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Abstract

There are many studies on Fibonacci quaternions and their generalizations. Recently, Sentiirk and Unal (2022) introduced 3 -parameter
generalized quaternions. The goal of this study is to introduce Fibonacci and Lucas 3-parameter generalized quaternions and to
investigate their properties. After obtaining Binet formulas for these quaternions, generalizations of some well-known identities are
presented.
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Genellestirilmis 3-Parametreli Fibonacci Kuaterniyonlari

Oz
Fibonacci kuaterniyonlari ve bu kuaterniyonlarin genellestirmeleri hakkinda birgok ¢alisma goze ¢arpmaktadir. Gegtigimiz giinlerde
Sentiirk and Unal (2022), 3-parametreli genellstirilmis kuaterniyonlar1 tanitmiglardir. Bu ¢alismada genellestirilmis 3-parametreli

Fibonacci ve Lucas kuaterniyonlari tanitilmis ve ozellikleri arastirilmistir. Bu kuaterniyonlar i¢in Binet formiilleri elde edildikten
sonra iyi bilinen baz1 6zdesliklerin genellestirmeleri sunulmustur.

Anahtar Kelimeler: Fibonacci kuaterniyonlari, Lucas kuaterniyonlar1, Genellestirilmis 3-parametreli kuaterniyonlar.
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1. Introduction

Fibonacci and Lucas numbers may be the most popular
sequences among integer sequences. For n > 1, Fibonacci
numbers satisfy the second order recurrence relation

Fn =lIn + Fn—2
with the initial conditions F, = 0 and F; = 1. Lucas numbers
also satisfy the same recurrence relation, namely, forn > 1
Ly=Ly 1+ Ly,

but the initial conditions are L, = 2 and L, = 1. Although there
are many interesting relation between these two sequences, the
most important one is the following identity

Ln =I'p- + Fn+1'

Generating functions fort he Fibonacci sequence {F,} and Lucas
sequence {L,} are

and

—x
ZLnx" 1—x—x2

=0

respectively. Binet’s formulas for these are

— ﬁn
a—=p

respectively, where a =1+T‘/g and f = 1_7‘/5 are roots of the

equation x2 — x — 1 = 0. The root « is the golden ratio and it is
a well-known real number among metallic ratios. We can refer to
(Koshy, 2001) for more information about Fibonacci and Lucas
numbers.

E, = and L, = a™ + P

Sir R. Hamilton introduced quaternions as an extension of
complex numbers. A quaternion q is shown g = a+ bi +¢j +
dk where a,b,c,d are reals and i,j, k satisfy the following
conditions

22 2=
ij = —ji =k, jk = —kj = i,ki = —ik = j.
The set of all quaternions is

H={a+bi+cj+dk:ab,cdeR}

Due to the lack of commutativity, Hamilton quaternions form a
skew field. Following Hamilton, a number of different
quaternion algebras such as split-quaternions, semi-quaternions,
split-semi  quaternions, Y-quaternions and commutative
quaterions were studied.

Recently, Sentiirk and Unal (2022) introduced 3-parameter
generalized quaternions. The set of 3-parameter generalized
quaternions is

K= {ao + ali + azj + agk: ao, aq, a,, a3 € R}

where the versors 1,i,jandk

multiplication rules

satisfy the following

e-ISSN: 2148-2683

Table 1. Multiplication rules of versors

1 i j k

1 1 i j k

i i 1A, Mk —Azj
j j Ny .y Asi
k k Ayj —Asi .y

It shold be noted that A,, 1, and 45 are arbitrary real numbers.

Fibonacci quaternions were introduced by Horadam (1963).
He also used two generalizations of Fibonacci numbers to
generalize Fibonacci quaternions. Similar to Horadam’s study,
Iyer (1969) defined Lucas quaternions. Halict (2012) gave
Binet’s formulas for the Fibonacci and Lucas quaternions and
this study was a milestone in this theory, as Binet’s formulas
allowed to obtain identities between terms of Fibonacci and
Lucas quaternion sequences. Following Halici, a number of
study investigating Fibonacci and Lucas quaternions or their
generalizations have been done. Fibonacci split quaternions
(Akyigit, Kosal & Tosun, 2013) and dual Fibonacci quaternions
(Nurkan & Giiven, 2015) are examples of using classical
Fibonacci and Lucas numbers over a quaternion algebra.
Another type of studies in literature used generalizations of
Fibonacci and Lucas numbers over any quaternion algebra
(Akyigit, Kosal & Tosun, 2014; Aydin, 2021; Bilgici, Tokeser &
Unal 2017; Flaut & Savin, 2015; Halic1 & Karatas, 2017; Polatls,
Kizilates & Kesim, 2016; Tan, Yilmaz & Sahin, 2016; Yiice &
Aydin, 2016).

2. Definitions, Generating Functions and
Binet’s Formulas

Definitions of Fibonacci and Lucas generalized 3-parameter
quaternions are given in the following.

Definition 2.1. For any non-negative integer n, nth Fibonacci
generalized 3-parameter quaternion is

Fo = By + Fuyal + Foyoj + Foisk
and nth Lucas generalized 3-parameter quaternion is
Ly =Ly~ Lyyql+ Lyyoj + Lyysk
where F, and L,, are the classical Fibonacci and Lucas numbers.

Corollary 2.2. For any non-negative integer n, Fibonacci and
Lucas generalized 3-parameter quaternion satisfy the following
recurrence relations

Fo=Fn1t+Fu
and

Ly=Ly g+ Ly,
respectively.

By using the identities F_,, = (—1)"*'E, and L_, =

(—1)"L,, for the classical Fibonacci and Lucas numbers, we
obtain the following relations
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-n = (_1)n+1(Fn - Fn+1i + Fn+2j - Fn+3k)
and
L_,= (_1)n(Ln —Lpgql+ Lpyoj — Ln+3k)-

Binet’s formulas for the Fibonacci and Lucas generalized 3-
parameter quaternions are in the next theorem.

Theorem 2.3. For any integer n, nth Fibonacci generalized 3-
parameter quaternion is

L) PN
and nth Lucas generalized 3-parameter quaternion is
L, = aa™+ Bp"
where & = 1+ ai + a?j + a®k and § = 1 + Bi + B?%j + B3k.

Proof. From the Binet’s formula for the Fibonacci numbers, we
have

Fo = Fy + Fuyql + Foyof + Fpisk

% [(an _ ﬁn) + (an+1 _ ﬁn+1)i + (an+2 _ ﬁn+2)j
+ (an+3 _ ,Bn+3)k]
= aiﬁ [(1+ ai + a?j + ak)a™
— (1 + i+ p%+ BB

The last equation gives Binet’s formula for the Fibonacci
generalized 3-parameter quaternions. Binet’s formula for the
Lucas generalized 3-parameter quaternions can obtained in a
similar way. ®H

We need the following two relations for later use.

Lemma 2.4. Let @ and § be as given in Theorem 2.3. Thus, we
have

&f=M++5N
and
& =M —+5N
where
M=F, +M0 =LA+ +j+k
and

N = _A3l _12] +Alk

Proof. From the definitions of @ and /3, proof is straightforward.
[ ]

Corollary 2.5. Let @ and f be as given in Theorem 2.3, we have
ap+pa =M

Generating functions for the Fibonacci and Lucas
generalized 3-parameter quaternions are in the next theorem.

Theorem 2.6. Generating functions for the sequences {F,}n=o
and {£, }=, are

S B =

n=0

i+j+2k++j+k)x
1—x—x?

and
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24+i+3j+4k + (=1 +2i+j+3k)x
1—x—x2

[ee]
n=0

respectively.

Proof. Let F(x) be the sequences Yo, F,x™. Thus, we have

F(x) =Fy+Fix+ Z Fox™.

n=2

If we multiply the last equation by - x and —x2, we obtain

—xF(x) = =Fpx — Z Frpo1x™
n=2

and
—x2F(x) = — Z Frpx™.
n=2

Summing the last three equations and Corollary 2.2 give
(1—x—x*)Fx) =Fo + (F; — Fox.

Thus we obtain the first identity in theorem. The second identity
can be obtained similarly.

3. Results

In this section, we give generalizations of some well-known
identities. We start with Vajda’s identities given in the following
theorem.

Theorem 3.1. For any integers r,s and t, following equations
hold

FrosFrie = FFrisee = (_1)r+1Fs(_MFt + NL;)
and

LyysLryt = LyLyysie = (—1)"5F(=MF; + NLy).
Proof.

Binet formula for the Fibonacci generalized 3-parameter
quaternions gives

FrosFroe = FoFrisee
1
= —(a — B)Z [ Go™ts — IB‘BT+5) att — ﬁr+t)
_ (dar _ ﬂﬁr)(dar+s+t _ "ﬂr+s+t)]

( 3)2 [aﬁ(arﬁr+s+t _ ar+5ﬁr+t)

+ Bd(ar+s+tﬂr _ ar+tBr+s)]
— ((_ ;)2[ ,8(,85+t Sﬁt)
+ fa(astpr — atB)] (since af = —1)
(( )3)2 [@pB!(a® — B*) — Paat(a® - B°)]
1 T+1F _
- S5 e - pac
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_(_1)T+1F; s
= a—p WP

( 1)r+1

— féaat]

~———— Bt (M + V5N) — at(M — V5N)].

Final equation with Binet formulas for the Fibonacci and Lucas
numbers gives the first equation in the theorem. The second
equation can be proved in a similar way. &

If we take t - —s in Vajda’s identity, we obtain Catalan’s
identities for the Fibonacci and Lucas generalized 3-parameter
quaternions given in the following corollary.

Corollary 3.2. For any integers r and s, following equations
hold

FrasFros — F2 = (—1)"+H1(MEZ + NF,,)
and

LypsLyos — L2 = (1) *5(MF? + NFyy).

If we take s - 1 in Catalan’s identity, we have Cassini’s
identities for the Fibonacci and Lucas generalized 3-parameter
quaternions given in the following corollary.

Corollary 3.3. For any integer r, following equations hold
FreaFroa = Trz = (_1)T(M + N)
and
Lyy1Llyq — LE = (_1)r+15(M + N)

Another well-identity is d’Ocagne’s identity and it is in the next
theorem.

Theorem 3.4. For any integers r and s, following equations hold
FoForr = FroaFs = (F1)5[ME_s + NL,_,]
and
LrLgys — LyyaLs = (=1)**'5[MF,_s + NL, _].

Proof. From the Binet formula for the Fibonacci generalized 3-
parameter quaternions, we have

TrTs+1 - T‘r+1Ts
1 = 1T _ ART\(AH~Stl _ B ps+l
=m[(““ BB )(“jl BB )~
_ dar+1 _ ﬁr+1)(da,s _ ,B,BS)]
[ 0(,8(0/[35*1 ‘r+1ﬂ5)

“@-pr ,3)2
_ ﬁd(a”lﬂr _ a,s‘[;r+1)]

[@BaBS(a — B) — faa“p(a — B)]

( ,b’)2

(dﬁa’ﬁs — faaspr)
(_ ) ( ‘Bar s B‘d‘gr—s)
(— )S

[(M+\/_N)ar S — (M —V5N)B"5].

Binet formula fort he Fibonacci and Lucas numbers gives the
first identity in theorem. The second one can be proved similarly.
[ |
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The other identities for the Fibonacci and Lucas generalized
3-parameter quaternions are given in the next theorem. We will
not prove these identities because theirs proofs based on Binet
formulas for the Fibonacci and Lucas generalized 3-parameter
quaternions similar to Vajda’s and Catalan’s identities.

Theorem 3.5. For any integers r, s and t, we have
Ly =Frq+Frin,

LrisFrae = LrytFras = 2(=1)MF,_,

Frls = LsFr = 2(=1)"NLs_,

Fols — Ly Fs = 2(=1)°*(MF_s + NL, ),

FF— FF =2(-1D*"'NE_,

LyLs = LsLy = 10(=1)°NF,_,

Frasbres = Frosbis = FarFas,

LiysLpys = LysLy_s = 5Fpr Fos,
Frosbres = Frosby—s = Farsas — Far-as)
Lyyslyys = Ly—sLr—s = Larias — Lar-2s,

5F? — L2 = 4(=1)"*'M,
Fras + (F1)Fg = FiLs,
Lyys+ (=1)°L,_s = L,Ls,
For = BB + EFry.

4. Conclusions

There is an icreasing interest in quaternions whose
coefficients are integer sequences, especially Fibonacci and
Lucas sequences. Recently, Sentiirk and Unal (2022) introduced
3-parameter generalized quaternions. This study aims to
investigate these quaternions whose coefficients are Fibonacci
and Lucas numbers. In this context, generating functions and
Binet formulas for Fibonacci and Lucas generalized 3-parameter
quaternions are important for calculating their properties and
obtaining some generalization of well-known identities.

References

Akyigit, M., Kosal, H. H., & Tosun, M. (2013). Split Fibonacci
quaternions. Advances in Applied Clifford Algebras, 23(3),
535-545.

Akyigit, M., Kosal, H. H., & Tosun, M. (2014). Fibonacci
generalized quaternions. Advances in Applied Clifford
Algebras, 24(3), 631-641.

Aydmn, F. T. (2021). Pauli—Fibonacci quaternions. Notes on
Number Theory and Discrete Mathematics, 27(3), 184-193.

Bilgici, G., Tokeser, U. & Unal, Z. (2017). k-Fibonacci and k-
Lucas generalized quatermions. Konuralp Journal of
Mathematics, 5(2), 102-113

Flaut, C., & Savin, D. (2015). Quaternion algebras and
generalized Fibonacci-Lucas quaternions. Advances in
Applied Clifford Algebras, 25(4), 853-862.

Halici, S. (2012). On Fibonacci quaternions. Advances in
Applied Clifford Algebras, 22(2), 321-327.

Halici, S., & Karatas, A. (2017). On a generalization for
Fibonacci quaternions. Chaos, Solitons & Fractals, 98, 178-
182.

360



European Journal of Science and Technology

Horadam, A. F. (1963). Complex Fibonacci numbers and
Fibonacci quaternions. The American Mathematical
Monthly, 70(3), 289-291.

lyer, M. R. (1969). A note on Fibonacci quaternions. Fibonacci
Quart, 7(3), 225-229.

Koshy, T. (2001). Fibonacci and Lucas Numbers with
Applications, John Wiley and Sons, Canada.

Nurkan, S. K., & Giiven, I. A. (2015). Dual Fibonacci
quaternions. Advances in Applied Clifford Algebras, 25(2),
403-414.

Polath, E., Kizilates, C., & Kesim, S. (2016). On split k-
Fibonacci and k-Lucas quaternions. Advances in Applied
Clifford Algebras, 26(1), 353-362.

Ramirez, J. L. (2015). Some combinatorial properties of the k-
Fibonacci and the k-Lucas quaternions. Analele Stiintifice
ale Universitatii Ovidius Constanta-Seria Matematica,
23(2), 201-212.

Sentiirk, T. D., & Unal, Z. (2022). 3-parameter generalized
quaternions. Computational Methods and Function Theory,
1-34.

Tan, E., Yilmaz, S., & Sahin, M. (2016). On a new
generalization of Fibonacci quaternions. Chaos, Solitons &
Fractals, 82, 1-4.

Yiice, S., & Aydn, F. T. (2016). Generalized dual Fibonacci
quaternions. Applied Mathematics E-Notes, 16(30), 276-
289.

e-ISSN: 2148-2683

361



