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Abstract  

Multi-span beams are statically indeterminate structures in general. They have many applications in civil engineering, mechanism, 

navigation engineering and so on. For example, multi-span bridges have been widely used in highway and railway. It is of great 

importance to study the dynamic characteristic of the multi-span beams for engineering design and scientific research. Many engineers 

and scientists have contributed to the solution of the problem with their innovations, and still the subject draws considerable attention 

from researchers by now. In this study, we investigate primary resonance case of multi-span beam subject to axial load. Firstly, the 

mathematical model of the problem is derived by using extended Hamilton principle. This model has geometric nonlinearity. Here, two 

system of partial differential equations are obtained for axial direction and transverse direction. The numbers of equations and boundary 

conditions depends on span number. After coupling equations in transverse and axial directions, the system of nonlinear integro-

differential equations are obtained and solved using the method of multiple time scales. 

Keywords: Method of multiple scales, nonlinear vibration, multi-span beam, primary resonance. 
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1. Introduction 

There are many studies related to multi-span beam structures 

in the literature. Multi-supported (multi-span) beams can be 

applied to some different engineering areas. For example, Henchi 

et. al. [1] consider dynamic response of multi-span beams as 

bridges. The beams are under a convoy of moving loads. In 

another interesting study, the transverse vibrations of an axially 

accelerating Euler–Bernoulli beam with multiple simple supports 

are examined [2]. Kesimli et. al. [3] analyse nonlinear vibrations 

of an axially accelerating multi-supported spring and determine 

both stable and unstable areas. In some studies, multi span beams 

is considered as pipes conveying fluid [4]. They present the 

Timoshenko beam model instead of the Euler Bernoulli beam. 

In this study, the solution of the nonlinear mathematical 

model of the multi-span Euler-Bernoulli beam is presented. As a 

solution technique, the method of multiple scales is preferred.   

Applying the method of multiple scales and separating the 

equations at each power of small parameter, linear differential 

equations are obtained at each order of small parameter instead of 

the system of integro-nonlinear differential equation. The 

principal primary resonances case is analyzed and the stability 

boundaries and regions are investigated. The obtained results are 

shown by graphs. 

2. Solution Using Method of Multiple Scales 

Adding a visco-elastic damping term into the equation of motion 

in Ref. [5], one obtains 
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where , ,m P  and F denote different support locations, the 

fineness coefficient, the axial compressive force and external 

excitation with amplitude, respectively. In this study, we consider 

the equation of motion for two span. The method of multiple 

scales is directly applied to the governing equation to find the 

general solution of Eq. (1). The perturbation expansion for 

( , )
m

w x t is assumed 
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where   is a small parameter artificially inserted into the 

equations; 
0

t   is usual fast time scale, 
1

t   is slow time 

scale. We consider only the primary resonance case and hence, the 

forcing and damping terms are ordered so that they counter the 

effect of nonlinear terms: that is 
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/n nD T   , its derivatives have been expressed in time. 

Substituting Eqs. (3) into Eq. (1) and separating at each order of 
 , one obtains 
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(5) 

The problem at orders   is linear. The generating solution at 

order   are assumed as 
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where mA and
mA  are complex amplitudes and their conjugates, 

respectively. Substituting 1mw  solution into this relation, we 

obtain  
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where  
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We consider the primary resonance case. Besides, we assume that 

the external excitation frequency approximately the natural 

frequencies of the system, that is 
2

m
      where   and 

m
  denote the detuning parameter and the natural frequency. The 

detuning parameter represents the nearness of the external 

excitation frequency to the natural frequency of the system. 

Applying the normalization as  

 

1 1

2 2
2

1 1

1 1

1,
m m

m m

x x

m m m

m mx x

X dx F F X dx

 
 

          (9) 

 

eliminating secular terms, then, the resulting equation is obtained 

as 
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Applying the solvability condition into Eq. (10), one obtains 
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It is convenient to write the polar form in the following instead of 

mA  
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where ma  and m  are real functions of 2T . The solution is 

obtained by substituting the polar form of mA  into the Eq. (11) 

and separating the resulting equation into imaginary and real parts 

as  
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where 
2m mT    . For steady state case 0m ma    , with the 

same mathematical procedures, the stability boundaries are found 

as 
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3. Numerical Results 

In this section, some numerical results are presented for 

stability boundaries of primary resonances. The nonlinear 

frequencies for all cases are shown in Fig. 1-3. The region 

between two lines is unstable region in Fig. 1-3. The dashed lines 

are unstable boundaries. The solid lines are stability boundaries. 

When   increases, the frequencies are lower in Fig1. The effect 

of the values 
mX  on the stability region is too limited. The 

nonlinear terms are more effective for smaller slenderness ratio in 

Fig 2. The frequency–response curves shown for different F  

values in Fig.3. For larger F  values, the unstable region is getting 

larger (In all figures, the horizontal axis represents   and the 

vertical axis denotes 
ma ). 
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Figure 1. Frequency–response curves  
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Figure 2. Frequency–response curves for different slenderness 

ratio curves. 
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Figure 3. Frequency–response curves for different external 

excitation with amplitude. 

4. Conclusions 

The nonlinear mathematical model of the beam having two 

number of the span is introduced. As a solution technique, the 

method of multiple scale is used. The primary resonance case of 

the beam under harmonic external excitation is analysed. The 

effect of support location on the stability boundaries is presented. 

The effect of the location of internal support is getting higher for 

smaller slenderness ratio.  
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