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Abstract 

In this study, forced frequency response analysis was applied on the gudgeon pin. Ansys Mechanical 19.2 program was used to 

analyze the vibration on the gudgeon pin. Once completed in the finite element analysis, a note from the modal results, the model's 

natural frequencies range from 38721 to 79346 Hertz for the first 12 modes. According to the modal analysis results, the gudgeon pin 

will not be subjected to resonance during working. Therefore, a frequency scan including modal analysis is required to detect resonant 

frequencies that may coincide with the natural frequencies of the first 12 modes obtained in modal analysis. Consequently, harmonic 

analysis has been solved using the mode superposition method with 50 intervals with 1000 Hz steps in the range of 30000-80000 Hz. 

To dampen the resonant frequencies, harmonic analyzes were repeated using six different constant damping ratios, and the results 

were compared. 

Keywords: Gudgeon Pin, Forced Frequency Response Analysis, Harmonic Analysis, Resonance 

Piston Pimi Zorlanmış Frekans Yanıt Analizi 

Öz 

Bu çalışmada, piston pimi üzerinde zorlanmış frekans yanıt analizi uygulanmıştır. Piston pimindeki titreşimi analiz etmek için Ansys 

Mechanical 19.2 programı kullanılmıştır. Modal analiz sonuçlarına dayalı olan sonlu eleman analizi tamamlandığında, modelin doğal 

frekansları ilk 12 mod için 38721 ile 79346 Hertz arasında değişmektedir. Modal analiz sonuçlarına göre, piston pimi çalışma 

sırasında rezonansa maruz kalmayacaktır. Bu nedenle, modal analizde elde edilen ilk 12 modun doğal frekanslarıyla çakışabilecek 

rezonans frekanslarını tespit etmek için modal analizi içeren bir frekans taraması gereklidir. Sonuç olarak, 30000-80000 Hz aralığında 

1000 Hz'lik adımlarla 50 aralıklı mod süperpozisyon yöntemi kullanılarak harmonik analizi çözdürülmüştür. Rezonans frekanslarını 

azaltmak için altı farklı sabit sönüm oranı kullanılarak harmonik analizler tekrarlanmış ve sonuçlar karşılaştırılmıştır. 

 

Anahtar Kelimeler: Piston Pimi, Zorlanmış Frekans Yanıt Analizi, Harmonik Analiz, Rezonans 
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1. Introduction 

Forced frequency response analysis an essential branch of 

linear dynamics. As we mentioned before, linear dynamics 

solves the equations of motion as a frequency-domain problem 

instead of a time-domain problem. In our lives, many structures 

experience vibration or cyclic loading. Such loading conditions 

can usually be represented by sinusoidal loading. For example, 

when sitting in the car and start the engine, one can feel certain 

vibration levels more or less. The source of such vibration is a 

physics movement of the piston (Geng & Chen, 2005; Liu & 

Randall, 2005; Moosavian et al., 2016, 2017; Reghu et al., 2018; 

Wu et al., 2019) and crankshafts (Fung & Chen, 1998; Karkoub, 

2000; Veciana Fontanet et al., 2021) of the vehicle's motor. 

Anyone see that the forcing load repeats in a sinusoidal 

repetition for each cylinder. The engine motor has multiple 

cylinders, so multiple excitations per revolution, such as cyclic 

movement, might be magnified depending on how well the 

engine vibration (Diéguez et al., 2018; Geng et al., 2003; Geng 

& Chen, 2005; Gosala et al., 2021; Moosavian et al., 2016, 2017; 

Naseri et al., 2020) isolation system or even the entire car 

structure is built.  

One of the main goals of harmonic analysis is to avoid 

resonance for given excitations. Whether it is a partial resonance 

(Binoy et al., 2013) or a global resonance (Liao, 2014; Yao & Li, 

2019), the result could be devastating to the structure. Most 

engineering structures will be vibration tested in the industry to 

verify the dynamic response expected to experience dynamic 

loading. Besides avoiding harmonic resonance analysis, we can 

also tell us the magnitude of the vibration to prevent fatigue 

failure. The harmonic analysis results can help an engineer 

understand the significance of different model designs 

effectively. Additionally, harmonic analysis can be used 

alongside physical testing, such as a shaker table with sine 

sweep (“Closed-Loop Random Vibration Control of a Shaker 

Table with a Microcomputer: M. L. Wang, Soil Dynamics & 

Earthquake Engineering, 13(4), 1994, Pp 259–266,” 1995; Kihm 

& Delaux, 2013; Wang, 1994) to correlate the natural 

frequencies and damping models. 

Frequency response analysis can be used to plot the level of 

vibration (displacements or accelerations) as a function of 

frequency. Another type of use is the fatigue account input. 

When combined with a PSD (Power Spectral Density) 

(Gharaibeh & Pitarresi, 2019; Jannoun et al., 2017; Muhammad 

et al., 2020; Trapp & Wolfsteiner, 2021), the structure's lifetime 

can be determined. 

1.1. Governing Equations 

The harmonic function is comprised of three main variables: 

Frequency, amplitude, and phase angle. For a given time 𝑡, the 

corresponding force can be computed. 

𝐹İ = 𝐹İ sin(ω𝑖𝑡 + 𝜃𝑖)                   (1) 

Where, 𝐹İ is amplitude, ω𝑖 is imposed circular frequency, 𝜃𝑖 

is phase angle and 𝑡 is time. The imposed circular frequency, 

ω𝑖  is a simple expression and typically has units of radians/sec.  

ω = 2𝜋𝑓                          (2) 

Where 𝑓 is imposed frequency: 

𝑓 =
1

𝑇𝑓
                            (3) 

Where 𝑇𝑓 is period. A harmonic force (𝑓) is applied to the 

mass (𝑚) and measuring the resulting displacement (𝑢) and 

phase angle (𝜃) as sweep the excitation frequency from zero to 

three times the natural frequency. Governing equation of 

harmonic motion: 

𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = 𝑓 sin ω𝑡                            (4) 

Where 𝑢 is the displacement of mass: 

𝑢 =
𝑓/𝑘

√(1−(𝜔/𝜔𝑛)2)2+(2𝜁𝜔/𝜔𝑛)2
                 (5) 

Where 𝜁 is damping ratio: 

𝜁 =
𝑐

𝐶𝑐
                           (6) 

Where 𝐶𝑐 is critical damping: 

𝐶𝑐 = 2√𝑘𝑚                     (7) 

If each term is divided by 𝑚 in governing equation of 

harmonic motion: 

�̈� +
𝑐

𝑚
�̇� +

𝑘

𝑚
𝑢 =

𝑓

𝑚
sin ω𝑡               (8) 

When 2𝜁𝜔𝑛 is written instead of 
𝑐

𝑚
 and 𝜔𝑛

2 instead of 
𝑘

𝑚
, 

the formula becomes as follows: 

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑢 =

𝑓

𝑚
sin ω𝑡                           (9) 

Here, 𝜔𝑛 is the natural frequency and ω is the 

external/forcing/driving frequency. If the applied frequency is 

equal to the natural frequency, then a resonance will occur. So 

theoretically, if there is no damping, then infinite amplitude will 

occur, but damping a frequency increases a lot, even though 

damping it is only a finite value. If it matches, then the 

resonance will occur where a large amplitude. The formula 

becomes the following when 𝑌 is written instead of 
𝑚

𝑓
. 

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑢 =

1

𝑌
sin ω𝑡                             (10) 

When multiplying both sides of the equation by 𝑆: 

𝑆�̈� + 2𝜁𝜔𝑛𝑆�̇� + 𝜔𝑛
2𝑆𝑢 = sin ω𝑡                 (11) 

The total response of the harmonic system is the sum of the 

homogeneous solution 𝑢𝐻𝑆 and the particular solution 𝑢𝑃𝑆. 

𝑢(𝑡) = 𝑢𝐻𝑆 + 𝑢𝑃𝑆                (12) 

Where homogeneous solution, 𝑢ℎ would be equal to “0”. 

𝑢𝐻𝑆 = �̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑢 = 0             (13) 

If 0<𝜁<1: 

𝑢𝐻𝑆 = 𝑒−𝜁𝜔𝑛𝑡 [(𝑢 cos ω𝑡) + (
�̇�+𝜁𝜔𝑛𝑢

ω
) sin ω𝑡]       (14.1) 

If 𝜁=1: 

𝑢𝐻𝑆 = 𝑒−𝜁𝜔𝑛𝑡[𝑢(1 + 𝜔𝑛𝑡) + �̇�𝑡]            (14.2) 

If 𝜁>1: 

𝑢𝐻𝑆 = 𝑒−𝜁𝜔𝑛𝑡 [𝑢 cosh(ω∗𝑡) +
�̇�+𝜁𝜔𝑛𝑢

ω∗ sinh(ω∗𝑡)]       (14.3) 

The particular solution equation is given below: 

𝑢𝑃𝑆 = 𝐴 sin ω𝑡 + 𝐵 cos ω𝑡               (15.1) 

�̇�𝑃𝑆 = 𝐴 ωcos ω𝑡 − 𝐵 ωsin ω𝑡            (15.2) 
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�̈�𝑃𝑆 = −𝐴 ω2sin ω𝑡 − 𝐵 ω2cos ω𝑡            (15.3) 

If the terms in Equation (15) are applied to Equation (11): 

𝑆(−𝐴 ω2sin ω𝑡 − 𝐵 ω2cos ω𝑡) + 2𝜁𝜔𝑛𝑆(𝐴 ωcos ω𝑡 −
𝐵 ωsin ω𝑡) + 𝜔𝑛

2𝑆(𝐴 sin ω𝑡 + 𝐵 cos ω𝑡) = sin ω𝑡 + 0 cos ω𝑡     

                              (16) 

A and B terms are obtained from the equation as follows: 

𝐴 =
𝜔𝑛

2−ω2

𝑆[(𝜔𝑛
2−ω2)+(2𝜁𝜔𝑛ω)2]

              (17) 

𝐵 =
2𝜁𝜔𝑛ω

𝑆[(𝜔𝑛
2−ω2)+(2𝜁𝜔𝑛ω)2]

              (18) 

The A term which obtained from Equation (17) and the B 

term, which obtained from Equation (18), are put in Equation 

(15.1), 𝑢𝑃𝑆 can be written as follows. 

𝑢𝑃𝑆 =
𝜔𝑛

2−ω2

𝑆[(𝜔𝑛
2−ω2)+(2𝜁𝜔𝑛ω)2]

sin ω𝑡 +

2𝜁𝜔𝑛ω

𝑆[(𝜔𝑛
2−ω2)+(2𝜁𝜔𝑛ω)2]

cos ω𝑡                  (19) 

The ratio of forcing frequency to natural frequency r: 

𝑟 =
ω

𝜔𝑛
                   (20) 

When Equation (20) is substituted on Equation (19), the 

equation becomes: 

𝑢𝑃𝑆 =
(1−𝑟2)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
sin ω𝑡 +

(−2𝑟𝜁)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
cos ω𝑡    (21) 

If Equation (12), Equation (14), and Equation (21) are taken 

together, the total response of the harmonic system is expressed 

as follows: 

If 0<𝜁<1: 

𝑢(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 [(𝑢 cos ω𝑡) + (
�̇�+𝜁𝜔𝑛𝑢

ω
) sin ω𝑡] +

(1−𝑟2)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
sin ω𝑡 +

(−2𝑟𝜁)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
cos ω𝑡          (22.1) 

If 𝜁=1: 

𝑢(𝑡) = 𝑒−𝜁𝜔𝑛𝑡[𝑢(1 + 𝜔𝑛𝑡) + �̇�𝑡] +
(1−𝑟2)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
sin ω𝑡 +

(−2𝑟𝜁)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
cos ω𝑡         (22.2) 

If 𝜁>1: 

𝑢(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 [𝑢 cosh(ω∗𝑡) +
�̇�+𝜁𝜔𝑛𝑢

ω∗ sinh(ω∗𝑡)] +

(1−𝑟2)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
sin ω𝑡 +

(−2𝑟𝜁)𝑓/𝑘

[(1−𝑟2)2+(2𝑟𝜁)2]
cos ω𝑡               (22.3) 

2. Material and Method 

2.1. Gudgeon Pin 

The gudgeon pin articulates the piston and the piston rod. It 

transfers the combustion end pressure acting on the piston to the 

connecting rod. Piston pins are usually made hollow to keep 

them light. However, forces are occurring due to combustion; It 

forces the pin to bend, oval deformation, and shear in significant 

cross-sections (Strozzi et al., 2018). 

Chrome-nickel alloy cementation steels and nitride steels 

are used for the pin to work under challenging conditions 

(gudgeon pins can withstand high pressure and impacts caused 

by combustion). The gudgeon pin included in this paper 

researched was made of AISI 8550 quality nitration steel. It is 

pre-hardened (27-33 HRC) steel containing aluminum and has 

higher nitration ability due to its aluminum content. AISI 8550 

quality nitration steel can be used in screws and barrels of plastic 

extrusion machines, shafts of all kinds, machine parts, gear 

manufacturing, and plastic injection molds. The mechanical 

properties of AISI 8550 nitration steel are given in Table 1. In 

addition, the technical drawing and FEA analysis boundary 

conditions of the gudgeon pin are given in Fig. 1. 

Table 1. Mechanical properties of AISI 8550 nitration steel 

Density (×1000 kg/m3) 7.7-8.03 

Poisson's Ratio 0.28 

Elastic Modulus (GPa) 205 

Tensile Strength (Mpa) 1050 

Yield Strength (Mpa) 640 

Elongation (%) 11 

Hardness (HV) 950 

 

Fig. 1. The technical drawing and FEA analysis boundary 
conditions of the gudgeon pin  

Gudgeon pins are damaged due to fatigue due to harmonic 

and random vibrations during long cycles (Xu & Yu, 2010; Yu et 

al., 2007). Therefore, in addition to the modal analysis of the 

model, a frequency sweep with harmonic analysis should be 

performed, and resonant frequencies should be determined to 

prevent this damage or extend the fatigue life. 

2.2. Gudgeon Pin Phase Angle 

Two or four-cylinder, two or four-stroke internal 

combustion engines are considered; The piston in a cylinder will 

be exposed to a force in the (-) y-direction at phase angle 0º due 

to the combustion effect. On the other hand, while the piston 

reaches the upper dead point on the cylinder, it will be exposed 

to a force in the (+) y-direction at phase angle 180º (Fig. 2) 

(Haftirman, 2016). The gudgeon pin, connected to the piston, 

will be exposed to a force in the (+) y and (-) y-directions at 0º 

and 180º phase angles. 

 

Fig. 2. Gudgeon pin phase angle for the crank position 

(Haftirman, 2016) 
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2.3. Finite Element Analysis of The Gudgeon 

Pin 

Finite element analysis (FEA) is used to analyze the 

vibration on the piston pin, and Ansys Mechanical 19.2 program 

was used as a finite element analysis program. The natural 

frequencies of the piston pin should be considered to prevent the 

damage that may be caused by the vibration inside the engine on 

the piston pin. Therefore, a harmonic analysis frequency scan 

should be performed in the minimum and maximum natural 

frequency range, and resonant frequencies that may occur should 

be determined.  

There is a need for a modal analysis for harmonic analysis 

and static structural analysis for pre-stress as an input of modal 

analysis. The mesh required for these analyzes was knitted in 

Ansys Mechanical 19.2 program in a program-controlled 

manner. Quadratic element type is used as mesh element type. 

The number of mesh elements is 107,744 and the number of 

nodes is 474,852 (Fig. 3). 

 

Fig. 3. Mesh topology of the gudgeon pin 

In the static structural analysis, which is the first step of 

finite element analysis, cylindrical support at the connecting rod 

journal and applied force of 3275N and -y-direction in the piston 

connection journal is defined. In the second step, modal analysis, 

the stress obtained in the static structural analysis was 

determined as pre-stress, and the first 12 modes were analyzed. 

In the third step, harmonic analysis, two different forces are 

defined in two different phase angles in equal and opposite 

directions. The forces defined in the harmonic analysis are given 

in Table 2.  

Table 2. Harmonic analysis applied force details 

Force Magnitude (N) Direction Phase Angle (°) 

Force 1 3275N -Y 0 

Force 2 3275N Y 180 

The force on the gudgeon pin is equal to the force on the 

piston. The force on the piston depends on the cylinder bore 

diameter and cylinder pressure. For example, the force applied to 

the piston will be 3275N under a cylinder with a diameter of 

4.46 inches at 325 kPa internal pressure. 

In order to dampen the resonant frequencies, harmonic 

analyzes were repeated using six different constant damping 

ratios, and the results were compared. 

𝜁0 = 0                    (23.1) 

𝜁1 = 0.01                   (23.2) 

𝜁2 = 0.02                   (23.3) 

𝜁3 = 0.05                   (23.4) 

𝜁4 = 0.1                   (23.5) 

𝜁5 = 0.2                   (23.6) 

In the harmonic analysis, a frequency scan was made in the 

natural frequency range obtained in the modal analysis, and the 

resonant frequencies were determined. Detailed information on 

harmonic analysis is examined in detail in the results and 

discussion section. 

3. Results and Discussion  

3.1. Static Structural Analysis Result 

Gudgeon pin is subjected to shear forces between 

connecting rod and piston. Under the 3275N applied force, the 

model's Equivalent (Von-Mises) minimum stress value is 

2,9934e-004 MPa, maximum stress value resulting from the 

static structural analysis 81,21 MPa, and average stress value is 

4,6258 MPa (Fig. 4). The maximum total deformation value was 

calculated as 1.4599e-003 mm (Fig. 5). 

 

Fig. 4. Equivalent stress result  

 

Fig. 5. Total deformation result 

3.2. Modal Analysis Result 

The modal analysis uses the static structural pre-stress 

(3275N). Once completed, a note from the modal results, the 

model's natural frequencies range from 38721 to 79346 Hertz for 

the first 12 modes. Table 3 shows the first 12 natural frequencies 

and main vibration directions as obtained from the modal 

analysis. In the first 12 modes, it was observed that every two 

modes have the same mode shape mirrored view. 
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Table 3. Modal analysis results for first 12 modes 

M
o

d
e Natural 

frequency 

(Hz) 

Mode shape 

M
o

d
e Natural 

frequency 

(Hz) 

Mode shape 

M
o

d
e 

1
 

38721 

 

M
o

d
e 

2
 

38721 

 

M
o

d
e 

3
 

38724 

 

M
o

d
e 

4
 

38724 

 

M
o

d
e 

5
 

53839 

 

M
o

d
e 

6
 

53840 

 

M
o

d
e 

7
 

57846 

 

M
o

d
e 

8
 

57846 

 

M
o

d
e 

9
 

57846 

 

M
o

d
e 

1
0

 

57846 

 

M
o

d
e 

1
1

 

79142 

 

M
o

d
e 

1
2
 

79346 
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3.3. Harmonic Analysis Result 

According to the modal analysis results, the gudgeon pin 

will not be subjected to resonance during working. Therefore, a 

frequency scan including modal analysis is required to detect 

resonant frequencies that may coincide with the natural 

frequencies of the first 12 modes obtained in modal analysis.  

(a) 

 

(b) 

 

(c) 

 

Fig. 6. Frequency response normal stress amplitude a) x-axis b) 

y-axis c) z-axis 

For this reason, harmonic analysis has been solved by using 

the mode superposition method with 50 intervals with 1000 Hz 

steps in the range of 30000-80000 Hz. 

(a) 

 

(b) 

 

(c) 

 

Fig. 7. Frequency response normal stress phase angle a) x-axis 

b) y-axis c) z-axis 

According to the frequency response normal stress x-axis 

amplitude results (Fig. 6a), three different resonant frequency 

values were 39000 Hz, 58000 Hz, and 79000 Hz. Frequency 

response occurred in normal stress x-axis at maximum amplitude 

39000 Hz frequency and 180º phase angle (Fig. 7a). The 79000 

Hz value has a lower resonant frequency than the others and 

does not significantly amplitude. As a result of the frequency 

response, normal stress y-axis amplitude (Fig. 6b) has the same 

resonant frequencies as in the x-axis. However, the resonant 

amplitude values of 58000Hz and 79000 Hz are significantly 

lower relative to the x-axis. It is also seen from the graph that the 

amplitude value at 39000 Hz has a value approximately three 

times the value on the x-axis. The y-axis frequency response 

occurred in the normal stress y-axis at maximum amplitude 

39000 Hz frequency and 180º phase angle (Fig. 7b). Only two 

resonant frequencies are resulting from the frequency response 
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normal stress z-axis amplitude (Fig. 6c). The resonant frequency 

amplitude value at 39000 Hz is approximate twice the amplitude 

value on the y-axis. Although there is a minor resonant value at 

79000 Hz, it does not have a significant amplitude value. As on 

the x and y-axis, frequency response occurred in normal stress y-

axis at maximum amplitude 39000 Hz frequency and 180º phase 

angle (Fig. 7c) 

(a) 

 

(b) 

 

(c) 

 

Fig. 8. Frequency response directional deformation amplitude a) 

x-axis b) y-axis c) z-axis 

Frequency response directional deformation in all three axes 

was realized at a maximum amplitude of 39000 Hz. The 

maximum amplitude value on the x-axis is 6.4426e-006 mm 

(Fig. 8a) at the phase angle is 180° (Fig. 9a), the maximum 

amplitude value on the y-axis is 4.886e-002 mm (Fig. 8b) at the 

phase angle is -9.2564e-014° (Fig. 9b), the maximum amplitude 

value on the z-axis is 1.8931e-009 mm (Fig. 8c) at the phase 

angle is -9.2649e-014° (Fig. 9c). A little resonant frequency 

value of 79000Hz was detected in the frequency response 

directional deformation graph on the z-axis, but it does not have 

a significant amplitude value. 

(a) 

 

(b) 

 

(c) 

 

Fig. 9. Frequency response directional deformation phase angle 

a) x-axis b) y-axis c) z-axis 

In the frequency response normal elastic strain x-axis 

amplitude graph, three different resonant frequency values were 

determined as 39000 Hz, 58000 Hz, and 79000 Hz (Fig. 10a). 

The resonant frequency with the highest amplitude value 

occurred at 39000 Hz and -9.2564e-014° phase angle (Fig. 11a). 

The resonant frequency of 58000 Hz is approximately two-thirds 

of the amplitude value occurring at 39000 Hz. The amplitude of 

the resonant frequency value occurring at 79000 Hz has no 

significant value. In the frequency response normal elastic strain 

y-axis amplitude plot (Fig. 10b), the highest resonant frequency 

occurred at 58000 Hz and -9.2564e-014° phase angle (Fig. 11b). 

The resonant frequency of 39000 Hz is approximately four-fifths 
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of the amplitude value occurring at 58000 Hz. The amplitude of 

the resonant frequency value occurring at 79000 Hz does not 

significantly value the x-axis. In the frequency response normal 

elastic strain z-axis amplitude plot (Fig. 10c), the highest 

resonant frequency occurred at 39000 Hz and 180° phase angle 

(Fig. 11c). A resonant frequency of 58000 Hz was not detected 

in the z-axis, but a low amplitude resonant frequency was 

detected at 79000 Hz as in the x and y axes. 

(a) 

 

(b) 

 

(c) 

 

Fig. 10 Frequency response normal elastic strain amplitude a) x-

axis b) y-axis c) z-axis 

 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 11 Frequency response normal elastic strain phase angle a) 

x-axis b) y-axis c) z-axis 

When the normal stress values are compared concerning the 

constant damping ratio 𝜁 (Table 4), it is seen that it is 42% 

damping at the resonant frequency amplitude at 𝜁1, 66.5% at 𝜁2, 

85.9% at 𝜁3, 92.8% at 𝜁4 and 96,3% at 𝜁5. 

When the directional deformation values are compared 

concerning the constant damping ratio 𝜁 (Table 5), it is seen that 

it is 58.1% damping at the resonant frequency amplitude at 𝜁1, 

81.2% at 𝜁2, 93.9% at 𝜁3, 97.2% at 𝜁4 and 98.7% at 𝜁5. 

When the normal stress values are compared concerning the 

constant damping ratio 𝜁 (Table 6), it is seen that it is 45.3% 

damping at the resonant frequency amplitude at 𝜁1, 68.4% at 𝜁2, 

86.8% at 𝜁3, 93.4% at 𝜁4 and 96,8% at 𝜁5. 
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Table 4. Frequency response normal stress maximum amplitudes 

and phase angles 

zeta 
Value 

type 

Normal 

stress x-axis 

Normal 

stress y-axis 

Normal 

stress z-axis 

0 

Maximum 

resonant 

frequency 

(Hz) 

39000 39000 39000 

0,01 39000 39000 39000 

0,02 39000 39000 39000 

0,05 39000 39000 39000 

0,1 38000 38000 38000 

0,2 37000 38000 37000 

0 

Maximum 

amplitude 

1,13E-02 3,22E-02 6,84E-02 

0,01 6,54E-03 1,87E-02 3,97E-02 

0,02 3,78E-03 1,08E-02 2,29E-02 

0,05 1,60E-03 4,52E-03 9,63E-03 

0,1 8,49E-04 2,27E-03 4,89E-03 

0,2 4,60E-04 1,13E-03 2,47E-03 

0 

Phase 

angle (°) 

180 180 180 

0,01 -124,83 -125,68 -125,49 

0,02 -108,39 -110,09 -109,72 

0,05 -95,188 -99,372 -9,84E+01 

0,1 -74,632 -81,532 -8,00E+01 

0,2 -70,389 -88,576 -7,83E+01 

0 
Damped 

maximum 

amplitude 

concerning 

zeta = 0 

0,00% 0,00% 0,00% 

0,01 -42,02% -42,05% -42,04% 

0,02 -66,45% -66,51% -66,50% 

0,05 -85,80% -85,95% -85,92% 

0,1 -92,47% -92,96% -92,86% 

0,2 -95,92% -96,50% -96,38% 

 

Table 5. Frequency response directional deformation maximum 

amplitudes and phase angles 

zeta 
Value 

type 

Normal 

stress x-axis 

Normal 

stress y-axis 

Normal 

stress z-axis 

0 

Maximum 

resonant 

frequency 

(Hz) 

39000 39000 39000 

0,01 39000 39000 39000 

0,02 39000 39000 39000 

0,05 39000 39000 39000 

0,1 38000 38000 39000 

0,2 37000 37000 38000 

0 

Maximum 

amplitude 

6,44E-06 4,89E-02 1,89E-09 

0,01 2,16E-06 2,83E-02 6,44E-10 

0,02 7,24E-07 1,64E-02 2,19E-10 

0,05 1,28E-07 6,88E-03 4,18E-11 

0,1 3,38E-08 3,50E-03 1,29E-11 

0,2 9,10E-09 1,79E-03 5,03E-12 

0 

Phase 

angle (°) 

180 -9,26E-14 -9,26E-14 

0,01 -70,012 54,578 104,38 

0,02 -37,495 70,424 131,82 

0,05 -12,059 81,904 142,12 

0,1 29,292 100,68 135,29 

0,2 40,675 102,83 130,91 

0 
Damped 

maximum 

amplitude 

concerning 

zeta = 0 

0,00% 0,00% 0,00% 

0,01 -66,41% -42,04% -65,98% 

0,02 -88,77% -66,49% -88,42% 

0,05 -98,01% -85,92% -97,79% 

0,1 -99,47% -92,83% -99,32% 

0,2 -99,86% -96,35% -99,73% 

Table 6. Frequency response normal elastic strain  maximum 

amplitudes and phase angles 

zeta 
Value 

type 

Normal 

stress x-axis 

Normal 

stress y-axis 

Normal 

stress z-axis 

0 

Maximum 

resonant 

frequency 

(Hz) 

39000 58000 39000 

0,01 39000 39000 39000 

0,02 39000 39000 39000 

0,05 39000 39000 39000 

0,1 39000 39000 38000 

0,2 38000 39000 37000 

0 

Maximum 

amplitude 

8,24E-08 5,80E-08 2,74E-07 

0,01 4,78E-08 2,79E-08 1,59E-07 

0,02 2,76E-08 1,61E-08 9,20E-08 

0,05 1,16E-08 6,73E-09 3,86E-08 

0,1 5,74E-09 3,32E-09 1,96E-08 

0,2 2,75E-09 1,55E-09 9,91E-09 

0 

Phase 

angle (°) 

-9,26E-14 -9,26E-14 180 

0,01 53,963 -126,32 -125,5 

0,02 69,195 -111,36 -109,73 

0,05 78,855 -102,54 -98,485 

0,1 79,991 -102,74 -80,034 

0,2 85,476 -107,89 -78,459 

0 
Damped 

maximum 

amplitude 

concerning 

zeta = 0 

0,00% 0,00% 0,00% 

0,01 -42,05% -51,93% -42,04% 

0,02 -66,52% -72,24% -66,50% 

0,05 -85,99% -88,40% -85,92% 

0,1 -93,04% -94,27% -92,86% 

0,2 -96,67% -97,33% -96,39% 

4. Conclusions and Recommendations 

According to the frequency response data obtained as a 

result of finite element analysis, a total of three different 

resonant frequency values were determined, with the largest 

being 39000 Hz, 58000 and 79000. In the gudgeon pin model 

used in the internal combustion engine, these frequencies are 

found at the following rpm engine speed values: 

39000 𝐻𝑧 = 650 𝑅𝑃𝑀                 (24.1) 

58000 𝐻𝑧 = 967 𝑅𝑃𝑀               (24.2) 

79000 𝐻𝑧 = 1317 𝑅𝑃𝑀                         (24.3) 

Idle speed in internal combustion engines is generally set in 

the range of 600-1000 RPM. If the motor idle speed is set as one 

of the values of Equation (24.1), (24.2), and (24.3), the stress, 

strain, and deformation values on the gudgeon pin will be higher 

than expected due to the resonance that may occur, and the 

gudgeon pin will be damaged. The resonant frequency can be 

damped with a damper to prevent or reduce the effects of 

resonance. In the frequency response graphs in Fig. 6-11, the 

curves of the damped resonant frequencies at six different zeta 

(𝜁) values are also shown. When the zeta value is 0.2, all 

resonant frequencies are almost entirely damped. 
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