning framework (Eskov et
al.,, 2019). This model consists of an input layer, hidden layers,
an output layer and processing elements known as neurons. Each
neuron node receives its input from previous neuron nodes.
Neurons passes linearly weighted sum of the signal to another
neuron over an activation function. Activation functions within
the hidden layers gain the model its dynamics, and are selected
considering the complexity of the dataset. Multi-Layer
Perceptron (MLP) type of ANN has known number of input and
output layer neurons, and equals to the number of independent
and dependent variables, respectively. MLP might be defined as:

9 = ho (WS h (Wi, + X)) (2

where W,, represents the hidden-layer neuron parameters, h; (-)
represents the hidden-layer activation function, W, represents
the output-layer neuron parameters, and h, () is the output-layer
activation function. In this work, a single hidden-layer MLP type
ANN is employed for compensation process.

3. Results and Discussion

MATLAB environment is employed to study on the
collected dataset. Firstly, C, and v values are computed for each
temperature value. Linear regression, SVR, GPR and ANN are
employed to perform compensation process. Model
performances are investigated by considering the metrics
R% RMSE,MSE, MAE values (Table 1).

Table 1. Model performance metric evaluations.

Linear LinearKernel | QuadraticKernel | CubicKernel SVR GPR ANN

Regression SVR SVR
R? 0.82 0.81 0.81 0.84 0.92 0.95
RMSE 0.09876 0.1009 0.1007 0.0932 0.0374 0.0707
MSE 0.0097 0.0101 0.0101 0.0086 0.0014 0.0050
MAE 0.0414 0.0315 0.0352 0.0220 0.0076 0.0065

e-1SSN: 2148-2683
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According to the results, linear models have close
performance in terms of R? and error metrics. Although the
quadratic kernel SVR is a nonlinear model, it is understood that
it provides close performance to linear models in terms of R?
and error metrics. Cubic kernel SVR gives slightly better
performance on R?, RMSE and MSE metrics, but it is successful
in terms of MAE metric compare to previous models. Thus, it is
observed that solving the problem with quadratic or qubic
approaches is not appropriate in terms of a trade-off between
model complexity and model performance. GPR, as a
probablistic distribution based model, gives the best
performance in terms of RMSE and MSE metrics due to its
stochastic behavior. ANN, which gives the best performance in
terms of R?, also is successful in terms of MAE compare to all
proposed models on predictin the actual flow velocity.

4. Conclusions and Recommendations

This study presents a machine learning based calibration
method for temperature effects on transducer dynamics on flow
measurement devices. Herein, the problem is identified and
related works are given. Initially, transducer component and
flow measurement process are defined. The data collection
process for understanding the nature of the problem and adapting
the proposed method parameters are explained. Afterward,
temperature effect and proposed method are explained. Machine
learning models and machine learning based compensation
process are detailly explained. Finally, model performances on
compensation process are investigated via performance indexes.
According to the results, neural network based compensation
block gives the better performance compare to other models in
terms of performance metrix In the future direction of the study,
a reinforcement learning based compensation method may be
considered to eliminate disturbance effects.
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