
Avrupa Bilim ve Teknoloji Dergisi 

Sayı 38, S. 376-385, Ağustos 2022 

© Telif hakkı EJOSAT’a aittir 

Araştırma Makalesi 
 

 

 

 
www.ejosat.com ISSN:2148-2683 

 

European Journal of Science and Technology 

No. 38, pp. 376-385, August 2022 

Copyright © 2022 EJOSAT 

Research Article 

 

 

http://dergipark.gov.tr/ejosat   376 

Augmented Reality Aided Pre-Diagnosis Environment For 

Telemedicine: Superficial Vein Surveillance System 

Huseyin A. Erdem1*, Semih Utku2 

1* Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, Department of Computer Engineering, İzmir, Turkey, (ORCID: 0000-0002-5720-

0017), huseyinaerdem@gmail.com  
2 Dokuz Eylül University, Faculty of Engineering, Department of Computer Engineering, İzmir, Turkey, (ORCID: 0000-0002-8786-560X), semih@cs.deu.edu.tr  

(First received 22 April 2022 and in final form 2 August 2022) 

(DOI: 10.31590/ejosat.1107531) 

 

ATIF/REFERENCE: Erdem, H. A. & Utku, S. (2022). Augmented Reality Aided Pre-Diagnosis Environment for Telemedicine: 

Superficial Vein Surveillance System, European Journal of Science and Technology, (38), 376-385. 

 

Abstract 

The proposed system creates a virtual pre-diagnosis environment that can detect narrowings in superficial veins by using the near-

infrared video images. In the study, the near-infrared video recordings of the tissue to be followed are taken by the user in the home 

environment via the smart device. The images obtained by improving the discontinuous structures in the vein images undergone the 

image pre-processing phase are classified by using a hybrid decision-making algorithm that evaluates two separate convolutional 

neural network models together. According to the results of the hybrid decision-making algorithm, the imaged regions could be 

classified with Model-1 (Accuracy Rate (0.872), Misclassification Rate (0.128), Precision (0.372), Prevalence (0.500) and F-Score 

(0.496)) and Model-2 (Accuracy Rate (0.816), Misclassification Rate (0.184), Precision (0.407), Prevalence (0.500) ve F-Score 

(0.543)) without the need for large amounts of training dataset. In the study, the detected vein narrowings in the vein images are 

marked on the relevant location. The marked images are superimposed on the real images and the narrowing progress process is 

presented to the user and his/her physician as a telemedicine application in the form of a video-based indirect augmented reality 

environment representing a long time interval (week, month, year).  

 

Keywords: Near-Infrared Light, Vein Narrowing Detection, Convolutional Neural Network, Yolov3, Augmented Reality, 

Telemedicine. 

Teletıp İçin Artırılmış Gerçeklik Destekli Ön-Teşhis Ortamı: Yüzeysel 

Damar Takip Sistemi 

Öz 

Önerilen sistem, yakın-kızılötesi video görüntülerini kullanarak yüzeysel damarlardaki daralmaları tespit edebilen sanal bir ön-teşhis 

ortamı oluşturmaktadır. Çalışmada, takip edilecek dokunun yakın kızıl-ötesi video kayıtları akıllı cihaz aracılığıyla kullanıcı 

tarafından ev ortamında alınmaktadır. Görüntü ön-işleme aşamasından geçirilen damar görüntülerindeki kesikli yapılar giderilerek 

elde edilen görüntüler, iki ayrı evrişimsel sinir ağı modelini birlikte değerlendiren hibrit karar verme algoritması kullanılarak 

sınıflandırılmaktadır. Hibrit karar verme algoritması sonuçlarına göre, görüntülenen bölgeler, Model-1 (Doğruluk Oranı (0.872), 

Yanlış Sınıflandırma Oranı (0.128), Kesinlik (0.372), Yaygınlık (0.500) ve F-Skoru (0.496)) ve Model-2 ile (Doğruluk Oranı (0.816), 

Yanlış Sınıflandırma Oranı (0.184), Kesinlik (0.407), Yaygınlık (0.500) ve F- Skoru (0.543)) büyük miktarda eğitim verisetine ihtiyaç 

duyulmadan sınıflandırılmıştır. Çalışmada, damar görüntülerinde tespit edilen damar daralmaları, ilgili konum üzerine 

işaretlenmektedir. İşaretli görüntüler, gerçek görüntüler üzerine bindirilmekte ve daralma gelişim süreci, uzun bir zaman aralığını 

(hafta, ay, yıl) temsil eden video-tabanlı dolaylı artırılmış gerçeklik ortamı şeklindeki bir uzaktıp uygulaması olarak kullanıcıya ve 

hekimine sunulmaktadır. 
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1. Introduction 

Image-based applications currently used for smart devices 

(smart phones, personal digital assistants, tablet computers etc.) 

address areas such as gaming, health, banking and social media. 

The Near-Infrared Radiation (NIR, the part of the infrared region 

in the wavelength range of 700 to 900 nm (Ferrari et al., 2004; 

Rao et al., 2017; Şayli et al., 2004)) light region of the 

electromagnetic spectrum is used as an imaging technique in 

image processing studies carried out in the healthcare field. NIR 

light has been currently used in hospitals as a method of 

illuminating the tissue to be imaged in various applications. 

These applications include vein visualization in order to 

facilitate vascular access, determining the amount of oxygen in 

the blood, or patient registration with palm vein recognition.  

Cholesterol accumulated on the walls of the veins results in 

narrowing in the vein over time and prevents the passage for 

blood flow, and may cause occlusion in the veins in the 

following periods (weeks, months, years). Sometimes, blood 

clots can block blood flow by blocking blood veins. In this 

study, a virtual pre-diagnosis environment that can detect 

vascular narrowings within the context of telemedicine is 

presented.  

Telemedicine can be defined as a communication system 

that enables patients in remote locations to exchange health care 

information (Craig & Petterson, 2005) with specialists 

(physician, physiotherapist) in order to receive health services 

through information systems. In particular, it seems that the need 

for patient follow-up with telemedicine has increased even more 

during the Coronavirus Disease 2019 (Covid-19) pandemic 

(Chunara et al., 2020). In the study which is carried within the 

scope of the ongoing doctoral thesis, in the frame of 

telemedicine, it will be possible to prevent potential delays in 

treatment by providing early diagnosis of vascular narrowings 

with the help of the proposed Augmented Reality (AR) based 

virtual environment. Digital image processing, classification or 

object detection required to create such an environment are 

processes which necessitate high performance and long training 

periods. For this reason, it is not possible to perform these 

operations on smart devices that appeal to general use. 

Performing these operations on a server with high computing 

and hardware capabilities will enable the system to work more 

effectively. In the system, the user is only responsible for taking 

the NIR video recordings with the NIR camera connected to 

his/her smart device (preferably via USB connection) and for 

uploading them to the server. After the video recordings are 

uploaded to the server, first the vascular structures are obtained 

on the server, the images are combined in order to increase the 

vein integrity, then it is determined whether the veins in the 

images belong to the same tissue region or not, and finally, 

narrowing is detected. As the last step, a video-based indirect AR 

environment is created by superimposing virtual veins on real 

tissue (right or left forearm in the study) images in such a way 

that corresponds to their real positions. Additionally in the study, 

in cases where the image quality is insufficient and the number 

of images is low, the contribution of both the proposed video-

based image acquisition system and the hybrid decision-making 

algorithm to the classification accuracy has been evaluated. 

2. Material and Method 

The proposed system shown in Figure 1 is discussed in six 

stages as hardware, image pre-processing, image post-

processing, classification, object detection and AR. 

2.1. Hardware Phase 

The spectroscopy technique examines the interaction of 

matter and light. In this technique, matter (in other words, 

molecules in matter) is illuminated by photons of light in a 

specific region of the electromagnetic spectrum. By measuring 

and interpreting the interaction of illuminated molecules with 

photons, information about the structure of the material is 

obtained. In non-invasive superficial vein imaging studies, NIR 

spectroscopy technique (Alwazzan, 2020; Elnasir & 

Shamsuddin, 2014; Huda et al., 2021; Shrotri et al., 2010; 

Yılmaz, 2014) was used in terms of hardware. Hemoglobin 

molecules are sensitive to NIR photons. In the first NIR optical 

window (wavelength range of 700-900 nanometers) of the 

electromagnetic spectrum, the absorption coefficient of NIR 

photons is higher for Hemoglobin molecules in the 700-800 nm 

range in the veins (which has transferred its oxygen to the 

surrounding tissues, Hb), in the 800-900 nm range in the arteries 

(oxygen carrying, HbO2), respectively (Sordillo et al., 2014; 

Wadhwani et al., 2015; Wang & Leedham, 2006). NIR light in 

the range of 740 to 940 nm can penetrate the skin up to 3-5 mm 

(Meng et al., 2015; Wadhwani et al., 2015). In the studies, NIR 

light with a wavelength of 750 nm (Crisan et al., 2007), 850 nm 

(Rao et al., 2017; Mangold et al., 2013; Meng et al., 2015; Tien 

et al., 2015; Wang & Leedham, 2006) or 960 nm (Francisco et 

al., 2021) was used for vein imaging. Among them, 850 nm 

wavelength was preferred more in terms of providing better NIR 

images. In terms of the physical placement of the NIR Light 

Emitting Diodes (LEDs), the best light distribution in vein 

imaging applications was stated to be provided when the camera 

is in the center and the LEDs are arranged circularly around it 

(Shrotri et al., 2010; Şeker & Engin, 2017; Wadhwani et al., 

2015). There are also studies where disc-shaped placements 

(Şeker & Engin, 2017) or sequential LED placement (Meng et 

al., 2015) on head-mounted display glasses (within the scope of 

wearable vein visualization system offering AR) are used. 

In the hardware phase of this study, a USB-supported 

external NIR camera with a resolution of 2 megapixels, in which 

5 NIR LEDs with a wavelength of 850 nanometers are arranged 

circularly around the camera lens, was used to illuminate the 

veins. Smart device cameras are equipped with NIR-blocking 

(IR-cut off) filter to capture clearer images. There is a high 

probability of damaging of the camera lens during removal of 

these filters within the scope of NIR imaging. Therefore, in this 

study, it is preferred to use an external NIR camera that can be 

easily integrated with the user's smart device via USB 

connection. 
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Figure 1. Flow chart of the proposed system phases. 

Although processing only one image (taken directly as 

photo frame) per week reduces the processing load during the 

image processing phase, it makes it difficult to detect the entire 

vein from this one image in low camera resolution. Furthermore, 

it will not meet the needs of hundreds of images to be required 

during classification phase. On the other hand, the need for 

asking the user to take more than one photo frame for fixing the 

tissue region to be visioned hinders the ease of use of the 

application. For this reason, during the image taking part of the 

study, it was evaluated that instead of photography video 

shooting was performed to eliminate these problems. 

2.2. Image Pre-Processing Phase 

The 25-second videos recorded with the NIR camera are 30 

fps (30 frames per second), each video consisting of 750 frames 

in total. Every video with 1920x1080 resolution was firstly 

converted into 1920x1080x3 uint8 type in the feature of RGB 

NIR raw-image files with bitmap extension. NIR raw-images 

were image pre-processed (In this section, the image processing 

steps used in Francis et.al.’s (2017) study are utilized. Unlike 

their study, extraction of Region of Interest (ROI) part, which 

expresses the part of the image where only the veins of interest 

are located, was applied before the image processing steps in 

order to reduce the processing load. This phase of the system, 

which was developed within the scope of the ongoing doctoral 

study, was introduced in (Erdem et al., 2020). Different from 

these two studies, in this study, the veins were obtained in black 

with a white background in the final images.) by using the 

MATLAB® R2017a (MathWorks, 1996) program and the 

resulting images are given in Figure 2. 

 

Figure 2. Image pre-processing steps (applied to image with 

code Week1_Img0_RightArm.bmp) 

In order to extract the vein patterns with the image pre-

processing phase, first of all, the ROI where the vein narrowing 

will be detected was determined in the three dimensional (with 

Red Green Blue-RGB values) NIR raw-image. Images were 

reduced to two dimensions (hue and saturation information in 

the image are deleted, luminance information is preserved 

(MathWorks, 1996)) by grayscale conversion in order to apply 

image processing filters on the ROI (truecolor RGB image of 

445x947x3 uint8 type) clipped from the parts that will not be 

used within the scope of narrowing detection. Then a median 

filter was applied to remove noise. For intensity adjustment in 

the images, adaptive histogram equalization was conducted 

consecutively and then the median filter was used again. Edge 

detection of veins was performed with the gabor filter which can 

be applied to two dimensional images. At a level of bitwise, vein 

extraction was applied to highlight vein patterns. By removing 

the small-sized structures that do not represent the veins through 

the morphological pixel erosion process, the veins in the images 

were further smoothed in shape. As the final step, the black and 

white colors in the images were inverted by complement and 

NIR modified-images in which the vein structures were 

represented in black were obtained. 

2.3. Image Post-Processing Phase 

When photographing the tissue area illuminated by NIR 

light, it was observed that some vascular structures which should 

be continuous were displayed intermittently and a complete 

integrity could not be obtained for the vascular structure. Among 

the main factors leading to this circumstance are the angle of 

illumination, camera position and resolution, vibration that may 

occur on the camera during shooting and so on. The aim of the 

image post-processing phase is to create an imaging system that 

will be affected as little as possible by such losses that may 

occur in the image due to external factors. In order to include 

such feature in the system, the fast working (Mistry & Banerjee, 

2017) Speeded-Up Robust Features (SURF) local feature 

detector function (MathWorks, 1996) was used in this study. By 

using the SURF local feature detector function, matching points 

that provide similarity between two images are detected. With 

the help of these similarity points, the rotation angle or scale 

value (convergence/divergence) of these two images relative to 

each other can be determined. The detected rotation angle and 

scale value are used to bring the angle and/or scale of the second 

image to the previous one’s. For this, matching points for the 

first and second images were determined as shown in Figure 3, 

and rotation and/or scaling corrections were made on the second 

image taking into account the calculated rotation and/or scaling 

values regarding these points (first image is taken as reference). 

According to the results calculated with the SURF local feature 

detector function, when the change in the second pre-processed 

image does not exceed ± 0.07 angularly and 0 to +0.1 in scale 

(values were determined by trial and error), correction was 

applied to the second image. After combining the first image and 

the corrected second image, all remaining NIR modified-images 

of the week were also combined in pairs to obtain NIR fused-

modified images of the relevant week. In the study, this process 

was repeated for a period of three weeks (including the Week-1) 

trying to achieve an integrity in the vascular structure images. 
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Figure 3. NIR fused-image obtained from two pre-processed images.

In this way, from 750 NIR modified-images generated by the 

pre-processing phase for Week-1 right forearm, 375 NIR fused-

modified images were able to be obtained by the image post-

processing phase. NIR fused-modified images created by 

combining the images of the relevant week were used both in the 

You Only Look Once version-3 (YOLOv3) (Farhadi & Redmon, 

2018) algorithm which performs the narrowing detection 

process, and in the AR images to be presented to the user and the 

physician. 

2.4. Classification Phase 

The NIR fused-modified images obtained for the first week 

by the image post-processing phase were used in the 

classification process in order to detect if the same tissue 

(vascular network) region was displayed in the following weeks.  

Since vascular structures are unique to the individual, 

biometric identification systems (Park, 2011; Wang & Leedham, 

2006; Wu et al., 2019) can be developed with vascular imaging 

applications. In these systems, determination of whether the 

veins obtained from the imaged tissue region belong to the same 

person and/or tissue region, is conducted by classification 

process. In this phase, two models based on the Modified 

National Institute of Standards and Technology (MNIST) model 

(MatConvNet Team, 2017), which is a Convolutional Neural 

Network (CNN) model using the MNIST database (LeCun et al., 

n.d.), were proposed in order to establish the basic classification 

technique to determine whether the same tissue (vascular) region 

is imaged or not. MNIST model which accepts the MNIST 

database containing handwritten black and white digit images 

between 0 and 9 as input, can classify among 10 label values 

corresponding to 10 digits (28x28 sized gray image) (Wu et al., 

2021). In the first model used in the study, instead of the digit 

dataset, the NIR fused-modified image dataset was applied to the 

input layer of the MNIST model, and the output layer deciding 

among 10 classes (numbers from 0 to 9) was changed in order to 

correspond to 2 classes (right forearm and left forearm). As 

indicated in the MATLAB® R2017a layer table given in Figure 

4, in the input layer of the first CNN model, NIR fused-modified 

image dataset consisting of 28x28 images was used. 

 

Figure 4. MNIST CNN Model-1 layers. 

In Model-2, the MNIST CNN model has been modified to 

take 64x64 sized NIR fused-modified vein images as the dataset. 

In the second model, of which network layers are specified in 

Figure 5, the input layer data of the MNIST model was changed 

to correspond to NIR fused-modified image dataset instead of 

digit dataset, and the output layer deciding among 10 classes 

(numbers from 0 to 9) was changed in order to correspond to 2 

classes (right forearm and left forearm). Since one of the main 

objectives of the study is to perform the correct classification 

with a small number of training data, instead of adding new 

images to the dataset, a dropout layer (dropout rate: 0.5) was 

added to Model-2 just before the last convolution layer in order 

to increase the performance a little more (since, in the post-test 

trials, it was seen that the number of misclassifications was 

higher in Model-2). Also, the filter sizes and numbers of the 

convolution layers were changed to support the new input size. 

These values were used in order to determine the input data sizes 

of the next layers by using the formula (1) (Albawi et al., 2017) 

for 64x64 dataset sizes (NLIDS: Next Layer Input Data Size, 

PLIDS: Previous Layer Input Data Size, FS: Filter Size, P: 

Padding, S: Stride). 

            NLIDS = 
PLIDS - FS + (2 * P)

S
 + 1         (1) 

 

 

Figure 5. CNN Model-2 layers. 

2.5. Object Detection Phase 

Classical CNN models only detect which class the input 

images belong to but cannot visualize the position of the object 

in the image. Object detection algorithms (R-CNN (Girshick et 

al., 2014), Faster R-CNN (Ren et al., 2016), YOLO (Redmon et 

al., 2016), SSD (Anzueto-Rios et al., 2016)) are used for both 

detecting the object or objects in the image and for marking their 

positions on the image. In object-based detection studies, it has 

been stated that YOLOv3 algorithm is better than any other 

object detection algorithm (Faster R-CNN (Ren et al., 2016)) in 

terms of providing faster accurate classification performance 

(Abdulghani & Menekşe Dalveren, 2022; Dikbayır & Bülbül, 

2020). YOLO algorithms are very popular nowadays, especially 

in real-time object detection (Tan et al., 2021). 

As there is currently no public access dataset for superficial 

vein narrowing, the narrowing patterns were artificially 

generated on NIR fused-modified images in this study. Artificial 

narrowing patterns were created by examining narrowing 

patterns (Demir, 2019) found in the literature. As indicated in the 

orange boxes in Figure 6, 7 of the artificial narrowing patterns 

were manually placed on each NIR fused-modified image of the 

Week-1 right forearm (at random locations with different angles) 

and the training data were obtained artificially.  
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Figure 6. Marking of artificial narrowing locations on NIR fused-modified image. 

The training dataset was prepared by using the coordinates 

and label files of the narrowing patterns created on each NIR 

fused-modified image to be used as training data for the 

YOLOv3 algorithm. Areas with created artificial narrowing in 

this context, were marked on NIR fused-modified images by 

using makesense.ai (www.makesense.ai) free (under GPLv3 

License) web-based photo labelling application, and text-based 

label files containing the values specified in the Figure 6 were 

created for each image. A single class label named stenosis_vein 

was defined in the position marking process and the narrowing 

regions detected in the post-test operation of the algorithm were 

labelled only with this class. 

2.6. Augmented Reality Phase 

AR is a virtual environment that is used to create a more 

developed and detailed perception of reality by superimposing 

materials (images, information, shapes and so on) created on a 

computer on top of real images. In general, virtual veins are 

superimposed on real images within the scope of AR researches, 

similarly in this study, a virtual-real image combination was 

created as in (Ai et al., 2016; Francis et al., 2017; Meng et al., 

2015). In AR applications, the user can also see the real world at 

the same time (Doğan et al., 2021). Within this framework, pre-

processed virtual images containing only two dimensional vein 

images were combined with real raw images as in (Francis et al., 

2017) and veins were visualized at their real locations. In 

general, real-time AR applications are designed with AR glasses. 

However, a real-time AR application cannot be presented 

because the processes used in this study are performed through 

the server. For this reason, the visualization of vein tracking was 

based on the use of a video in which virtual veins are placed on 

real images. In this way, the user and the physician can see the 

veins in a video-based indirect AR environment with the results 

of the narrowing added on the relevant tissue region. Indirect 

AR, which has been introduced in the literature for outdoor 

spaces, is effective when a tight match between real images and 

virtual materials is required (Wither et al., 2011). From this point 

of view, it has been evaluated that one-to-one matching of veins 

and tissues can be achieved with indirect AR. In the study, 

virtual (vein) - real (tissue) videos prepared for the following 

weeks were added to the videos of the previous week 

sequentially, and pre-diagnosis data were able to be created to 

follow the narrowing progress. Another reason why the system 

was designed as a video-based indirect AR application rather 

than a real-time AR application is the need to support a 

visualization that will span weeks, months, or even years rather 

than moment-based. Thus, narrowing results were able to be 

visualized more clearly over time. The obtained AR images are 

given in the Results section. 

3. Results and Discussion 

Experimental results were interpreted for classification, 

object detection and AR phases. 

3.1. Classification Phase Results 

Experiments on CNN models were carried out using the 

matConvNet library (The MatConvNet Team, 2017) in the 

MATLAB® R2017a program. MatConvNet is a MATLAB® 

R2017a toolbox (Vedaldi & Lenc, 2015) that enables CNN 

operations to be performed. 

The tissue region imaged and recorded in the first week 

represents the zero point for the recognition process. In order to 

create a surveillance system, the user is expected to record the 

same tissue area as the first week in the following weeks. For 

this reason, only Week-1 (right and left forearm) images were 

used in the training and pre-test processes, and the images for 

the following week were evaluated only within the scope of the 

post-test. 

In the study, an application in which the number of training 

data cannot be increased much in order to ensure ease of use was 

developed for personal usage. Therefore, only three datasets 

were used in which only Week-1 right and left forearm NIR 

fused-modified images were used in different numbers to ensure 

correct classification with a smaller number of data. Whereas 

Dataset-1 (200 train/50 pre-test (validation)) and Dataset-2 (400 

train/100 pre-test) were only created from Week-1 original NIR 

fused-modified images, Dataset-3 (augmented data: 600 

train/200 pre-test) was built with the help of data augmentation 

techniques. The training was carried out in two classes, where 

the right forearm images represent the first class of the first week 

and the left forearm images represent the second class. In 

determining the epoch numbers and learning rate, the dropping 

condition of the objective function below 0.001 value was taken 

into account. In this context, while the learning rate was 0.0001, 

8000 epochs were sufficient for the training of the Model-1 and 

3200 epochs for the Model-2. The pre-testing process is 

performed during the training.  
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Figure 7. Classification (post-test) results obtained for CNN Model-1 (trained with Dataset-2) of 36 randomly selected right forearm 

images of Week-2. 

After the training of the CNN models was completed, the 

models were post-tested. In the study, the predicted classes of 

the tissue images (right and left forearm) of the new weeks 

recorded as video by the user are determined by the post-test 

process. The post-test results indicate to which specified class in 

trainings (two classes were used as right and left forearm in the 

study) the tested image belongs to with a probabilistic result 

value between 0 and 1. For this purpose, 36 post-test images 

were randomly selected from the NIR fused-modified images 

obtained for each new week (only new images were taken for 

Week-2 and Week-3 in the study). The NIR fused-modified 

images of Week-2 and Week-3 were only used in the post-test 

process and were not included in the training and pre-test 

processes. In addition, 36 images of the right forearm and 36 

images of the left forearm belonging to Week-1, which were not 

used during training, were included in the post-test trials. The 

results of randomly selected 36 right forearm images related 

with Week-2 were post-tested with Model-1 (trained with 

Dataset-2) as shown in Figure 7. According to the results, 34 of 

the 36 images (for those with a right forearm probability greater 

than 0.500 according to the post-test result, blue dots in Figure 

7) of the right forearm were calculated more likely to be the 

right forearm, while the probability of 2 of them (for those with 

a right forearm probability less than 0.500 according to the post-

test result, blue dots representing fused-images 101-102 and 

179-180 in Figure 7) were calculated more likely to be the left 

forearm. When the misclassified fused-images 101-102 and 179-

180 are examined (especially when attention is paid to fused-

image 149-150, which is classified correctly with a low 

probability), it can be seen that the NIR illumination of the arm 

is not sufficient for correct classification during the video 

recording interval (approximately 2.67 seconds) corresponding 

to these three images. The 36 probabilistic results obtained in 

this way (representing right or left arm belonging and 

outnumbering) represent the predicted first-class of tissue 

displayed in the new week, as shown in Figure 8. 

When all the results investigated, as can be seen in Figure 8, 

especially since Model-1 for Week-3 right forearm performed 

misclassification in forecasting the first-class with both Dataset-

1 and Dataset-2, a third dataset was prepared using data 

augmentation techniques. While creating Dataset-3, data 

augmentation techniques such as rotation (5 and 10 degrees), 

scaling (2 units zoom) and noise addition (salt and pepper type, 

0.5 density) were used. Although misclassifications shown in 

Figure 8 were encountered according to the post-test class results 

obtained with the new dataset, the predicted first-class results 

were obtained correctly for all weeks. 

The aim of the study, which is conducted for the use of a 

single person at home, is to make an accurate class estimation 

with less data. When looking at Dataset-1 and Dataset-2 in 

general, although the first-class results predicted in Model-2 

were correct for all weeks, the rate of misclassification of post-

test images of Model-2 (65 misclassifications in 432 post-test 

trials) compared to Model-1 (55 misclassifications in 432 post-

test trials) is 2.315% higher, as shown in Figure 8. When looking 

at the misclassification cases in the model post-test class results 

obtained by using all three datasets, it is seen that the use of only 

one model or one dataset may not be sufficient alone to 

determine the predicted first-class for applications with low 

number of data. In addition, Week-3 right forearm images were 

classified incorrectly by Model-1 when using Dataset-1 and 

Dataset-2 for training, and classified correctly when using 

Dataset-3. When the models were trained with Dataset-3, 

although the predicted first-class results for all weeks were 

correct, the total number of incorrect post-test class results is 

higher than that of other datasets (for a total of 432 post-test 

trials, 61 misclassifications were made with Dataset-1, 59 

misclassifications with Dataset-2, and 82 misclassifications with 

Dataset-3, respectively). In this context, the use of a hybrid 

decision-making algorithm that evaluates all the results of 

different dataset image numbers and different image sizes 

together in order to prevent an incorrect classification result in 

terms of the estimated ultimate-class has been put on the agenda. 

From this point of view, when Figure 8 is examined, when the 

model results for each week are evaluated together by using the 

hybrid decision-making algorithm, the predicted ultimate-classes 
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of the images for all weeks are correct. Confusion matrices and 

associated calculation values of the ultimate-class classification 

performances of Model-1 and Model-2 are given in Figure 9. 

Whereas Model-1 was found to be more successful in terms of 

Accuracy Rate and Specificity (True Negative Rate) calculated 

by using the values forming the confusion matrices, Model-2 is 

found to be more successful in terms of Precision and Sensitivity 

(True Positive Rate). 

 

Figure 8. Post-test results of classification phase. 

 

Figure 9. Post-test trials’ confusion matrix values. (a) Model-1 

(28x28), (b) Model-2 (64x64), (c) Comparison of Model-1 and 

Model-2 performance values. 

3.2. Object Detection Phase Results 

There is currently no publicly available dataset of NIR 

images for training the YOLOv3 algorithm used for the object 

detection phase. Therefore, artificial narrowing patterns were 

added onto the Week-1 (right forearm) NIR fused-modified 

images having 512x512 resolution in order for the algorithm to 

be trained (at the same time by performing pre-testing, average 

errors are calculated as avgLoss). There are 100 train and 50 pre-

test images in the artificial dataset consisting of NIR fused-

modified images. By creating 7 narrowing patterns on each 

image, a total of 1050 artificial narrowing patterns are 

introduced to the system. The YOLOv3 training, which was 

carried out using the NIR fused-modified image dataset with 

artificial narrowing patterns for the object detection phase, was 

completed in approximately eight and a half hours by utilizing 

the Google Colaboratory (colab.research.google.com) (which 

allows remote allocation of Google's GPU hardware) over the 

web browser. The training was continued until the average loss 

value obtained was less than 1. Different NIR fused-modified 

images (conforming to the narrowing figural format in the 

trainings, but with new artificial narrowing patterns added at 

different angles in random positions) that were not used in the 

trainings were used as YOLOv3 post-test data. In the trials, the 

locations and rates of possible narrowings that may occur on the 

vascular structure on these images was tried to be determined. 

For this, the YOLOv3 algorithm's feature of marking the 

location of the sought feature (narrowing detection in our study) 

on the image was used.  

After completing the training and pre-testing parts with 150 

NIR fused-modified images, which include artificial narrowings 

given in Figure 6, the algorithm was post-tested with different 

NIR fused-modified images having new artificial narrowing 

patterns similar to those in training. When looking at Figure 10, 

YOLOv3 narrowing result of 0.41 was found for the post-test 

process for the NIR fused-modified image created from the 76th 

and 77th images of Week-1, and 0.39 for the 78th and 79th NIR 

fused-modified images. For Week-3, narrowing was determined 

at the same location as in Week-1 with detection rates of 0.42 for 

the 110th and 111th NIR fused-modified image, and 0.45 for the 

192nd and 193rd NIR fused-modified image. According to the 

YOLOv3 result for the Week-2 NIR fused-modified image, a 

narrowing detection at the same location as in the other weeks 

could not be obtained due to the flashing resulting from NIR 

illumination taking place on some parts of the image. This loss 

of detection experienced in Week-2 can be overcome by 

presenting the narrowing detections to be made in the same 

region of the new images to be taken in Week-3 and the 

following weeks, in the form of a video stream at the AR phase. 

3.3. Augmented Reality Phase Results 

Images containing narrowing detection rates are 

superimposed on NIR raw-images obtained from video and 

virtual (vein) - real (tissue) images are created. For this process, 

the image containing the YOLOv3 result of the NIR fused-

modified image, as shown in Figure 10, is superimposed on the 

first NIR raw-image and the image to be used for the AR video 

infrastructure is obtained. For the second image frame of the 

video, the YOLOv3 result of the third and fourth NIR fused-

modified images and the raw version of the third image are used. 

Similarly, both other images for the same week and images from 

other weeks are overlaid on the corresponding raw images, 

including the YOLOv3 results. A video file is created by adding 

images containing virtual vein structures and real tissue images 

as sequential image frames. In this way, video images in which 

narrowing detection rates are marked on the relevant vascular 

regions are presented to the user and the physician on the basis 

of a video-based indirect AR application. Veins are highlighted 

in white for better visibility in video images. The images 

obtained are indicated in Figure 10. 
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Figure 10. YOLOv3 results and AR video frames. 

4. Conclusions and Recommendations 

The system designed for personel use at home enables to 

perform superficial vein surveillance (by recording at weekly 

intervals, optionally) that can span a long period of time by 

using the NIR-based video images. In the study, the image post-

processing phase was used to improve the discontinuous 

structures (caused by the insufficient NIR illumination) on the 

vein images. It has been determined that the interpretation of the 

results with hybrid decision-making algorithm used in the 

classification phase of the six phased system, can increase the 

ultimate classification accuracy (instead of individually 

evaluating the CNN models used) for a long-term personal 

follow-up system aimed at home use.  

In the AR phase, the images containing the narrowing 

detection results obtained by the object detection phase were 

superimposed on the user's NIR raw-video images of the 

relevant week, and these images containing the virtual (vein) - 

real (tissue) structures were used to create a video-based indirect 

AR environment. By using these images, the user and his/her 

physician can see both the locations of possible narrowings and 

their detection rates as a follow-up system that can spread over a 

long period of time, thus delays in treatment will be prevented. 

By adding the virtual-real images obtained by superimposing the 

narrowing results, especially week by week sequentially on the 

NIR raw-images, the locations where the narrowing is detected 

were able to be visualized much more clearly in the form of 

stream images. Thus, the possibility of pre-diagnosis can be 

provided regarding the rate at which the changes in a certain 

location progress in terms of time. 

Within the scope of future studies, it is planned to structure 

the proposed system on different tissue regions, especially to 

include vascular enlargement patterns (progress surveillance of 

varicose veins in legs). In addition, the system will be developed 

in such a way that it will be possible to zoom in virtual-real 

video images to the veins or to examine information such as 

narrowing development statistics, via an interactive viewing 

application, preferably designed for smart devices, and will be 

detailed within the scope of home surveillance system on the 

basis of telemedicine. 
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