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Abstract 

In this paper, as a new method for obtaining the numerical solution of nonhomogeneous Fisher-Kolmogorov equation, Bernoulli-

collocation method is introduced. Bernoulli-collocation method is employed for three different cases of Fisher-Kolmogorov equation. 

Obtained numerical results are presented in the tables and graphicals forms. 

Keywords: Bernoulli collocation method, Fisher Equation, Numerical Solution 

Homojen Olmayan Fisher-Kolmogorov Denkleminin Çözümü Üzerine 

Öz 

Bu makalede, homojen olmayan Fisher-Kolmogorov denkleminin sayısal çözümünü elde etmek için yeni bir yöntem olarak Bernoulli 

sıralama yöntemi tanıtılmaktadır. Fisher-Kolmogorov denkleminin üç farklı durumu için Bernoulli sıralama yöntemi kullanılmıştır. 

Elde edilen sayısal sonuçlar tablolar ve grafik formlarda sunulmuştur.  

Anahtar Kelimeler: Bernoulli sıralama yöntemi, Fisher Denklemi, Nümerik çözüm 
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1. Introduction 

  Generally problems existing in the engineering and nature 

are modeled by means of differential equations. After modeling 

the problem in the form of differential equation, main important 

question arises. Does the model have a solution? If yes, What is 

the solution? If the differential equation corresponding to problem 

is linear, the solution of this differential equation can be generally 

found. If the differential equation is nonlinear, finding the solution 

of this differential equation is not easy and sometimes it is 

impossible or unthinkable. In that cases, finding the numerical 

solutions of nonlinear differential equation is considered. One of 

the nonlinear differential equations is Fisher-Kolmogorov 

equation and Fisher-Kolmogorov equation was introduced in 

(Adomian, 1995) for decsribing the reaction-diffusion phonema 

in the chemical sciences. Several numerical methods are 

introduced for obtaining the numerical solution of Fisher-

Kolmogorov equation. In (Sweilam, ElSakout & Muttardi, 2021), 

authors derived a new compact finite difference scheme in the 

spatial direction and used the semi-implicit Euler-Maruyama 

approach in the temporal direction to study a stochastic extended 

FisherKolmogorov equation with multiplicative noise 

numerically. In (Kadri & Omrani, 2011), a Crank–Nicolson type 

finite difference scheme to approximate the nonlinear 

evolutionary Extended Fisher–Kolmogorov (EFK) equation is 

presented. In (Araujo, 2014), authors considered an existence 

result for periodic solutions for a class of fourth-order ordinary 

differential equations involving extended Fisher–Kolmogorov 

and Swift–Hohenberg equations, where under a suitable growth 

condition on the nonlinear term, one proves an existence result by 

applying Mawhin’s continuation theorem. In (Cabada, Souroujon 

& Tersian, 2012), existence of heteroclinic solutions for 

semilinear second-order difference equations related to the 

Fisher–Kolmogorov’s equation is presented. In (Andreu, Caselles 

& Maz´on, 2010), a Fisher–Kolmogorov type equation is taken 

into account and it is proved that the existence and uniqueness of 

finite speed moving fronts and the existence of some explicit 

solutions in a particular regime of the equation. In (Yeun, 2013), 

it is studied the extended Fisher–Kolmogorov (EFK) equation and 

its variants. In (Danumjaya & Pani, 2005), a second-order 

splitting combined with orthogonal cubic spline collocation 

method is formulated and analysed for the extended Fisher–

Kolmogorov equation. With the help of Lyapunov functional, a 

bound in maximum norm is derived for the semidiscrete solution. 

Optimal error estimates are established for the semidiscrete case. 

Specifically, in this paper, a nonhomogeneous Fisher-

Kolmogorov is presented. Bernoulli collocation method is 

recalled and adopted to Fisher-Kolmogorov equation. By means 

of mathematical software, numerical solution of Fisher-

Kolmogorov equation is obtained. Obtained numerical solution is 

plotted for different values of 𝑣. Also, error analysis is presented 

by means of table. Let us take into account following 

nonhomogeneous Fisher-Kolmogorov equation as follows;  

𝜕𝓌(𝑡, 𝑥)

𝜕𝑡
+ 𝜐

𝜕4𝓌(𝑡, 𝑥)

𝜕𝑥4
−

𝜕2𝓌(𝑡, 𝑥)

𝜕𝑥2
+ 𝜓(𝓌)

= 𝑓(𝑡, 𝑥) 

(1) 

in which 𝓌 (𝑡, 𝑥) is reaction-diffusion function, (𝑥, 𝑡) ∈
[0, ℓ] × [0, 𝑇], 𝜓(𝓌) =  𝓌3 − 𝓌, 𝑓(𝑡, 𝑥) is external function 

effected on the reaction-diffusion and 𝜐 is a non negative 

constant. Eq.(1) is subject to the following boundary conditions; 

𝓌(𝑡, 𝑥) = 0,      𝓌𝑥𝑥(𝑡, 𝑥) = 0    𝑎𝑡   𝑥 = 0, ℓ (2) 

and following initial conditions; 

𝓌(𝑡, 𝑥) = 𝓌0(𝑥)   𝑎𝑡  𝑡 = 0. (3) 

2. Bernoulli collocation method 

The recurrence relation of the Bernoulli polynomials is 

defined by the following relation; 

𝐵𝑛(𝑥) = 2𝑥𝐵𝑛−1(𝑥) + 𝐵𝑛−2(𝑥)   (4) 

For 𝑛 ≥ 3 ,  

𝐵1(𝑥) = 1, 𝐵2(𝑥) = 2𝑥 . (5) 

The first few Bernoulli polynomials are 

𝐵1(𝑥)  =   1, 

𝐵2(𝑥)  =   𝑥 −
1

2
,  

𝐵3(𝑥)  =   𝑥2 − 𝑥 −
1

6
,   

𝐵4(𝑥)  =   𝑥3 −
3

2
𝑥2 +

𝑥

2
,                                                                  

. 

. 

. 

   

(6) 

Our goal is to get the approximate solution as the truncated 

Bernoulli series defined by 

𝒴(𝑥) = ∑ 𝑐𝑛

𝑁+1

𝑛=1

𝐵𝑛(𝑥) (7) 

where  𝐵𝑛(𝑥) denotes the Bernoulli polynomials; 𝑐𝑛    (1 ≤ 𝑛 ≤
𝑁 + 1)  are the unknown coefficients for Bernoulli polynomial, 

and N is any positive integer which possess  𝑁 ≥ 𝑚. Let us 

assume that linear combination of Bernoulli polynomials Eq.(7) 

is an approximate solution of Eq.(1). Our purpose is to determine 

the matrix forms of Eq.(1) by using (7). Firstly, we can write 

Bernoulli polynomials (5) in the matrix form 

𝑩(𝑥) = 𝑻(𝑥) 𝑴 (8) 

where 𝑩(𝑥) = [𝐵1(𝑥)  𝐵2(𝑥) … 𝐵𝑁+1(𝑥)],   𝑻(𝑥) =
(1  𝑥  𝑥2 𝑥3 … . 𝑥𝑁 ), 𝑪 = (𝑐1   𝑐2  … 𝑐𝑁+1)

𝑇  𝑎𝑛𝑑  
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𝑀 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

2

1

6
0 −

1

30
0

1

42
0 −

1

30

0 1 −1
1

2
0 −

1

6
0

1

6
0

0 0 1 −
3

2
1 0 −

1

2
0

2

3

0 0 0 1 −2
5

3
0 −

7

6
0

0 0 0 0 1 −
5

2

5

2
0 −

7

3

0 0 0 0 0 1 −3
7

2
0

0 0 0 0 0 0 1 −
7

2

14

3
0 0 0 0 0 0 0 1 −4
0 0 0 0 0 0 0 0 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The matrix form of Eq.(7) by a truncated Bernoulli series is given 

by 

𝒴(𝑥) = 𝑩(𝑥) 𝑪. (9) 

By using Eq.(8) and Eq.(9), the matrix relation is expressed as 

𝒴(𝑥)    ≅   𝒴𝑁(𝑥) = 𝑻(𝑥)𝑴𝑪 

                      𝒴(𝜸)(𝑥)   ≅   𝒴𝑁
(𝛾)

 (𝑥)

= 𝑻(𝑥)𝑿(𝛾)
(𝑥)

𝑫(𝜸)𝑴𝑪 

𝒴′′(𝑥)   ≅   𝒴𝑁
′′(𝑥) = 𝑻(𝑥)𝑫2𝑴𝑪 

   

(10) 

where 

𝑿(𝛾)(𝑥) = [0, 𝑥1−𝛾 , 𝑥2−𝛾, … , 𝑥𝑁−𝛾] 

𝑫 =

[
 
 
 
 
 
 
 
0 1 0 0 0 0 ⋯ 0
0 0 2 0 0 0 ⋯ 0
0 0 0 3 0 0 ⋯ 0
0 0 0 0 4 0 ⋯ 0
0 0 0 0 0 5 ⋯ 0
0 0 0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 𝑁
0 0 0 0 0 0 ⋯ 0]

 
 
 
 
 
 
 

 

𝑫0 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 ⋯ 0
0 1 0 0 0 0 ⋯ 0
0 0 1 0 0 0 ⋯ 0
0 0 0 1 0 0 ⋯ 0
0 0 0 0 1 0 ⋯ 0
0 0 0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0
0 0 0 0 0 0 ⋯ 1]

 
 
 
 
 
 
 

 

𝑻 =  [

𝑻(𝑥0)
𝑻(𝑥1)

⋮
𝑻(𝑥𝑁)

] =  

[
 
 
 
1 𝑥0 ⋯ 𝑥0

𝑁

1 𝑥1 ⋯ 𝑥1
𝑁

1 ⋮ ⋯ ⋮
1 𝑥𝑁 ⋯ 𝑥𝑁

𝑁]
 
 
 

  

𝑫(𝛾) =

[
 
 
 
 
 
 
 
 
0 0 0 … 0

0
Г(2)

Г(2 − 𝛾)
0 … 0

0 0
Г(3)

Г(3 − 𝛾)
… 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 …
Г(𝑁)

Г(𝑁 − 𝛾)]
 
 
 
 
 
 
 
 

 

By using Eq.(10), we obtain the following relation 

𝒀(𝑘)(𝑥) = 𝑻(𝑥)𝑫𝑘𝑴𝑪 (11) 

By substituting the Bernoulli collocation points given by 

𝑥𝑖 = 𝑎 +
(𝑏 − 𝑎)𝑖

𝑁
 , 𝑖 = 0,1, … 𝑁 (12) 

into Eq. (11), we obtain  

𝒀(𝑘)(𝑥𝑖) = 𝑻(𝑥𝑖)𝑫
𝑘𝑴𝑪 ,   𝑘 = 0, 𝛾, 2. (13) 

and the compact form of the relation (13) becomes 

𝒀(𝑘) = 𝑻𝑫𝑘𝑴𝑪,   𝑘 = 0, 𝛾, 2. (14) 

In this way, the unknown Bernoulli coefficients  𝑐𝑛,   𝑛 =
1,2, … , 𝑁 + 1 are obtained by solving the system. Then, these 

coefficients are substituted into (7), and the approximate solution 

is obtained. 

3. Simulation results and discussions 

In this section, obtained numerical solutions via Bernoulli 

collocation method are presented in the table and graphical forms. 

The  𝑓(𝑡, 𝑥) is taken into account as 𝑥𝑒−𝑡 .  Also, 𝑙  and 𝑇  are 

considered as 1 and 1, respectively.  Numerical results show that 

introduced new numerical method for solving Fisher-

Kolmogorov is very effective. In table 1, numerical solution of the 

equation under consideration is given at the some points of 𝑡 in 

[0,1] for different values of  𝜐. In table 2, error analysis of the 

numerical solution gained by means of Bernoulli collocation 

method is presented and observations on table 2 reveals that 

Bernoulli collocation method has the very good accurate for 

obtaining solutions of nonlinear equations. In Figure 1, obtained 

numerical solutions is illustrated for  (𝑥, 𝑡)  in [0,1] × [0,1].
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Table 1. Some values of numerical solutions for different 𝑡 at 𝑥 = 0.5. 

                 𝑡 

𝑣 
0.0 0.2 0.4 0.6 0.8 1.0 

0.1 

0.001 

0.0001 

0.0 

0.0 

0.0 

0.0034678 

0.0048285 

0.0048450 

0.0147922 

0.0243134 

0.0244505 

0.0256025 

0.0471310 

0.0474783 

0.0250025 

0.0523136 

0.0528039 

0.0069034 

0.0249079 

0.0252991 

 

Table 2. Error analysis of numerical solutions obtained by Bernoulli Collocation method for different 𝑡 at 𝑥 = 0.5 

                 𝑡 

𝑣 
0.0 0.2 0.4 0.6 0.8 1.0 

0.1 

0.001 

0.0001 

0.0 

0.0 

0.0 

3.60822 × 10−16 

4.85723 × 10−17 

2.77556 × 10−17 

1.58207 × 10−15 

3.60822 × 10−16 

8.32667 × 10−17 

1.33227 × 10−14 

4.44089 × 10−16 

5.55112 × 10−16 

2.13163 × 10−14 

2.66454 × 10−15 

6.21725 × 10−15 

8.15554 × 10−3 

3.67326 × 10−4 

3.42666 × 10−4 

 

6. Conclusions 

In this paper, numerical solution of nonhomogeneous Fisher-

Kolmogorov equation is obtanied by employing the Bernoulli-

Collocation method. Obtained results are presented in tables and 

graphical forms. After observing the tables and graphic for 

numerical solutions obtained by Bernoulli collocation method, it 

reveals that Bernoulli collocation method is very effective and it 

is robust method for obtaining numerical solutions of other 

nonlinear equations.  
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