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Abstract 

 It is possible to better provide the security of the codebase and keep testing efforts at a minimum level by detecting vulnerable codes 

early in the course of software development. We assume that nature-inspired metaheuristic optimization algorithms can obtain 

“optimized patterns” from vulnerabilities created in an artificial manner. This study aims to use nature-inspired optimization 

algorithms combining heterogeneous data sources with the objective of learning optimized representations of vulnerable source codes. 

The chosen vulnerability-relevant data sources are cross-domain, involving historical vulnerability data from variable software 

projects and data from the Software Assurance Reference Database (SARD) comprising  vulnerability examples. The main purpose of 

this paper is to outline the state-of-the-art and to analyze and discuss open challenges with regard to the most relevant areas in the 

field of bio-inspired optimization based on the representation of software vulnerability. Empirical research has demonstrated that the 

optimized representations produced by the suggested nature-inspired optimization algorithms are feasible and efficient and can be 

transferred for real-world vulnerability detection. 

 

Keywords: Feature Selection,  Nature-inspired Algorithm,  Optimization, Representation learning,  Software Vulnerability.  

 Saat-Hafıza Mekanizması ile Yazılım Güvenlik Açıklarının Optimize 

Edilmiş Örüntülerini Öğrenme 

Öz 

Yazılım geliştirme sürecinin başlarında hassas kodları belirleyerek kod tabanının güvenliğini daha iyi sağlamak ve test çabalarını 

minimum düzeyde tutmak mümkündür. Doğa esinli üstsezgisel optimizasyon algoritmalarının yapay bir şekilde meydana getirilen 

güvenlik açıklarından “optimize edilmiş örüntüler” elde edebileceğini düşünüyoruz. Bu çalışma, heterojen veri kaynaklarını hassas 

kaynak kodlarının optimize edilmiş gösterimlerini öğrenme hedefiyle birleştiren doğa-esinli optimizasyon algoritmalarını kullanmayı 

amaçlamaktadır. Seçilen güvenlik açığı ile ilgili veri kaynakları alanlar arası kaynaklar olup, farklı yazılım projelerine ait geçmiş 

güvenlik açığı verilerini içeren Yazılım Güvencesi Referans Veritabanı'nın (YGRV) sağladığı verileri kapsar. Bu makalenin temel 

amacı, son teknolojinin ana hatlarını çizmek ve yazılım güvenlik açığının gösterimine dayalı biyo-esinli optimizasyon alanındaki en 

ilgili alanlara yönelik mevcut zorlukları analiz etmek ve tartışmaktır. Ampirik araştırmalar, önerilen doğa esinli optimizasyon 

algoritmaları tarafından üretilen optimize edilmiş gösterimlerin uygulanabilir ve etkin olduğunu ve gerçek dünyadaki güvenlik açığı 

tespiti için kullanılabileceğini ortaya koymuştur. 
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1. Introduction 

Software vulnerabilities make up security risks for software 

systems with increasing importance, utilized to attack and 

damage systems [17]. Managing security in cyberspace must be 

inspired by systems with advanced complexity. In the process of 

evolution, natural propensities in complex systems (e.g., plants 

and animals), enabling survival by adaptation, have been 

developed by nature.   

Algorithms inspired by nature represent population-based 

metaheuristics inspired by various natural phenomena. Over a 

very long time, nature has evolved to bring about intelligent 

behavioral properties and biological phenomena, in which self-

learning, adaptability, efficiency, and robustness allow biological 

agents to undertake complex tasks. Generally, it is possible to 

categorize nature-inspired algorithms as swarm intelligence and 

evolutionary algorithms. Natural swarms, e.g., ant colonies, 

flocks of birds, and schools of fish, are simulated by swarm 

intelligence algorithms. Cuckoo Search (CS), Multi-Verse 

Optimizer (MVO), Grey Wolf Optimizer (GWO), Whale 

Optimization Algorithm (WOA), Moth-flame optimization 

(MFO), Firefly Algorithm (FFA), Bat Algorithm (BAT), etc. can 

be listed among the current swarm intelligence algorithms. The 

majority of the swarm intelligence algorithms obtain the best 

solution as a result of information exchange between individuals 

in the swarm.  

A number of evolution and natural selection-related 

concepts in the Darwinian theory have inspired evolutionary-

based algorithms. Evolution Strategy (ES), Genetic 

Programming (GP), and Genetic Algorithm (GA) are among the 

mentioned algorithms. The algorithms in question employ 

various strategies for evolving and find good solutions for 

challenging problems on the basis of evolutionary operators, 

such as crossover, elitism, and mutation. 

As problems become more complex, novel optimization 

techniques are needed more over the last few decades. This 

paper presents a simple but powerful modification to the 

standard Recurrent Neural Network (RNN) architecture, the 

Clock-work RNN (CW-RNN) with nature-inspired algorithms. 

Clock-work memory, with the hidden layer divided into 

modules,  makes computations only at its prescribed clock rate. 

Here, the long-term dependent optimized patterns are captured 

for each metaheuristic algorithm, with various sections 

(modules) of the RNN hidden layer operating at various clock 

periods.  

In the current work, we further research the representation 

learning capability of clever algorithms by learning vulnerable 

patterns from vulnerability-relevant data sources. It is 

hypothesized that the source for learning optimized vulnerable 

code patterns must not be restricted to the historical vulnerability 

data source that involves real-world software projects. 

Furthermore, it is necessary that a vulnerability-relevant data 

source that involves artificial vulnerability samples is utilized as 

a vulnerability knowledge base.  

Our research framework investigates the representation 

learning capability of clever algorithms based on clock-work 

memory in order to automatically extract high-level optimized 

representations, indicating vulnerable patterns from vulnerable-

relevant data sources.  

The algorithms are compared for the collective extraction of 

beneficial information from real-world vulnerability data as well 

as from synthetic data sets to enhance the performance in 

detecting vulnerabilities. Each algorithm is trained by a 

historical vulnerability data source, which can be utilized as a 

feature extractor for producing optimized features that involve 

the vulnerable information learned from the vulnerability data 

source. First, meta-heuristic algorithms are fed by means of the 

vulnerability-relevant data sources above. Afterward, the trained 

meta-heuristic algorithms are utilized as feature extractors using 

the long-dependence mechanism of clock-work recurrent neural 

networks.  

The data are fed to every trained meta-heuristic algorithm 

based on clock-work memory to acquire an optimized subset of 

vulnerability representations as features. Second, the learned 

optimized representations are combined as features by 

concatenating the representations. Three meta-heuristic 

algorithms were utilized versus to its standard algorithms to 

predict vulnerabilities using optimized patterns as features. 

The current work makes the following main contributions:  

 The current work represents the first model, in which the 

long-term dependency is addressed by the Clock-work 

Recurrent Neural Network for software vulnerability 

detection problems using nature-inspired metaheuristic 

optimization algorithms. 

 In the study, the first deep learning-based vulnerability 

detection system was created with metaheuristic 

optimization algorithms, aiming to predict vulnerabilities 

with the aim of learning optimized software features.  

 A novel hybrid framework is proposed, improving the 

detection capability of bio-inspired population-based 

heuristic approaches based on a clock-work memory for 

learning optimized patterns to extract the optimized 

features for detecting software vulnerable codes. 

 Our framework’s design is validated by conducting 

experiments, and it is shown that the usage of clock-work 

memory as optimized-feature representations and a 

separated classifier with the objective of training on the 

extracted features enhances the performance in detecting 

vulnerabilities. 

 The remaining part of the current work has the following 

organization. An explanation of the Material and methods is 

contained in Part 2. Part 3 describes the Proposed Model. Part 4 

contains the Results and Discussion. Part 6 summarizes the 

conclusion and future research. 

2. Material and Methods 

 
The current part contains the background of the most frequently 

employed techniques in the literature.   

2.1. Nature-Inspired Algorithms 

In this part, the bio-inspired metaheuristic algorithms used are 

given as follows. 

 2.1.1. Moth-Flame Optimization (MFO) 

In MFO, the natural behavior of the actual moth is 

mimicked. In accordance with the said theory, moths represent 
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solutions, and their spatial positions represent problem 

parameters. The best-acquired position (optimal position) by 

moths is kept in flames. The calculation of the primary MFO 

algorithm is performed as shown below:    

 MFO =  (I, P, T)                                                      (1) 

where I refers to the function utilized for initializing a 

random moth population and their fitness values; P denotes the 

primary function moving moths around the search space; T 

represents the termination function returning true in case of 

satisfying the termination criterion; on the contrary, it returns 

false. In the main function P, the flames are updated the position 

of moths through the following equation:    

Mi  = Di  ∗ ebt  ∗  cos(2πt)  +  Fj                                (2)   

Where Mi refers to moth i, and Fj denotes flame jth, Di refers to 
the distance between moth i and flame j, b represents a constant 
that defines the logarithmic spiral’s shape, and t refers to a 
random number in [-1, 1]. The computation of Di is made in the 
following way.  

Di = |Fj − Xi|                                                      (3)   

where Di denotes the distance between moth i and flame j, Fj 
refers to flame j, and Mi refers to moth i. 

The number of flames is computed based on Eq. 4: 

  Flame number =  round(N −  l ∗
N − 1

T
 )              (4)   

Where N refers to the highest number of flames, l denotes the 
current flame number, and T refers to the highest number of 
iterations. 

2.1.3. Particle Swarm Optimization (PSO)     

Eberhart and Kennedy presented the PSO algorithm in 1995 
[33]. In PSO, the solution to every optimization problem is a 
bird’s position in the search space, named a “particle,” whereas 
the problem’s optimal solution refers to the corn field’s position.   

 A brief summary of the main  steps of the PSO algorithm is 
shown below: 

Step 1: Initialize the parameters, including the particle swarm, 
position  Xi (t), and kinematic velocity vi (t) of particle i. 

Step 2: Assess the fitness of the particle by means of the 
deployed fitness function. 

Step 3: Update the optimal position and the velocity of all 
particles by utilizing equations (12) and (13). 

vi (t + 1) = ωvi (t)  + φ
1

  [p
best 

−  xi (t)]  +

 φ
2

  [g
best 

−  xi (t)]    (12)   

xi (t + 1) = xi (t) +  vi (t + 1)                   (13)   

The terms pbestid represent the optimal positions of individual 
particles, while gbestid refers to the swarm’s optimal positions. ɷ 
denotes the inertia factor controlling the impact of the front 
velocity on the current velocity. t represents the current state of 
the swarm and particle.  

φ1 and φ2 refer to social parameters. 

Step 4: Repeat steps 2 and 3 until meeting the terminating 
conditions. 

2.1.5. Firefly Algorithm (FFA)     

In the said algorithm, the interaction of fireflies by means of 
their flashing lights is mimicked. The algorithm accepts that all 
fireflies are unisex, referring to the possibility of any firefly 
being attracted by any other firefly. There is a direct proportion 
between a firefly’s attractiveness and its brightness, depending 
on the objective function. A brighter firefly will attract another 
firefly. Moreover, there is a decrease in brightness with distance 
according to the inverse-square law, as shown in Eq. (14): 

I ≺
1

r2                                                                     (14)   

In case of the light passing through a medium with a light 
absorption coefficient γ, it is possible to express the light 
intensity at a distance of r from the source, as displayed in Eq. 
(15): 

I = I0 e−γr2
                                                           (15)   

where I0 represents the light intensity at the source. Likewise, it 

is possible to express the brightness, β, as shown in Eq. (16): 

β = β0 e−γr2
                                                        (16)   

A generalized brightness function for ω ≥ 1 is presented in Eq. 
(17). Actually, it is possible to use any monotonically decreasing 
function.  

β = β0 e−γr ω
                                                        (17)   

  Concerning the brightest firefly, it will do a local search by 

moving in a random way in its neighborhood. Therefore, in case 

of two fireflies, if firefly j has higher brightness compared to 

firefly i, then firefly i will move in the direction of firefly j by 

utilizing the updating formula in Eq. (18): 

xi ∶= xi  + β0 e−γr 2
(xj  − xi)  + α(ε() − 0.5) (18)                                             

where β0 represents the attractiveness of xj at r = 0, and β0 = 1 

for implementation, γ refers to an algorithm parameter 

determining the degree at which the updating process depends 

on the distance between the two fireflies, α denotes an algorithm 

parameter for the random movement’s step length, and ε() 

represents a random vector from a uniform distribution with 

values in the range of 0 and 1.  

The said updates of the fireflies’ position continue with iteration 

until meeting a termination criterion.   

3. The Proposed Method  

Bio-inspired computing is an active area due to its nature, 

solving numerous real-world problems.  

3.1. Problem Formulation and Representation 

 It was accepted that every data was expressed as x = [x1, x2, . . . 

, xn], where n represents the data sample’s length, and training 

data have a corresponding target value of vulnerable or not 
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vulnerable, which is defined in software vulnerability models.  

Every candidate solution is expressed with a length n, in which n 

refers to the total number of features.   

3.2. Fitness function  

  The fitness function is employed with the objective of showing 

the quality of each candidate optimized pattern. The fitness of a 

candidate solution of each nature-inspired algorithm is 

proportional to the classification error rate of the model. 

 It is possible to consider the optimized pattern with the 

minimum values of fitness for vulnerabilities as the most 

representative example of a vulnerability population. The 

algorithms’ fitness function was calculated in line with the  
classifier equation’s error rate. 

3.2. Methodology 

 The objective of the current work is to enhance the 

effectiveness of meta-heuristic algorithms with the Clock-work 

memory mechanism for predicting software vulnerabilities. The 

optimized software patterns that are the most appropriate for 

vulnerability prediction in software systems were obtained. To 

date, no strategy or idea has been adopted on the Clock-Work 

memory mechanism-based metaheuristic algorithms for 

vulnerability detection problems. Reasoning about processes 

at multiple time scales is facilitated by Clock-Work 

RNN (CW-RNN) models, making calculations only at the 

prescribed clock rate. Neurons of various modules 

are connected on the basis of the modules’ clock 

periods [23]. 

In the CW-RNN, the speed of the clocks is the same all the time, 

but sometimes they run at a slower speed and sometimes at a 

faster one. At every CW-RNN time step t, only the outputs of 

module i satisfying (t MOD Ti) = 0 are active. It is arbitrary to 

choose the set of periods {T1, . . . , Tg}. In the present work, the 

exponential series of periods is utilized; the ith module has a 

clock period of Ti = 2i−1. In the proposed framework, each 

metaheuristic algorithm’s metadynamics uses the clock-work 

memory mechanism as a logging function for the optimized best 

candidate patterns. For each heuristic algorithm, the information 

is aggregated from generations using a clock-work memory 

logged mechanism based on time scales. 

In this paper,  Max_iter, lb, ub, dim and SearchAgents_no,     

Vmax, PopSize, wMax,  wMin, c1, c2, number of 

fireflies,WEP_Max, and  WEP_Min parameters for metaheuristic 

algorithms are set to the values 1000, -150, +150, 25, 30, 10, 

100, 0.9, 0.2, 3, 3, 100, 1 and 0.2 respectively. CW-RNN 

separates the hidden recurrent units into 10 g modules, each runs 

their own computation at specific,hidden layer units as 32, 64 

and 128 rates. 

The explanation of the general experimental methodology is 

presented in Algorithm 1, designed based on the each baseline 

metaheuristic algorithms. 

 

 

Figure 1: Architecture of the Clock-Work Recurrent Neural 

Network [4] 

4. Results and Discussion   

The algorithms’ experimental performances in detecting 

vulnerabilities are described in the present part in order to 

indicate the efficiency of the compared algorithms. 

 4.1. Data Collection 

The data source includes vulnerable and non-vulnerable 

functions from the 6 open-source projects, such as LibTIFF, 

Pidgin, FFmpeg, LibPNG, Asterisk, and VLC media player. The 

vulnerability labels were acquired from the National 

Vulnerability Database (NVD) [13] and the Common 

Vulnerability and Exposures (CVE) [14] websites. The 

algorithms are designed for the collective extraction of 

beneficial information from real-world vulnerability data sets in 

order to enhance vulnerability detection performance. The 

Word2vec [1] model is used in the embedding layer of the 

Clock-Work Recurrent Neural network for converting input 

sequence to meaningful embeddings. 

 Algorithm 1.  Pseudo-code of the proposed Clock-Work 

Memory Mechanism 

Input : Set of vectors of vulnerable code : X= [X1, X2, . . . , XN] 

Output : Set of  optimized best patterns: Sbest={S1, S2, ......, SN}; 

BEGIN 
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Step 1: {Initialize  Metaheuristic Algorithms’  parameters} 

Step 2:  [1,2,...N]  Initialize the solutions’ positions randomly.  

Step 3: Calculate the fitness of each search agent 

Step 4: For each iteration, do: 

Step 4.1: [Train Clock-Work Network]  

Step 4.1.1:  For each search agent do: 

Step 4.1.2: update the position of each current search 

agent  

Step 4.1.3: Hidden dimensions are updated in groups at 

time period clock rates.  

Step 4.1.4:  create the  clock-work memory  based 

on  time scales {T1, . . . ,Tg} for each optimized  

search agents (candidate solutions) 

Step 4.1.5:Calculate the fitness of each search agents  

Step 4.1.6:END For 

Step 4.1.7:  [ END Train Clock-Work Network]  

Step 5: END For 

Step 6: Add List optimized best search agents stored in 
clock-work memory   

Step 7: END For  

Step 8:END 

 

 

4.2. Results  

In Tables 2-7, we compared the performances of the standard 

and  improved heuristic algorithms  for detecting vulnerabilities 

based on the LibTIFF,  FFmpeg, Pidgin, LibPNG, Asterisk, and 

VLC media Player datasets. The results demonstrate that the 

Asterisk dataset displayed the best performance with a 0.010543 

error rate for hidden layer unit 128 and Test F5, based on CW-

MFO algorihm, compared to the other vulnerability datasets. 

Nevertheless, according to the results, worst error rate 

performance was found in the FFmpeg dataset with 0.0828 error 

rate for hidden layer units 32 and Test F1 based on CW-PSO 

algorihm. In point of other datasets, it was observed that the 

improved algorithm achieved the highest performance results in 

the Asteriks, LibPNG, VLC media player, LibTIFF, FFmpeg and 

Pidgin data sets, respectively.  

The statistical performance of the improved CW-PSO model 

outperformed worst results than the other improved algorithms 

for all  datasets. It was observed that the CW-MFO and CW-FFA 

models generally gave close results than CW-PSO algorithm.  In 

Table 7, there is generally observation about dramatic change for 

improved algorithms especially for CW-MFO algorithm based 

on Test F5.  

All experimental results show the low-hidden layers process, 

retain and output the high error rate results, whereas the high-

hidden layers focus on the local, high frequency information 

having the low error-rate performances, generally. Also, 

improved heuristic agorithms gave better results than the 

stardard  heuristic agorithms. 

    

Table 1. Dataset 

Data source Data source/Collection #of functions used/Collected 

Real-world Open Sources  

 
 

Vulnerable 
Non-Vulnerable 

FFmpeg 213 5701 

LibTIFF 96 731 

LibPNG 43 577 

Pidgin 29 8,050 

VLC Media Player 42 3,636 

Asteriks 56 14,648 
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Table 2. Error Rate of   compared   Algorithms  for FFpmeg Dataset 

  

Table 3. Error Rate of  compared   Algorithms  for  LibTIFF Dataset  

Test 

Benchmark 

Hidden Layer 

units 

Algorithms 

MFO CW-MFO PSO CW-PSO FFA CW-FFA 

 

Test F1 

 32 0.067895 0.05219 0.0878 0.0828 0.05435 0.0519 

  64 0.055744 0.04534 0.074677 0.07105 0.05096 0.04813 

  128 0.051643 0.041250 0.068755 0.065856 0.043535 0.040631 

 

Test F2 

  32 0.05896 0.046725 0.0733456 0.070673 0.048954 0.045455 

 64 0.05357 0.045909 0.072245 0.069109 0.04563 0.043768 

 128 0.051346 0.044105 0.06775 0.06496 0.04085 0.03912 

 

Test F3 

 32 0.063245 0.05593 0.072467 0.06714 0.053563 0.050874 

64 0.0608543  0.05334 0.069483 0.065003 0.05134 0.049392 

  128 0.058643 0.051325 0.06643 0.066585 0.049753 0.047466 

 

Test F4 

 32 0.063134 0.053368 0.064837 0.063464 0.047536 0.042789 

  64 0.060563 0.051345 0.061864  0.059202 0.045636 0.0408238 

 128 0.059533 0.047762 0.065355 0.061543 0.043543 0.0417463 

 

Test F5 

 32 0.0657843 0.054567 0.077544  0.07321 0.055323 0.052574 

  64 0.060424 0.055216 0.07343 0.072464 0.054636 0.054813 

 128 0.055733 0.051784 0.07134  0.070567 0.054552 0.052762 

Test 

Benchmark 

Hidden Layer units Algorithms  

MFO CW-MFO PSO CW-PSO FFA CW-FFA 

 

Test F1 

  32 0.053245 0.05065 0.08197 0.07903 0.051865 0.050619 

 64  0.048498 0.04371 0.076539 0.07353 0.049689 0.04725 

 128 0.045355 0.040576  0.073256 0.071326 0.046874 0.045327 

 

Test F2 

 32 0.047841 0.043642  0.06758 0.066436  0.045577 0.04454 

   64 0.046524 0.041532 0.065737 0.063431 0.043356 0.041953 

  128 0.042452 0.0403526 0.061546 0.060672 0.04087 0.0396304 

 

Test F3 

 32 0.058643 0.0547213 0.065864 0.063255 0.053573 0.052359 

   64 0.053547 0.052932 0.062568 0.061873 0.0508563 0.0495356 

  128 0.054564 0.055164 0.064357 0.06232  0.048659 0.046534 

   32 0.056432 0.053236 0.05978 0.061245 0.043566 0.040764 
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Table 4. Performance of Algorithms  forLibPNG Dataset 

 

Table 5. Performance of Algorithms  for Pidgin Dataset 

Test F4   64 0.055323 0.050764 0.061379 0.06327 0.0436789 0.04157363 

   128 0.05075  0.0498327  0.064781 0.06048 0.0408765 0.03870357 

 

Test F5 

  32 0.0545634  0.052354  0.075468 0.07255  0.0535667 0.05074732 

64 0.052434 0.0515946 0.072357 0.070732 0.0525608 0.05189543 

  128 0.0514789 0.0480953 0.071479 0.07067 0.054672 0.0529764 

 

Test 

Benchmark 

Hidden Layer 

units 

Improved Algorithms 

MFO CW-MFO PSO CW-PSO FFA CW-FFA 

 

Test F1 

32 0.043688 0.037846 0.064325 0.059636 0.048543 0.0419016 

64 0.041252 0.034247 0.062356 0.0634652 0.0456364 0.0425733 

128 0.034673 0.030421 0.06244 0.060678 0.041356 0.0389311 

 

Test F2 

32 0.037576 0.036674 0.069086 0.067632 0.0464675 0.0419644 

64 0.034632 0.033755 0.065746 0.062474 0.0446631 0.0407453 

128 0.033525 0.0310357 0.063563 0.06072 0.0408334 0.038647 

 

Test F3 

32 0.053356 0.050533 0.066576 0.061467 0.057982 0.0517858 

64 0.050734 0.0480536 0.06446 0.06345 0.0515674 0.0508432 

128 0.049874 0.0470734 0.062355 0.061478 0.052578 0.0496433 

 

Test F4 

32 0.053694 0.051346 0.060843 0.058532 0.0547683 0.0406532 

64 0.052596 0.0490645 0.057574 0.053547 0.042675 0.0396542 

128 0.048464 0.0436875 0.054356 0.052724 0.039868 0.0379432 

 

Test F5 

32 0.045746 0.041795 0.064632 0.061456 0.0489554 0.045363 

64 0.046467 0.043245 0.062456 0.0608432 0.044678 0.0424842 

128 0.04635 0.0410643 0.059641 0.0579533 0.043678 0.0408426 

Test 

Benchmark 

Hidden Layer 

units 

Algorithms  

MFO CW-MFO PSO CW-PSO FFA CW-FFA 

 

Test F1 

   32 0.061567 0.053467 0.059064 0.057532  0.057458 0.053573 

   64 0.058642 0.0504323  0.055798 0.054685  0.055742 0.0547894 

 128 0.053567  0.049736  0.052356 0.051894  0.052345  0.050543  

    32 0.049732 0.048643 0.072533 0.068954 0.051546 0.0469755 
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Table 6. Performance of Algorithms  for VLC Media Player Dataset 

 

 

Test F2    64 0.043467 0.043562 0.067843 0.065764 0.047545 0.0445784 

  128 0.044315 0.041374 0.060985 0.060745 0.045643 0.043665 

 

Test F3 

   32 0.054178 0.051456 0.065736 0.063563 0.057535 0.0526674 

    64 0.049746 0.046975 0.065743 0.061345 0.054356 0.050853 

   128 0.055464 0.050753 0.0608345  0.059043  0.050786 0.0470532 

 

Test F4 

 32 0.059754 0.0565732 0.061356 0.060643 0.044635  0.0414678 

 64 0.055548  0.052457 0.058535 0.055356 0.043534 0.0390654 

   128 0.054356 0.051473 0.057097 0.056894 0.039643 0.0357547 

 

Test F5 

  32 0.060532 0.052466 0.070643 0.06895  0.054244 0.050746 

  64 0.058743 0.050754 0.067843 0.0613456 0.052442 0.051467 

    128 0.0524553 0.0517577 0.058546  0.056733 0.048433 0.045783 

Test 

Benchmark 

Hidden Layer units  Algorithms  

MFO CW-MFO PSO CW-PSO FFA CW-FFA 

 

Test F1 

32 0.046535 0.042784 0.059646 0.051643 0.0485321 0.042466 

 64 0.043586 0.040643 0.048643 0.043677 0.0445632 0.040854 

128 0.040621 0.038975  0.043678 0.039864 0.038743 0.034677 

 

Test F2 

 32 0.048432 0.0428478 0.050749 0.045633 0.458952 0.409847 

 64 0.045355 0.038724 0.048695 0.043253 0.4324535 0.3764345 

 128 0.041245 0.033859 0.046784 0.040932 0.035652 0.0318563 

 

Test F3 

 32 0.054355 0.050863 0.053563 0.0568732 0.0542454 0.04853 

   64 0.051234 0.048762 0.048676  0.0513456 0.0472312 0.0436275 

  128 0.054234  0.041456 0.055563 0.0508732 0.046343 0.04146  

 

Test F4 

32 0.056345 0.048725 0.0497642 0.0425643 0.043522 0.0379464 

  64 0.052355 0.046832 0.044774 0.040826  0.363587 0.309825 

 128 0.05352 0.0425736 0.047324 0.0386754 0.045673 0.0369378  

 

Test F5 

  32 0.055354 0.0508373 0.045642 0.045763 0.056732 0.050745 

  64 0.050743 0.0482895 0.041433 0.0423455 0.053429 0.048725 

 128 0.047842 0.046356 0.043566 0.040824 0.048563 0.045256 
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Table 7. Performance of Algorithms  for  Asteriks Dataset 

 

5. Conclusion  

This paper provides software vulnerability detection by 

defining a workflow for the learning of optimized feature 

representations for vulnerability detection by nature-inspired 

metaheuristic optimization algorithms. The current study 

researches a new architecture for vulnerability detection and 

prediction tasks with the clock-work memory mechanism, which 

operates at different hidden layer units, with nature-inspired 

algorithms to optimize patterns of software vulnerabilities. 

According to the findings acquired, the proposed algorithm 

performs well in terms of the detection rate of the optimized 

patterns.  

Future studies may include semantic representation generation 

techniques to explore whether these methods can produce more 

effective optimized representations with more semantic 

information preserved to achieve improved vulnerability 

detection performance.  
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