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Abstract 

This paper, deals with the (2+1)-dimensional complex three coupled nonlinear Maccari’s model (3-CCME) by utilizing recently 

presented modified new Kudryashov method (mNKM). The focus of this article is to obtain non-topological soliton solution of 3-CCME 

by applying mKNM method, which has not been applied before to the investigated problem. Applying the proposed method successfully, 

besides the non-topological soliton solution of the investigated problem, the breather-like type soliton solution was also obtained and 

the obtained results are depicted by the 3D, 2D and contour graphical presentations. 
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(2+1)-boyutlu Kompleks Lineer Olmayan Üç Bağlı Maccari 

Modelinin Modifiye Edilmiş Yeni Kudryashov Yöntemi ile Topolojik 

Olmayan Soliton Çözümü  

Öz 

Bu makale, yakın zamanda sunulan modifiye edilmiş yeni Kudryashov yöntemini (mNKM) kullanarak (2+1)-boyutlu kompleks lineer 

olmayan üç bağlı Maccari modelini (3-CCME) ele almaktadır. Bu makalenin amacı, araştırılan probleme daha önce uygulanmamış olan 

mKNM yöntemini uygulayarak 3-CCME probleminin topolojik olmayan soliton çözümünü elde etmektir. Önerilen yöntem başarılı bir 

şekilde uygulanarak, incelenen problemin topolojik olmayan soliton çözümünün yanı sıra, breather benzeri türünde soliton çözümü de 

elde edilmiş ve elde edilen sonuçlar 3D, 2D ve kontur grafik sunumları ile gösterilmiştir.  
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1. Introduction 

In the last quarter century, especially depending on the 

developments in electronics, computers and software, many 

symbolic software algorithms and packages have been developed.  

With the effective use of these, many researchers have introduced 

plethora of algorithms and methods for differential equations, 

nonlinear partial differential equations and nonlinear fractional 

differential equations. Some methods are, generalized tanh 

function [1], modified simple equation [2], auxiliary equation [3], 

a new Riccati equation rational expansion [4], variable separated 

ODE [5], enhanced modified tanh expansion [6], generalized 

Kudryashov [7], extended Kudryashov [8], Jacobi elliptical 

function [9], extended sinh-Gordon equation expansion [10], and 

many more. Moreover, these research and developments have also 

led to the emergence of some special and important new fields of 

study. Such as optics, optical soliton dynamics in fiber, 

optoelectronics etc [11-17].  

The (2+1)-dimensional complex three-coupled nonlinear 

Maccari’s model reads [18-20]:  
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In eq. (1) U(x,y,t),V(x, y,t),W(x,y,t)  stand for complex, 

R(x, y,t) represents the real scalar fields, respectively. i is 

complex unit ( 2i 1  ), x, y are the independent space variables 

and t denotes the time. Eq. (1) is the simple form of the two-

dimensional KdV equation and it is an important equation used to 

describe isolated wave motion concentrated in a small region of 

space and is widely used in many fields such as hydrodynamics, 

optics, plasma, and quantum physics and so on. Moreover, eq. (1) 

is a type of nonlinear Schrödinger equation (NLSE), so it has been 

used by researchers and many solutions have been derived with 

different methods [18-23]. 

In this study, different from the literature, it is aimed to obtain 

the exact soliton solution by using the recently presented modified 

new Kudryashov scheme [24-26].  

The study covers the following parts: Mathematical analysis 

and nonlinear ordinary differential equation (NLODE) form of the 

3-CCME obtained in section 2. In section 3, the simple new 

Kudryashov scheme and implementation to the 3-CCME is 

presented. In section 4, the obtained solutions and some graphics 

are presented. In section 5 which is the last part, some concluding 

remarks are given. 

2. NLODE Form and Constraint Equation 

of 3-CCME: 

To get the soliton solutions of 3-CCME in eq. (1), we construct 

the complex wave transformations as follow: 
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U U( x,y,t ) e u(x, y,t) e u( ),

V V( x,y,t ) e v(x, y,t) e v( ),

W W( x,y,t ) e w(x,y,t) e w( ),

R R(x,y,t) R( ),
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, ,x y r t x y t                (3) 

in which , , ,r    are the arbitrary real values to be 

calculated. Considering the eqs. (1), (2) and (3) together, we 

derive: 
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In eq. (4) superscript ' shows the d / d . Integrate the eq. (4.4) 

once and take into account the integration constant zero, the result 

is, 
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Plugging the eq. (5) into eqs. (4.1) -(4.3) we derive, 
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To obtain the soliton solution of eq. (6), we accept the following 

simple definitions: 

1 2, ,v u w u               (7)  

where 
1   and 

2  are non-zero arbitrary values. Combination of 

the eqs. (5), (6) and (7), gives: 
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Let us consider eq. (9.1) and equate its real and imaginary  

parts separately to zero, 

      2 0                  (10) 

(
( )

)
2

32 1 2u r u
1

u 0
1






 



        (11) 

Eq. (10) yields  

                                 ,2                           (12) 

and eq. (11) is the NLODE form of the eq. (1) under the following 

structure:  

       ( )2

1

32

21 r u u1        

   1 u 0         
(13) 

3. The Proposed Simple mNKM and 

Implementation to 3-CCME  

To get the non-topological soliton solution of eq. (1), we propose 

the solution in the following truncated series form: 
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where ,...,0 kA A  unknown real values,  k is the positive integer 

balancing constant which is to be obtained by using the balancing 

rule in eq. (13). If we apply the balancing rule between the terms 

 u  ,   
3

u   in eq. (13), results, k=1. So, eq. (14) turns into 

following form: 
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where  ( )  satisfies the following differential equation,  
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The eq. (16) has the solution, 
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where ,L  are non-zero arbitrary real values. Inserting the  eqs. 

(15) and (16) into eq. (13), we derive the polynomial form in 

power of ( ).   Considering the all coefficients of the ( )i  , 

(i=0,1,2,3) as zero we achieve the following algebraic system: 
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Eq. (18) produces the following possible solution sets, 
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If we substitute the 1Set  into eq. (15) by combine the eqs. (2), (3), 

(8) and (12) together, result is the soliton solution of eq. (1) as 

follows:  
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Remark: One can get the other soliton solution functions easily 

by substituting the iSet  (i=2,…,7) into eq. (15) by combining the 

eqs. (2), (3), (8) and (12) together. Therefore, in order not to take 

up too much volume in the article, only the function for 1Set  is 

given and a graphically presented. Besides, the functions obtained 

by using other solution sets will also give the same type of soliton 

solution. 
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4. Results and Discussion 

Let us consider the eqs. (20),  (21), (22) and  (23) for presenting 

the some graphical representations.  

In fig. 1, we depict various plots of investigated problem. Fig. 1-

a represents 3D U(x,y .t) , fig. 1-b 3D  Re U(x,y .t) , fig. 1-c 

3D  Im U(x,y .t) , fig. 1-d contour U(x,y .t) , fig. 1-e contour 

 Re U(x,y .t) , fig. 1-e contour  Im U(x,y .t) , fig. 1-g 2D 

U(x,y .t) ,  fig. 1-h 2D  Re U(x,y .t)  and fig. 1-i 2D 

 Im U(x,y .t)  components of U(x, y .t)  in eq. (20), respectively. 

It is selected 1Set  and 0 75H . ,
1 1 2A . ,

1 20 5 0 7. , . , =0.75, =2.      The fig. 1-a, 1-d and 1-g 

represent non-topological soliton solution of U(x, y .t)  in eq. 

(20). The other sub-graphics of fig. 1 demonstrate the breather-

like soliton. Moreover, figs. 1-g, 1-h and 1-i indicate the traveling 

wave property of U(x, y .t)  for t 1,2 and 3.   

Remark: Since it is defined as 
1 2, ,v u w u   in eq. (7), the 

graphs of V(x,y,t) and W(x,y,t) will have the same shape as the 

multiplication of 
1  and 

2 , respectively, for the amplitudes of 

the graphs given by fig. 1. But since they will have the same form, 

they have not been plotted separately. 

Fig. 2 shows the wave dynamic of the R(x, y .t)  solution in eq. 

(23) for  0 75H . ,
1 1 2A . , 1 0 5. ,  2 0 7. ,  =0.75,

=2  and 1Set . Fig. 2-a for 3D, fig. 2-b for contour and fig. 2-c 

for 2D view of R(x,y .t) . The fig. 2 depicts non-topological 

soliton solution of R(x,y .t)  in eq. (23). Also, we can see the 

traveling wave property of R(x,y .t)  for  t 1,2 and 3  in fig. 2-

c. 

 
(a) 3D view of U(x,y .t)  

 
(b) 3D view of  Re U(x,y.t))  

 

 

 
  (c) 3D view of  Im U(x,y.t))  

 

 

 
(d) contour of U(x,y .t)  

 

 
(e) contour of  Re U(x,y.t))  
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  (f) contour of  Im U(x,y.t))  

 
(g) 2D view of U(x,y .t)  

 
(h) 2D view of  Re U(x,y.t))  

 
  (i) 2D view of  Im U(x,y.t))  

Figure 1 The various plots of U(x,y,t) in eq. (20) by selecting 

1Set   in eq. (19) and 10L , 0 75H . ,
1 1 2A . , 1 0 5. ,   

2 0 7. , =0.75, =2.    (in fig. (g-i), t 1,2 and 3 ) 

 

 
(a) 3D view of R(x,y .t)   

 
(b) contour of R(x,y .t)  

 
(c) 2D view of R(x,y .t)  

 
Figure 2 The various plots of R(x,y,t) in eq. (23) by selecting 

1Set   in eq. (19) and 10L , 0 75H . , 1 1 2A . , 1 0 5. ,   

2 0 7. , =0.75, =2.    

5. Conclusion 

In this research article, in order to obtain non-topological 

soliton solution of 3-CCME, we proposed and successfully 

implemented recently presented modified new Kudryashov 

method for the first time in this article.  We derived not only non-

topological soliton solution but also breather-like soliton solution 

from the real and imaginary parts of 3-CCME.  The obtained 

results imply that the modified new Kudryashov method is easily 

applicable, an effective, efficient and powerful method for solving 

such kind of evolution problems.  
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