
Avrupa Bilim ve Teknoloji Dergisi

Sayı 41, S. 156-165, Kasım 2022

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 41, pp. 156-165, November 2022

Copyright © 2022 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 156

 Learning Optimized Patterns of Software Vulnerabilities with the

Clock-Work Memory Mechanism

Canan Batur Şahin1*

1* Malatya Turgut Özal Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü, Malatya, Türkiye, (ORCID:0000-0002-2131-6368),

canan.batur@ozal.edu.tr.

 (First received 9 August 2022 and in final form 18 September 2022)

(DOI: 10.31590/ejosat.1159875)

ATIF/REFERENCE: Şahin, B. C. (2022). Learning Optimized Patterns of Software Vulnerabilities with the Clock-Work Memory

Mechanism. Avrupa Bilim ve Teknoloji Dergisi, (41), 156-165.

Abstract

 It is possible to better provide the security of the codebase and keep testing efforts at a minimum level by detecting vulnerable codes

early in the course of software development. We assume that nature-inspired metaheuristic optimization algorithms can obtain

“optimized patterns” from vulnerabilities created in an artificial manner. This study aims to use nature-inspired optimization

algorithms combining heterogeneous data sources with the objective of learning optimized representations of vulnerable source codes.

The chosen vulnerability-relevant data sources are cross-domain, involving historical vulnerability data from variable software

projects and data from the Software Assurance Reference Database (SARD) comprising vulnerability examples. The main purpose of

this paper is to outline the state-of-the-art and to analyze and discuss open challenges with regard to the most relevant areas in the

field of bio-inspired optimization based on the representation of software vulnerability. Empirical research has demonstrated that the

optimized representations produced by the suggested nature-inspired optimization algorithms are feasible and efficient and can be

transferred for real-world vulnerability detection.

Keywords: Feature Selection, Nature-inspired Algorithm, Optimization, Representation learning, Software Vulnerability.

 Saat-Hafıza Mekanizması ile Yazılım Güvenlik Açıklarının Optimize

Edilmiş Örüntülerini Öğrenme

Öz

Yazılım geliştirme sürecinin başlarında hassas kodları belirleyerek kod tabanının güvenliğini daha iyi sağlamak ve test çabalarını

minimum düzeyde tutmak mümkündür. Doğa esinli üstsezgisel optimizasyon algoritmalarının yapay bir şekilde meydana getirilen

güvenlik açıklarından “optimize edilmiş örüntüler” elde edebileceğini düşünüyoruz. Bu çalışma, heterojen veri kaynaklarını hassas

kaynak kodlarının optimize edilmiş gösterimlerini öğrenme hedefiyle birleştiren doğa-esinli optimizasyon algoritmalarını kullanmayı

amaçlamaktadır. Seçilen güvenlik açığı ile ilgili veri kaynakları alanlar arası kaynaklar olup, farklı yazılım projelerine ait geçmiş

güvenlik açığı verilerini içeren Yazılım Güvencesi Referans Veritabanı'nın (YGRV) sağladığı verileri kapsar. Bu makalenin temel

amacı, son teknolojinin ana hatlarını çizmek ve yazılım güvenlik açığının gösterimine dayalı biyo-esinli optimizasyon alanındaki en

ilgili alanlara yönelik mevcut zorlukları analiz etmek ve tartışmaktır. Ampirik araştırmalar, önerilen doğa esinli optimizasyon

algoritmaları tarafından üretilen optimize edilmiş gösterimlerin uygulanabilir ve etkin olduğunu ve gerçek dünyadaki güvenlik açığı

tespiti için kullanılabileceğini ortaya koymuştur.

Anahtar Kelimeler: Öznitelik Seçimi, Doğa-Esinli Algoritmalar, Optimizasyon, Gösterim Öğrenimi, Yazılım Güvenlik Açığı.

* Corresponding Author: canan.batur@gmail.com

http://dergipark.gov.tr/ejosat
mailto:xxxx@xxx.xx.xx

European Journal of Science and Technology

e-ISSN: 2148-2683 157

1. Introduction

Software vulnerabilities make up security risks for software

systems with increasing importance, utilized to attack and

damage systems [17]. Managing security in cyberspace must be

inspired by systems with advanced complexity. In the process of

evolution, natural propensities in complex systems (e.g., plants

and animals), enabling survival by adaptation, have been

developed by nature.

Algorithms inspired by nature represent population-based

metaheuristics inspired by various natural phenomena. Over a

very long time, nature has evolved to bring about intelligent

behavioral properties and biological phenomena, in which self-

learning, adaptability, efficiency, and robustness allow biological

agents to undertake complex tasks. Generally, it is possible to

categorize nature-inspired algorithms as swarm intelligence and

evolutionary algorithms. Natural swarms, e.g., ant colonies,

flocks of birds, and schools of fish, are simulated by swarm

intelligence algorithms. Cuckoo Search (CS), Multi-Verse

Optimizer (MVO), Grey Wolf Optimizer (GWO), Whale

Optimization Algorithm (WOA), Moth-flame optimization

(MFO), Firefly Algorithm (FFA), Bat Algorithm (BAT), etc. can

be listed among the current swarm intelligence algorithms. The

majority of the swarm intelligence algorithms obtain the best

solution as a result of information exchange between individuals

in the swarm.

A number of evolution and natural selection-related

concepts in the Darwinian theory have inspired evolutionary-

based algorithms. Evolution Strategy (ES), Genetic

Programming (GP), and Genetic Algorithm (GA) are among the

mentioned algorithms. The algorithms in question employ

various strategies for evolving and find good solutions for

challenging problems on the basis of evolutionary operators,

such as crossover, elitism, and mutation.

As problems become more complex, novel optimization

techniques are needed more over the last few decades. This

paper presents a simple but powerful modification to the

standard Recurrent Neural Network (RNN) architecture, the

Clock-work RNN (CW-RNN) with nature-inspired algorithms.

Clock-work memory, with the hidden layer divided into

modules, makes computations only at its prescribed clock rate.

Here, the long-term dependent optimized patterns are captured

for each metaheuristic algorithm, with various sections

(modules) of the RNN hidden layer operating at various clock

periods.

In the current work, we further research the representation

learning capability of clever algorithms by learning vulnerable

patterns from vulnerability-relevant data sources. It is

hypothesized that the source for learning optimized vulnerable

code patterns must not be restricted to the historical vulnerability

data source that involves real-world software projects.

Furthermore, it is necessary that a vulnerability-relevant data

source that involves artificial vulnerability samples is utilized as

a vulnerability knowledge base.

Our research framework investigates the representation

learning capability of clever algorithms based on clock-work

memory in order to automatically extract high-level optimized

representations, indicating vulnerable patterns from vulnerable-

relevant data sources.

The algorithms are compared for the collective extraction of

beneficial information from real-world vulnerability data as well

as from synthetic data sets to enhance the performance in

detecting vulnerabilities. Each algorithm is trained by a

historical vulnerability data source, which can be utilized as a

feature extractor for producing optimized features that involve

the vulnerable information learned from the vulnerability data

source. First, meta-heuristic algorithms are fed by means of the

vulnerability-relevant data sources above. Afterward, the trained

meta-heuristic algorithms are utilized as feature extractors using

the long-dependence mechanism of clock-work recurrent neural

networks.

The data are fed to every trained meta-heuristic algorithm

based on clock-work memory to acquire an optimized subset of

vulnerability representations as features. Second, the learned

optimized representations are combined as features by

concatenating the representations. Three meta-heuristic

algorithms were utilized versus to its standard algorithms to

predict vulnerabilities using optimized patterns as features.

The current work makes the following main contributions:

 The current work represents the first model, in which the

long-term dependency is addressed by the Clock-work

Recurrent Neural Network for software vulnerability

detection problems using nature-inspired metaheuristic

optimization algorithms.

 In the study, the first deep learning-based vulnerability

detection system was created with metaheuristic

optimization algorithms, aiming to predict vulnerabilities

with the aim of learning optimized software features.

 A novel hybrid framework is proposed, improving the

detection capability of bio-inspired population-based

heuristic approaches based on a clock-work memory for

learning optimized patterns to extract the optimized

features for detecting software vulnerable codes.

 Our framework’s design is validated by conducting

experiments, and it is shown that the usage of clock-work

memory as optimized-feature representations and a

separated classifier with the objective of training on the

extracted features enhances the performance in detecting

vulnerabilities.

 The remaining part of the current work has the following

organization. An explanation of the Material and methods is

contained in Part 2. Part 3 describes the Proposed Model. Part 4

contains the Results and Discussion. Part 6 summarizes the

conclusion and future research.

2. Material and Methods

The current part contains the background of the most frequently

employed techniques in the literature.

2.1. Nature-Inspired Algorithms

In this part, the bio-inspired metaheuristic algorithms used are

given as follows.

 2.1.1. Moth-Flame Optimization (MFO)

In MFO, the natural behavior of the actual moth is

mimicked. In accordance with the said theory, moths represent

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 158

solutions, and their spatial positions represent problem

parameters. The best-acquired position (optimal position) by

moths is kept in flames. The calculation of the primary MFO

algorithm is performed as shown below:

 MFO = (I, P, T) (1)

where I refers to the function utilized for initializing a

random moth population and their fitness values; P denotes the

primary function moving moths around the search space; T

represents the termination function returning true in case of

satisfying the termination criterion; on the contrary, it returns

false. In the main function P, the flames are updated the position

of moths through the following equation:

Mi = Di ∗ ebt ∗ cos(2πt) + Fj (2)

Where Mi refers to moth i, and Fj denotes flame jth, Di refers to
the distance between moth i and flame j, b represents a constant
that defines the logarithmic spiral’s shape, and t refers to a
random number in [-1, 1]. The computation of Di is made in the
following way.

Di = |Fj − Xi| (3)

where Di denotes the distance between moth i and flame j, Fj
refers to flame j, and Mi refers to moth i.

The number of flames is computed based on Eq. 4:

 Flame number = round(N − l ∗
N − 1

T
) (4)

Where N refers to the highest number of flames, l denotes the
current flame number, and T refers to the highest number of
iterations.

2.1.3. Particle Swarm Optimization (PSO)

Eberhart and Kennedy presented the PSO algorithm in 1995
[33]. In PSO, the solution to every optimization problem is a
bird’s position in the search space, named a “particle,” whereas
the problem’s optimal solution refers to the corn field’s position.

 A brief summary of the main steps of the PSO algorithm is
shown below:

Step 1: Initialize the parameters, including the particle swarm,
position Xi (t), and kinematic velocity vi (t) of particle i.

Step 2: Assess the fitness of the particle by means of the
deployed fitness function.

Step 3: Update the optimal position and the velocity of all
particles by utilizing equations (12) and (13).

vi (t + 1) = ωvi (t) + φ
1

 [p
best

− xi (t)] +

 φ
2

 [g
best

− xi (t)] (12)

xi (t + 1) = xi (t) + vi (t + 1) (13)

The terms pbestid represent the optimal positions of individual
particles, while gbestid refers to the swarm’s optimal positions. ɷ
denotes the inertia factor controlling the impact of the front
velocity on the current velocity. t represents the current state of
the swarm and particle.

φ1 and φ2 refer to social parameters.

Step 4: Repeat steps 2 and 3 until meeting the terminating
conditions.

2.1.5. Firefly Algorithm (FFA)

In the said algorithm, the interaction of fireflies by means of
their flashing lights is mimicked. The algorithm accepts that all
fireflies are unisex, referring to the possibility of any firefly
being attracted by any other firefly. There is a direct proportion
between a firefly’s attractiveness and its brightness, depending
on the objective function. A brighter firefly will attract another
firefly. Moreover, there is a decrease in brightness with distance
according to the inverse-square law, as shown in Eq. (14):

I ≺
1

r2 (14)

In case of the light passing through a medium with a light
absorption coefficient γ, it is possible to express the light
intensity at a distance of r from the source, as displayed in Eq.
(15):

I = I0 e−γr2
 (15)

where I0 represents the light intensity at the source. Likewise, it

is possible to express the brightness, β, as shown in Eq. (16):

β = β0 e−γr2
 (16)

A generalized brightness function for ω ≥ 1 is presented in Eq.
(17). Actually, it is possible to use any monotonically decreasing
function.

β = β0 e−γr ω
 (17)

 Concerning the brightest firefly, it will do a local search by

moving in a random way in its neighborhood. Therefore, in case

of two fireflies, if firefly j has higher brightness compared to

firefly i, then firefly i will move in the direction of firefly j by

utilizing the updating formula in Eq. (18):

xi ∶= xi + β0 e−γr 2
(xj − xi) + α(ε() − 0.5) (18)

where β0 represents the attractiveness of xj at r = 0, and β0 = 1

for implementation, γ refers to an algorithm parameter

determining the degree at which the updating process depends

on the distance between the two fireflies, α denotes an algorithm

parameter for the random movement’s step length, and ε()

represents a random vector from a uniform distribution with

values in the range of 0 and 1.

The said updates of the fireflies’ position continue with iteration

until meeting a termination criterion.

3. The Proposed Method

Bio-inspired computing is an active area due to its nature,

solving numerous real-world problems.

3.1. Problem Formulation and Representation

 It was accepted that every data was expressed as x = [x1, x2, . . .

, xn], where n represents the data sample’s length, and training

data have a corresponding target value of vulnerable or not

European Journal of Science and Technology

e-ISSN: 2148-2683 159

vulnerable, which is defined in software vulnerability models.

Every candidate solution is expressed with a length n, in which n

refers to the total number of features.

3.2. Fitness function

 The fitness function is employed with the objective of showing

the quality of each candidate optimized pattern. The fitness of a

candidate solution of each nature-inspired algorithm is

proportional to the classification error rate of the model.

 It is possible to consider the optimized pattern with the

minimum values of fitness for vulnerabilities as the most

representative example of a vulnerability population. The

algorithms’ fitness function was calculated in line with the
classifier equation’s error rate.

3.2. Methodology

 The objective of the current work is to enhance the

effectiveness of meta-heuristic algorithms with the Clock-work

memory mechanism for predicting software vulnerabilities. The

optimized software patterns that are the most appropriate for

vulnerability prediction in software systems were obtained. To

date, no strategy or idea has been adopted on the Clock-Work

memory mechanism-based metaheuristic algorithms for

vulnerability detection problems. Reasoning about processes

at multiple time scales is facilitated by Clock-Work

RNN (CW-RNN) models, making calculations only at the

prescribed clock rate. Neurons of various modules

are connected on the basis of the modules’ clock

periods [23].

In the CW-RNN, the speed of the clocks is the same all the time,

but sometimes they run at a slower speed and sometimes at a

faster one. At every CW-RNN time step t, only the outputs of

module i satisfying (t MOD Ti) = 0 are active. It is arbitrary to

choose the set of periods {T1, . . . , Tg}. In the present work, the

exponential series of periods is utilized; the ith module has a

clock period of Ti = 2i−1. In the proposed framework, each

metaheuristic algorithm’s metadynamics uses the clock-work

memory mechanism as a logging function for the optimized best

candidate patterns. For each heuristic algorithm, the information

is aggregated from generations using a clock-work memory

logged mechanism based on time scales.

In this paper, Max_iter, lb, ub, dim and SearchAgents_no,

Vmax, PopSize, wMax, wMin, c1, c2, number of

fireflies,WEP_Max, and WEP_Min parameters for metaheuristic

algorithms are set to the values 1000, -150, +150, 25, 30, 10,

100, 0.9, 0.2, 3, 3, 100, 1 and 0.2 respectively. CW-RNN

separates the hidden recurrent units into 10 g modules, each runs

their own computation at specific,hidden layer units as 32, 64

and 128 rates.

The explanation of the general experimental methodology is

presented in Algorithm 1, designed based on the each baseline

metaheuristic algorithms.

Figure 1: Architecture of the Clock-Work Recurrent Neural

Network [4]

4. Results and Discussion

The algorithms’ experimental performances in detecting

vulnerabilities are described in the present part in order to

indicate the efficiency of the compared algorithms.

 4.1. Data Collection

The data source includes vulnerable and non-vulnerable

functions from the 6 open-source projects, such as LibTIFF,

Pidgin, FFmpeg, LibPNG, Asterisk, and VLC media player. The

vulnerability labels were acquired from the National

Vulnerability Database (NVD) [13] and the Common

Vulnerability and Exposures (CVE) [14] websites. The

algorithms are designed for the collective extraction of

beneficial information from real-world vulnerability data sets in

order to enhance vulnerability detection performance. The

Word2vec [1] model is used in the embedding layer of the

Clock-Work Recurrent Neural network for converting input

sequence to meaningful embeddings.

 Algorithm 1. Pseudo-code of the proposed Clock-Work

Memory Mechanism

Input : Set of vectors of vulnerable code : X= [X1, X2, . . . , XN]

Output : Set of optimized best patterns: Sbest={S1, S2,, SN};

BEGIN

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 160

Step 1: {Initialize Metaheuristic Algorithms’ parameters}

Step 2: [1,2,...N] Initialize the solutions’ positions randomly.

Step 3: Calculate the fitness of each search agent

Step 4: For each iteration, do:

Step 4.1: [Train Clock-Work Network]

Step 4.1.1: For each search agent do:

Step 4.1.2: update the position of each current search

agent

Step 4.1.3: Hidden dimensions are updated in groups at

time period clock rates.

Step 4.1.4: create the clock-work memory based

on time scales {T1, . . . ,Tg} for each optimized

search agents (candidate solutions)

Step 4.1.5:Calculate the fitness of each search agents

Step 4.1.6:END For

Step 4.1.7: [END Train Clock-Work Network]

Step 5: END For

Step 6: Add List optimized best search agents stored in
clock-work memory

Step 7: END For

Step 8:END

4.2. Results

In Tables 2-7, we compared the performances of the standard

and improved heuristic algorithms for detecting vulnerabilities

based on the LibTIFF, FFmpeg, Pidgin, LibPNG, Asterisk, and

VLC media Player datasets. The results demonstrate that the

Asterisk dataset displayed the best performance with a 0.010543

error rate for hidden layer unit 128 and Test F5, based on CW-

MFO algorihm, compared to the other vulnerability datasets.

Nevertheless, according to the results, worst error rate

performance was found in the FFmpeg dataset with 0.0828 error

rate for hidden layer units 32 and Test F1 based on CW-PSO

algorihm. In point of other datasets, it was observed that the

improved algorithm achieved the highest performance results in

the Asteriks, LibPNG, VLC media player, LibTIFF, FFmpeg and

Pidgin data sets, respectively.

The statistical performance of the improved CW-PSO model

outperformed worst results than the other improved algorithms

for all datasets. It was observed that the CW-MFO and CW-FFA

models generally gave close results than CW-PSO algorithm. In

Table 7, there is generally observation about dramatic change for

improved algorithms especially for CW-MFO algorithm based

on Test F5.

All experimental results show the low-hidden layers process,

retain and output the high error rate results, whereas the high-

hidden layers focus on the local, high frequency information

having the low error-rate performances, generally. Also,

improved heuristic agorithms gave better results than the

stardard heuristic agorithms.

Table 1. Dataset

Data source Data source/Collection #of functions used/Collected

Real-world Open Sources

Vulnerable
Non-Vulnerable

FFmpeg 213 5701

LibTIFF 96 731

LibPNG 43 577

Pidgin 29 8,050

VLC Media Player 42 3,636

Asteriks 56 14,648

European Journal of Science and Technology

e-ISSN: 2148-2683 161

Table 2. Error Rate of compared Algorithms for FFpmeg Dataset

Table 3. Error Rate of compared Algorithms for LibTIFF Dataset

Test

Benchmark

Hidden Layer

units

Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

 32 0.067895 0.05219 0.0878 0.0828 0.05435 0.0519

 64 0.055744 0.04534 0.074677 0.07105 0.05096 0.04813

 128 0.051643 0.041250 0.068755 0.065856 0.043535 0.040631

Test F2

 32 0.05896 0.046725 0.0733456 0.070673 0.048954 0.045455

 64 0.05357 0.045909 0.072245 0.069109 0.04563 0.043768

 128 0.051346 0.044105 0.06775 0.06496 0.04085 0.03912

Test F3

 32 0.063245 0.05593 0.072467 0.06714 0.053563 0.050874

64 0.0608543 0.05334 0.069483 0.065003 0.05134 0.049392

 128 0.058643 0.051325 0.06643 0.066585 0.049753 0.047466

Test F4

 32 0.063134 0.053368 0.064837 0.063464 0.047536 0.042789

 64 0.060563 0.051345 0.061864 0.059202 0.045636 0.0408238

 128 0.059533 0.047762 0.065355 0.061543 0.043543 0.0417463

Test F5

 32 0.0657843 0.054567 0.077544 0.07321 0.055323 0.052574

 64 0.060424 0.055216 0.07343 0.072464 0.054636 0.054813

 128 0.055733 0.051784 0.07134 0.070567 0.054552 0.052762

Test

Benchmark

Hidden Layer units Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

 32 0.053245 0.05065 0.08197 0.07903 0.051865 0.050619

 64 0.048498 0.04371 0.076539 0.07353 0.049689 0.04725

 128 0.045355 0.040576 0.073256 0.071326 0.046874 0.045327

Test F2

 32 0.047841 0.043642 0.06758 0.066436 0.045577 0.04454

 64 0.046524 0.041532 0.065737 0.063431 0.043356 0.041953

 128 0.042452 0.0403526 0.061546 0.060672 0.04087 0.0396304

Test F3

 32 0.058643 0.0547213 0.065864 0.063255 0.053573 0.052359

 64 0.053547 0.052932 0.062568 0.061873 0.0508563 0.0495356

 128 0.054564 0.055164 0.064357 0.06232 0.048659 0.046534

 32 0.056432 0.053236 0.05978 0.061245 0.043566 0.040764

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 162

Table 4. Performance of Algorithms forLibPNG Dataset

Table 5. Performance of Algorithms for Pidgin Dataset

Test F4 64 0.055323 0.050764 0.061379 0.06327 0.0436789 0.04157363

 128 0.05075 0.0498327 0.064781 0.06048 0.0408765 0.03870357

Test F5

 32 0.0545634 0.052354 0.075468 0.07255 0.0535667 0.05074732

64 0.052434 0.0515946 0.072357 0.070732 0.0525608 0.05189543

 128 0.0514789 0.0480953 0.071479 0.07067 0.054672 0.0529764

Test

Benchmark

Hidden Layer

units

Improved Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

32 0.043688 0.037846 0.064325 0.059636 0.048543 0.0419016

64 0.041252 0.034247 0.062356 0.0634652 0.0456364 0.0425733

128 0.034673 0.030421 0.06244 0.060678 0.041356 0.0389311

Test F2

32 0.037576 0.036674 0.069086 0.067632 0.0464675 0.0419644

64 0.034632 0.033755 0.065746 0.062474 0.0446631 0.0407453

128 0.033525 0.0310357 0.063563 0.06072 0.0408334 0.038647

Test F3

32 0.053356 0.050533 0.066576 0.061467 0.057982 0.0517858

64 0.050734 0.0480536 0.06446 0.06345 0.0515674 0.0508432

128 0.049874 0.0470734 0.062355 0.061478 0.052578 0.0496433

Test F4

32 0.053694 0.051346 0.060843 0.058532 0.0547683 0.0406532

64 0.052596 0.0490645 0.057574 0.053547 0.042675 0.0396542

128 0.048464 0.0436875 0.054356 0.052724 0.039868 0.0379432

Test F5

32 0.045746 0.041795 0.064632 0.061456 0.0489554 0.045363

64 0.046467 0.043245 0.062456 0.0608432 0.044678 0.0424842

128 0.04635 0.0410643 0.059641 0.0579533 0.043678 0.0408426

Test

Benchmark

Hidden Layer

units

Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

 32 0.061567 0.053467 0.059064 0.057532 0.057458 0.053573

 64 0.058642 0.0504323 0.055798 0.054685 0.055742 0.0547894

 128 0.053567 0.049736 0.052356 0.051894 0.052345 0.050543

 32 0.049732 0.048643 0.072533 0.068954 0.051546 0.0469755

European Journal of Science and Technology

e-ISSN: 2148-2683 163

Table 6. Performance of Algorithms for VLC Media Player Dataset

Test F2 64 0.043467 0.043562 0.067843 0.065764 0.047545 0.0445784

 128 0.044315 0.041374 0.060985 0.060745 0.045643 0.043665

Test F3

 32 0.054178 0.051456 0.065736 0.063563 0.057535 0.0526674

 64 0.049746 0.046975 0.065743 0.061345 0.054356 0.050853

 128 0.055464 0.050753 0.0608345 0.059043 0.050786 0.0470532

Test F4

 32 0.059754 0.0565732 0.061356 0.060643 0.044635 0.0414678

 64 0.055548 0.052457 0.058535 0.055356 0.043534 0.0390654

 128 0.054356 0.051473 0.057097 0.056894 0.039643 0.0357547

Test F5

 32 0.060532 0.052466 0.070643 0.06895 0.054244 0.050746

 64 0.058743 0.050754 0.067843 0.0613456 0.052442 0.051467

 128 0.0524553 0.0517577 0.058546 0.056733 0.048433 0.045783

Test

Benchmark

Hidden Layer units Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

32 0.046535 0.042784 0.059646 0.051643 0.0485321 0.042466

 64 0.043586 0.040643 0.048643 0.043677 0.0445632 0.040854

128 0.040621 0.038975 0.043678 0.039864 0.038743 0.034677

Test F2

 32 0.048432 0.0428478 0.050749 0.045633 0.458952 0.409847

 64 0.045355 0.038724 0.048695 0.043253 0.4324535 0.3764345

 128 0.041245 0.033859 0.046784 0.040932 0.035652 0.0318563

Test F3

 32 0.054355 0.050863 0.053563 0.0568732 0.0542454 0.04853

 64 0.051234 0.048762 0.048676 0.0513456 0.0472312 0.0436275

 128 0.054234 0.041456 0.055563 0.0508732 0.046343 0.04146

Test F4

32 0.056345 0.048725 0.0497642 0.0425643 0.043522 0.0379464

 64 0.052355 0.046832 0.044774 0.040826 0.363587 0.309825

 128 0.05352 0.0425736 0.047324 0.0386754 0.045673 0.0369378

Test F5

 32 0.055354 0.0508373 0.045642 0.045763 0.056732 0.050745

 64 0.050743 0.0482895 0.041433 0.0423455 0.053429 0.048725

 128 0.047842 0.046356 0.043566 0.040824 0.048563 0.045256

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 164

Table 7. Performance of Algorithms for Asteriks Dataset

5. Conclusion

This paper provides software vulnerability detection by

defining a workflow for the learning of optimized feature

representations for vulnerability detection by nature-inspired

metaheuristic optimization algorithms. The current study

researches a new architecture for vulnerability detection and

prediction tasks with the clock-work memory mechanism, which

operates at different hidden layer units, with nature-inspired

algorithms to optimize patterns of software vulnerabilities.

According to the findings acquired, the proposed algorithm

performs well in terms of the detection rate of the optimized

patterns.

Future studies may include semantic representation generation

techniques to explore whether these methods can produce more

effective optimized representations with more semantic

information preserved to achieve improved vulnerability

detection performance.

6. Acknowledge

The present paper does not include any research with human

participants conducted by any of the authors.

References

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, (2013)

“Efficient estimation of word representations in vector

space,” arXiv preprint arXiv:1301.3781.

[2] Shi, Y., Wang, Y., & Zheng, H. (2022). Wind Speed

Prediction for Offshore Sites Using a Clockwork Recurrent

Network. Energies, vol.15, no. 3, 751.

[3] J. Koutnik, K. Greff, F. Gomez, J.Schmidhuber. (2014) A

Clockwork RNN," Proceedings of the 31st International

Conference on Machine Learning, PMLR vol.32, no. 2, pp.

1863-1871.

[4] Khurma, R.A., Aljarah, I., Sharieh, A.A., & Mirjalili, S.M.

(2019). EvoloPy-FS: An Open-Source Nature-Inspired

Optimization Framework in Python for Feature Selection.

Algorithms for Intelligent Systems.

[5] Ö. B. Dinler, C. B. Şahin, (2021) Prediction of phishing

web sites with deep learning using WEKA environment,

Avrupa Bilim ve Teknoloji Dergisi, vol. 24, pp. 35-41, 2021.

doi:10.31590/ejosat.901465.

Test

Benchmark

Hidden Layer units Algorithms

MFO CW-MFO PSO CW-PSO FFA CW-FFA

Test F1

 32 0.0386432 0.034264 0.054673 0.049827 0.3535783 0.32656

 64 0.035635 0.033653 0.049834 0.0478956 0.036732 0.03368

 128 0.031853 0.0308576 0.045636 0.0412345 0.037433 0.031464

Test F2

 32 0.045356 0.038044 0.037982 0.0331075 0.048532 0.0406234

 64 0.0406437 0.0330852 0.034768 0.0315673 0.043525 0.0387542

 128 0.0376324 0.030822 0.031242 0.030827 0.036742 0.0320483

Test F3

 32 0.0335663 0.029840 0.032784 0.0274567 0.040873 0.0334556

 64 0.032566 0.027094 0.029842 0.025633 0.0345625 0.0315732

 128 0.028643 0.023635 0.025345 0.0234522 0.025732 0.0245614

Test F4

 32 0.034564 0.0247847 0.0286734 0.025784 0.031876 0.0229540

 64 0.034245 0.0235723 0.030742 0.027733 0.027832 0.02084563

 128 0.029632 0.0168767 0.027633 0.022472 0.025353 0.018948

Test F5

 32 0.030743 0.0146865 0.034724 0.0282444 0.038632 0.033565

 64 0.027435 0.0126784 0.033826 0.0245673 0.036535 0.030875

 128 0.022563 0.010543 0.024242 0.020743 0.027633 0.022456

European Journal of Science and Technology

e-ISSN: 2148-2683 165

[6] Guha, R., Chatterjee, B., Khalid Hassan, S.K., Ahmed, S.,

Bhattacharyya, T., & Sarkar, R. (2021). Py_FS: A Python

Package for Feature Selection Using Meta-Heuristic

Optimization Algorithms. Computational Intelligence in

Pattern Recognition.

[7] Abu Khurma, R., Aljarah, I., Sharieh, A.A., Abd Elaziz, M.,

Damaševičius, R., & Krilavičius, T. (2022). A Review of the

Modification Strategies of the Nature Inspired Algorithms

for Feature Selection Problem. Mathematics.

[8] Xue, B., Zhang, M., Browne, W.N., & Yao, X. (2016). A

Survey on Evolutionary Computation Approaches to Feature

Selection. IEEE Transactions on Evolutionary Computation,

20, 606-626.

[9] A. Ulah, C. B. Şahin, O. B. Dinler, M. H. Khan, (2021) Heart

Dısease Predıctıon Usıng Varıous Machınes Learnıng

Approach, Journal of Cardiovascular Disease Research, vol.

12,no.3,pp.379-391. doi:10.31838/jcdr.2021.12.03.58.

[10] Li Z., et al., (2019). VulDeePecker: A Deep Learning-Based

System for Vulnerability Detection, Cryptography and

Security, Doi: 10.14722/ndss.2018.23158.

[11] Singh S.K., Chaturvedi A., (2020). Applying Deep Learning

for Discovery and Analysis of Software Vulnerabilities: A

Brief Survey, Soft Computing: Theories and Applications.

Advances in Intelligent Systems and Computing, vol. 1154.

Springer, Singapore. https://doi.org/10.1007/978-981-15-

4032-5_59.

[12] Batur Dinler, Ö. , Batur Şahin, C. & Abualigah, L. (2021).

Comparison of Performance of Phishing Web Sites with

Different DeepLearning4J Models . Avrupa Bilim ve

Teknoloji Dergisi , Ejosat Special Issue 2021 (ICAENS) ,

pp. 425-431 . DOI: 10.31590/ejosat.1004778.

[13] Al-Tashi, Q., Abdulkadir, S.J., Rais, H.M., Mirjalili, S.M.,

& Alhussian, H. (2020). Approaches to Multi-Objective

Feature Selection: A Systematic Literature Review. IEEE

Access, 8, 125076-125096.

[14] Şahín C. B., and Dírí B., (2019). Robust Feature Selection

with LSTM Recurrent Neural Networks for Artificial

Immune Recognition System, in IEEE Access, vol. 7, pp.

24165-24178, doi: 10.1109/ACCESS.2019.2900118.

[15] Batur Şahin C., Batur Dinler Ö., Abuagilah L. (2021).

Prediction of software vulnerability-based deep symbiotic

genetic algorithms: Phenotyping of dominant-features,

Applied Intelligence, doi: 10.1007/s10489-021-02324-3.

[16] https://nvd.nist.gov/

[17] https://cve.mitre.org/

[18] Kihel, B.K., & Chouraqui, S. (2019). Firefly Optimization

Using Artificial Immune System for Feature Subset

Selection. International Journal of Intelligent Engineering

and Systems.

[19] Dökeroglu, T., Deniz, A., & Kiziloz, H.E. (2022). A

comprehensive survey on recent metaheuristics for feature

selection. Neurocomputing, 494, 269-296.

[20] Liu, W., & Wang, J. (2019). A Brief Survey on Nature-

Inspired Metaheuristics for Feature Selection in

Classification in this Decade. 2019 IEEE 16th International

Conference on Networking, Sensing and Control (ICNSC),

424-429.

[21] Dökeroglu, T., Sevinç, E., Kucukyilmaz, T., & Cosar, A.

(2019). A survey on new generation metaheuristic

algorithms. Comput. Ind. Eng., 137.

[22] Houssein, E.H., Mahdy, M.A., Shebl, D., & Mohamed,

W.M. (2021). A Survey of Metaheuristic Algorithms for

Solving Optimization Problems. Metaheuristics in Machine

Learning: Theory and Applications.

[23] Şahin C. B., (2021). DCW-RNN: Improving Class Level

Metrics for Software Vulnerability Detection Using

Artificial Immune System with Clock-Work Recurrent

Neural Network, International Conference on INnovations

in Intelligent SysTems and Applications 2021 (INISTA’21),

pp. 1-8, doi: 10.1109/INISTA52262.2021.9548609.

[24] Meidani, K., Mirjalili, S., & Farimani, A.B. (2022). Online

metaheuristic algorithm selection. Expert Syst. Appl., 201,

117058.

[25] Dinler Ö. B., Aydın N., (2020). An optimal feature

parameter set based on gated recurrent unit recurrent neural

networks for speech segment detection,” Applied Sciences,

vol. 10, no. 4, pp. 1273, 2020. doi:10.3390/app10041273.

[26] Hailat, M.M., Otair, M.A., Abualigah, L., Houssein, E.H.,

Şahin, C.B. (2021). Improving Automated Arabic Essay

Questions Grading Based on Microsoft Word Dictionary. In:

Kadyan, V., Singh, A., Mittal, M., Abualigah, L. (eds) Deep

Learning Approaches for Spoken and Natural Language

Processing. Signals and Communication Technology.

Springer, Cham. https://doi.org/10.1007/978-3-030-79778-

2_2

[27] Mirjalili, S. (Ed.). (2022). Handbook of Moth-Flame

Optimization Algorithm: Variants, Hybrids, Improvements,

and Applications (1st ed.). CRC Press.

https://doi.org/10.1201/9781003205326.

[28] Laith Abualigah (2022). The Arithmetic Optimization

Algorithm(AOA)https://www.mathworks.com/matlabcentral

/fileexchange/84742-the-arithmetic-optimization-algorithm-

aoa), MATLAB Central File Exchange. Retrieved July 27,

2022.

[29] Şahin C. B., Dinler Ö. B., & Abualigah, L. (2021).

Analysis of Risk Factors in the Scope of Distributed

Software Team Structure . Avrupa Bilim ve Teknoloji

Dergisi , Ejosat Special Issue 2021 (ICAENS) , 417-424 .

DOI: 10.31590/ejosat.1004765.

[30] Abd Elaziz, M., Dahou, A., Abualigah, L. et al. (2021).

Advanced metaheuristic optimization techniques in

applications of deep neural networks: a review. Neural

Comput & Applic 33, 14079–14099.

https://doi.org/10.1007/s00521-021-05960-5.

[31] Cihan, P. & Kalıpsız, O. (2016). Öğrenci Proje Anketlerini

Sınıflandırmada En İyi Algoritmanın Belirlenmesi . Türkiye

Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi,

vol.8, no.1, pp.41-49. Retrieved from

https://dergipark.org.tr/en/pub/tbbmd/issue/22248/238831

https://doi.org/10.1007/978-981-15-4032-5_59.
https://doi.org/10.1007/978-981-15-4032-5_59.
https://nvd.nist.gov/
https://cve.mitre.org/
https://doi.org/10.1007/978-3-030-79778-2_2
https://doi.org/10.1007/978-3-030-79778-2_2
https://doi.org/10.1201/9781003205326
https://doi.org/10.1007/s00521-021-05960-5.

