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Abstract

In 2022, Tutdere proved that the covering radii R of a class of primitive binary cyclic codes with minimum distance strictly greater
than an odd integer ¢ satisfy r < R < £, where ¢, r are some integers depending on the given code. We here first discuss some
equivalences of linear codes defined by Gold functions, which are quadratic APN (almost perfect nonlinear) functions. We then show
that by applying the result of Tutdere one can find the covering radii of these quasi-perfect codes. In 2016, Li and Helleseth proved
that the linear codes defined by the quadratic APN functions are quasi-perfect and they asked whether the linear codes defined by the
non-quadratic APN functions are quasi-perfect or not. We here prove that the linear codes defined by some non-quadratic APN
functions over the finite field F,» , for 1 < m < 8, are quasi-perfect, by computing the covering radii of these codes.
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APN Fonksiyonlar ile Tamimlanan Baz ikili Yari-miikemmel Lineer
Kodlar

Oz

2022 yilinda, Tutdere, minimum uzaklig1 bir tek £ sayisindan biiyiik olan bir primitif ikili devirli kodlar sinifinin 6rtme yarigapt R
nin r < R < ¥ esitsizligini sagladigim gostermistir, burada ¢, r verilen koda bagli olan tam sayilardir. Burada, ilk olarak kuadratik
APN (hemen hemen miikemmel lineer olmayan) fonksiyon olan Gold fonksiyonlar ile tanimlanan lineer kodlarin bazi denklikleri
incelenmistir. Daha sonra Tutdere’nin elde ettigi sonucun uygulanarak bu yari-miikemmel kodlarin 6rtme yarigaplarinin
hesaplanabilecegi gosterilmistir. 2016 yilinda Li ve Helleseth, kuadratik APN fonksiyonlar ile tanimlanan lineer kodlarin yari-
miikemmel olduklarini gdstermiglerdir ve kuadratik olmayan APN fonksiyonlar ile tanimlanan kodlarin yari-miikemmel olup olmadig:

problemini sunmuslardir. Burada, sonlu cisim F,», 1 < m < 8 igin, lizerinde tanimlanan kuadratik olmayan baz1 APN fonksiyonlar
ile tanimlanan lineer kodlarin 6rtme yaricaplar1 hesaplanarak bu kodlarin yari-miikemmel oldugu gosterilmistir.

Anahtar Kelimeler: APN fonksiyonlar, Sonlu Cisim, Ortme Yarigap1, Devirli Kodlar.
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1. Introduction

In coding theory, cyclic codes are an important class of error-
correcting codes which have favorable algebraic properties for
efficient error detection and correction. In literature, there are
many examples and studies on these codes, for instance see
(Caligskan, 2021), (Moreno et al., 2003), (Kavut et al., 2019). We
here consider binary primitive cyclic codes defined by the APN
functions over finite fields, which are linear codes. Let F, be a
finite field, with g = 2™ where m > 1 is an integer, and let C be
a binary cyclic [n, k,d] code having length n, dimension k,
minimum distance d := d(C), and covering radius R := R(C).
By definition, R is the smallest integer r such that every element
of F;~* can be written as a linear combination of at most r
columns of the parity-check matrix of C. In other words, the
covering radius of C is the maximal distance of any vector from
the code, i.e.,

R = max{min{d(x, c):ceClxe IFq}

where d(.,.) is the Hamming distance. It has many applications
in the information theory, such as data compression, testing, and
write-once memories, for instance see (Cohen et al., 1997).

The covering radii of cyclic codes has been comprehensively
studied by many researchers since the paper (Delsarte, 1973), for
instance see (Carlet, 2010), (Cohen et al., 1985). Let a be a
primitive element of F,= and let C be a primitive binary cyclic
code. In (Moreno et al., 2003, Theorem 6), Moreno and Castro

proved that if the zeros of C are «a, a1 with (i,m) =1, then
R(C) = 3, where d(C) =5 (Van Lint et al.,1986). They also

showed that if the zeros of C are a, a2+, a?*1 with distinct
positive integers i, j and d(C) =7, then R(C) =5 for m >
8 (Moreno et al., 2003, Theorem 9). In (Kavut et al., 2019)
Kavut and Tutdere gave a generalization of the aforementioned
results of Moreno and Castro as follows: if the zeros of C are a,
a1 a®t*1 where t = (r — 1)/2, r is any odd integer
such that d(C) = r + 2, then R(C) = r, under some restrictions
on m and r. In (Tutdere, 2022), Tutdere proved the following: if
the zeros of C are a%, a%, ...,a%, where d;’s are distinct
positive integers, and the sum of 2-weights of d;’s, which we
call ¢, is odd such that d(C) > I, then r < R(C) < ¥, under
some assumptions on m and r-.

APN functions have a great importance in cryptography for the
attacks on block ciphers. In (Li et al., 2016), Li and Helleseth
proved that the codes defined by the binary quadratic APN
functions are quasi-perfect by computing the covering radii of
these codes, and they asked whether the codes defined by the
non-quadratic functions are quasi-perfect or not. Note that quasi-
perfect codes are the codes having covering radius one more
than their packing radius. To find a classification of the
parameters for which quasi-perfect codes exist is a hard task. In
particular, binary quasi-perfect codes play a fundemental role in
information theory when using a binary symmetric channel.

We here first discuss some linear equivalent quasi-perfect cyclic
codes defined by the Gold functions, which are quadratic APN
functions. We then show that one can obtain the covering radii of
these codes by applying the result of (Tutdere, 2022).

We next prove that the codes defined by some non-quadratic
APN functions over the finite field F,m, for 1 <m < 8, are
quasi-perfect, by computing the covering radii of these codes.
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Further, we find in the process that the covering radii of the
codes defined by the inverse function for odd values of m, which
are not APN, is the same as those of the APN functions.

The organization of the paper is as follows: We give, in Section
2, some basic background and known results which will be used
in the subsequent sections. In Section 3, we give the main results
and discussion. Section 4 is devoted to the conclusion and some
recommendations.

2. Material and Method

For any prime number p, let f: F,» — F,» be a function with
f(0) =0 and letabe a primitive element of the field F,m.
Setn: = p™ — 1. Consider the matrix

i = [ 1 a a? .. a™? ]
U@ f@ f@d.. f@ ™
where each entry stands for the column of its coordinate with
respect to a basis of the vector space F,= over the field F,. We
denote the code having H as a parity-check matrix by Cr. It is
clear that when f (x) = x¢ is a power function, Cr is a cyclic
code with the generator polynomial g(x) = m;(x)m,(x),
where m;(x) is the minimal polynomial of a' over F, for i =
1, d. We here consider only power functions. Throughout this
paper, f is a power function and the related code C is a binary
primitive cyclic [n,k,d] code having length n=2" -1,
dimension k, minimum distance d = d(C), and covering radius
R =R(Cp).

Definition 2.1. The linear codes satisfying the conditon that R =
l%] are called quasi-perfect codes.

Definition 2.2. Afunctionf: F,» — F,= of the form
m-—1
FE) = ) ayx??,
i,j=0
where a;; € F,is called a quadratic function.

Definition 2.3. A function f: F,» — F,n is called almost perfect
nonlinear (APN) if

h errFljn)f,a¢0|{x € F:f(x+a)—f(x) = b}| =2.
In other words, if f is differentially 2-uniform, then it is called
an APN function. In particular, when p = 2, f is called APN if
and only if the function x - f(x + a) — f(x) is two-to-one for
all0 #a € Fym.

Lemma 2.1.(Carlet et al., 1998, Theorem 5(ii)) Let f: Fym —
F,m be a function with f£(0) = 0. Then f is APN if and only if
the code C defined by f has minimum distance 5.

In (Carlet et al., 1998), it is shown that if f is a quadratic APN
function in odd number of variables, i.e., m is odd, then the
related code C has covering radius 3. In (Li et al., 2016), the
followig result is obtained.
Theorem 2.1.(Li etal., 2016, Theorem 1) Let m > 3 and
m-—1
f&) = Z aiszbrzj,

i,j=0

515



Avrupa Bilim ve Teknoloji Dergisi

where a;; € F,», be a quadratic function. Then the code C;
defined by f is quasi-perfect if and only if f is APN.

In (Li et al., 2016), the following open problem is proposed:

Open problem: For all APN functions f over F,m, are the
codes C; defined by f quasi-perfect or not?

Theorem 2.2. (Tutdere, 2022) Let C be a primitive binary cyclic
code with the zero set Z(C) = {a%,a®,...,a%} for some
distinct positive integers dy, d, ..., d;. Suppose that there is a
code €' such that € < €' and d(C") =r for any integer r.
Assume that the sum ¢ :=Y!_,0,(d;) is an odd integer. If
d(C) > l,thenr < R(C) < ¢ for

f > (¢ —s)maxo,(d;),
where s is the largest integer such that 2°|(¢ + 1).

In Section 3.1. we propose an application of Theorem 2.2. We
now give the following notion which will be used frequently
throughout the paper.

Definition 2.4. Let p be a prime number and n be an integer
with p-expansion

n=ay+ap+-+ap’
where 0 < a; <p.The sum o,(n) = ¥i_(q; is called the p-
weight of n and the p-weight degree of a monomial x¢:=
xfixdz | x%nis defined as
w,(x?) = 0,(dy) + 0,(dy) + - + 0, (dy).

The p-weight degree of
Zd adxd is

a polynomial F(xq, x5, ..., Xp) =

w,(F) = max w,(x%
p() xd,ad¢0 p( )

Definition 2.5. Two codes C; and C, of the same length over
the field [F, are called equivalent if C, is obtained from C; by
applying a combination of the following operations:

(i) multiplication of the symbols appearing in a fixed position in
all codewords of C,; by a nonzero scaler,

(i) a permutation of the digits in all codewords of C;.

Note that a function f from F,= has a unique representation as
follows:

flx) = Y% Ta;xt, where each a; € Fyn.

3. Results and Discussion

3.1. Some Equivalences of Linear Codes Defined
by Gold Functions

The functions f;(x) = x2*1, with (i,m) =1 are called Gold
functions (Gold, 1968) for all m > 3, which are quadratic APN
power functions. In this section we first discuss some
equivalences of codes defined by Gold functions. We then more
generally mention from some equivalences of codes defined by
power functions.

Proposition 3.1. Let C be a primitive cyclic code with the zero
set {a®, a%} for some distinct d; and d, over the field Fym
such that (d,,2™ — 1) = 1. Then C is equivalent to the code

defined by Gold function f(x) = x2*+1 for some i such that

e-1SSN:2148-2683

(i,m) =1 if d, = d;(2" + 1) mod (2™ — 1), and hence these
codes are quasi-perfect.

Proof. Set n = 2™ — 1. It is well-known that if (d,,2™ — 1) =
1, then B = a® is also a primitive element of F,=. Therefore,
there is a positive integer k such that a% = g% for some k.
Then by assumption we have g% = a2 = gd1(2'+1) mod @™-1),
and so k = 2' + 1. That means, C is equivalent to the code with
the zero set {B, ﬁzi“}, which corresponds to the code defined by
the Gold function f(x) = x2+1.

It is known from (Moreno et al., 2003) that the code with the

zero set {B, B2 *1} is quasi-perfect. We here give a detailed proof
by using the result of (Tutdere, 2022) which covers that result of
(Moreno et al., 2003). The parity-check matrix of the code
corresponding to the function f is as follows:

[-[ _ 1 ﬂ ﬁz ’Bn—l
Tl B FBY . FBMY
_ 1 ‘3 '82 ‘Bn—l
11 ﬁ2i+1 B2(2i+1) ‘B(n—l)(2i+1) '

By Lemma 2.1, the code Cr has minimum distance d(C) = 5. It
is well-known that the code €' with the zero set {8} is the
Hamming code and d(C") = 3. Since € c C', we can apply
Theorem 2.2 with 8, C = C, C’, and the parameters r = 3, d, =
1, d; = 2' + 1. Then the parameter £ = 1 + 2 = 3. Clearly, the
codition d(C) > 1 is satisfied. Thus, it follows from Theorem
2.2 that R(C) =3 for all m> (I —s) mlgixa2(d,-) =(3-2)-
2 =2,i.e., m = 3. Then, it follows from Definition 2.1 that the
related code is quasi-perfect.

Example 3.1. Let us consider the code C over F,« having the
zero set {a3,a”}, where « is a primitive element of F,..The
parity-check matrix H of the code C is then obtained as follows:

noad (@) .. (e
1 a? (@) .. (a7)14]'

As (7,15) =1, B = a” is also a primitive element of F,+ and

then we have ¥ = a® = (a”)¥, from which it is found that k =

23 4+ 1 = 9. Therefore, the zero set {a3, a”} can be equivalently

considered as {#, 8°}, which gives the code equivalent to the one

defined by the Gold function f;(x) = x2*** (notice that (3,4) =

1, satisfying the condition imposed by the definition). Hence, the
parity-check matrix H can be expressed in the following form:

[ % ]
_ [1 B (B*)° .. (ﬁ“)g]
1 8 p2 .. puJ

Since permuting the positions of a code generates an equivalent
code, the code C is equivalent to the code C’ having the parity
check matrix H' given below:

. [1 g B* .. p* ]

g By . T
In (Tutdere, 2022) the covering radii and the minimum distances
of the primitive cyclic codes having distinct zero sets are given
for F,» and F,s in Tables 1 and 2, respectively. It can be seen
from Table 1 in (Tutdere, 2022) that there are only three quasi-
perfect codes having distinct zero sets which are {a°}, {a, a3}
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and {a3, a”}. We have already shown that the code with zero set
{a, a3} is equivalent to the one with zero set {a, a°}; however

as a3 and a® are in the cyclotomic coset, i.e., a® = @32 mod1s
for i = 3, these two codes are also equivalent. As a consequence,
there is only one quasi-perfect code defined by the power
functions different up to the equivalence which corresponds to
the code defined by the Gold function for the field F.. .

Let us now relax the condition of being equivalent to the Gold
function in Proposition 3.1, by permitting that the exponent k
can be any positive integer. In this case, assuming as in
Proposition 3.1 that the primitive cyclic code C has the zero set
{a®, a%2} for some distinct d; and d, over the field F,« such
that (d,,2™ —1) =1, the code C is equivalent to the code
defined by the power function f(x) = x¢ for some d if d, =
d,;d mod (2™ — 1), which can be considered as a more general
form of Proposition 3.1. Next, we give an example for this
situation.

Example 3.2. We here consider the code C over F,s with the
zero set {a3, a''}, where a is a primitive element of F,s. The
parity-check matrix H of the code C is then obtained as follows:

1 a® (@)% .. (a3
H= 1 a'' (@)? .. (atV)3f

One can choose = a3, which is another primitive element of
FF,s and then it is found that (a3)* = g1* = al®. Thus, the zero
set can be equivalently represented by {5, 51}, for which the
parity-check matrix H can be written as follows:

1 B gz .. B
1 ,814 (,814)2 (‘814)30'

Consequently, the code with the zero set {a3, a''} is equivalent
to that with the zero set {a, a*} for any k € {7, 14,19, 25,28},
as a’,a'*, a'®, a5, a?® are in the same cyclotomic coset. In
(Tutdere, 2022), it can be seen from Table 2 that every code over
the field F,s with the zero set {a%,a%} such that {d,,d,} €
{1,3,5,7,11,15} has the covering radius 3 and the minimum
distance 5, satisfying the condition of being quasi-perfect.
Hence, the code C that we consider in this example is quasi-
perfect.

H =

As the mentioned quasi-perfect codes given in (Tutdere, 2022) is
complete for the field F,s, we have checked the codes which are
different up to the equivalence, following our argument used in
the above examples. Then we have found that there are five such
codes having the zero sets {a, @*}, {a, @°}, {a, a’}, {a, '}, and
{a, @*5}. On the other hand, it is well-known that the inverse of
an APN function is also an APN (Carlet, 2010). Recalling from
(Nyberg, 1994) that the inverse of x2*1 is x4, where

m-—1
2z

d= Z 22k mod (2M — 1),
k=0

with m being odd. It can be easily found that the exponents x’
and x!* are obtained from the inverses of the Gold functions.

3.2. Covering Radius for Non-quadratic APNs

In (Li et al., 2016), Li and Helleseth computationally find for
small values of m that the covering radius of the codes defined
by the known non-quadratic APN functions on F,» is 3 and
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mainly based on this observation, whether the codes for all APN
functions are quasi-perfect is posed as an open question (see
Section 2), which is still unsettled. However, the details of their
computation and the values of m is not given in (Li et al., 2016).
We here compute the covering radii for m < 8 for all the known
non-quadratic APN functions, which are listed in Table 1, and
find that the codes defined by those APN functions have
covering radius 3, which confirms the result of (Li et al., 2016)
independently. As a result we obtain the following.

Theorem 3.2. The codes defined by the non-quadratic APN
functions given in Table 1 are quasi-perfect for all m < 8.

Proof. Let C; be a code defined by a non-quadratic APN
function f over the finite field F,= given in Table 1. By Lemma
2.1. the minimum distance of C; is 5. By using the Sage code
given in Figure 1, we obtain that the covering radius of C; is 3.
Therefore, by Definition 2.1, C; is a quasi-perfect code.

Tablo 1. F,m iizerinde kuadratik olmayan ve bilinen tiim x®
bi¢imindeki APN fonksiyonlart.

Table 1. All the known non-quadratic APN functions in the form
of x%on Fym .

Family Exponent (d) Condition
(Dobbertin,2001) | 16'+8' +4'+2:—1 | i=m/5
Inverse 41 _m-—1
(Nyberg, 1994) b=
(Kasami,1971) 41 -2t +1 (im)=1
Niho ] )
(Dobbertin,1999), | 2' +2Y% —1,foreveni | m—1
3i+1 —_—
(Hollmann etal., 20425 — 1, for odd i L 2
2001)
Welch
. -1
(Can;%a(;g)et al., 9i 43 . m .
(Dobbertin, 1999)

We use Sage (Developers et al., 2020) with GAP package
Guava, which is limited to computing with finite fields of size at
most 256, to find the covering radius of codes corresponding to
the APN functions in Table 1. The Sage code that we use is
given in Figure 1.

m=eval(input('"Enter m:"))

d=eval(input('Enter d:"))

R.<x> = PolynomialRing(GF(2))

F.<t>= GF(2"m)

p = t.minpoly()

g = (t"d).minpoly()

g =p*q

C = codes.CyclicCode(generator_pol = g, length = 2"m-1)
print("Covering radius =',C.covering_radius())

Figure 1. Sage code used to compute the covering radius.
Sekil 1. Ortme yarigapint hesaplamak igin kullanilan Sage kodu.

In Figure 1, lines 1 and 2 request from user to enter the degree of
the extension field (im) and the exponent (d), respectively. Line
3 creates a univariate polynomial ring R in x over F, and line 4
builds a finite field F in t of size 2™. Lines 5 and 6 obtain the
minimal polynomials of ¢ and ¢t as p and q, respectively. Then,
multiplying the minimal polynomials p and g, the generator
polynomial g of the cyclic code C is found in line 7. After that,
the cyclic code C of length 2™ — 1 is constructed in line 8 by
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using the generator polynomial g. Finally, line 9 computes and
displays the covering radius of the code C. Notice that the
command covering_radius in line 9 requires the GAP package
Guava.

Remark 3.3. It is well-known that the inverse function x — x™1
on F,= is differentially 4-uniform for even values of m, that is,
it is not an APN function. For this case, we have checked the
covering radius of the inverse function for even m < 8 and
found that it is also 3. However, it is necessary to find the
minimum distance to show that whether they are quasi-perfect or
not (see Definition 2.1), which may require a huge computation
power. Hence, with a personel computer we could only compute
(by using Sage) for a small value of m = 4 that the inverse
function is not quasi-perfect as the minimum distance is found as
3.

We now give an example to illustrate the computation of the
covering radius of a code corresponding to an APN function.

Example 3.3. For simplicity, let us consider the inverse function
f(x) =x3 onF, , i.e, m=3 and d =3 (see Table 1) . It
should be noted that in this case all the APN functions (except
the Dobbertin family for which the corresponding condition is
not satisfied for m = 3) in Table 1 are quadratic and equivalent
to the Gold function. The parity-check matrix of the
corresponding code C; of length 23 — 1 = 7 is then obtained as
follows:

o = [ 1 a a? ad a* a’ a®
Tl fle) f@® f@® f@* f@®) f@®)
_[1 a a* a® a* a° ae]
1 a® a® a? a®° a oaff

where « is a primitive element of the field F,: and each element
of the parity-check matrix Hy can be represented by a binary
vector of length 3. The binary representation of the elements of
F,s is given by Table 2, in which « is the primitive element of
the irreducible polynomial a3 + a + 1.

Tablo 2. F,: sonlu cisim elemanlarmnin ikili gosterimleri.

Tablo 2. The binary representations of the elements of the
finite field F,s.

Field Polynomial Binary
elements | representation | representation
0 0 (0,0,0)

1 1 (0,0,1)
a a (0,1,0)
a? a’ (1,0,0)
ad a+1 (0,1,
at a’+a (1,1,0)
a’ at+a+1 (1,1,
a® a’?+1 (1,0,1)

Substituting the binary representations for the respective field
elements of the parity-check matrix, we get the following form
of Hy:

f

001011 1
[0101110]
gt 0010 11
f‘0011101"
l0100111J
111 01 0 0

e-1SSN:2148-2683

from which we should find the smallest number such that every
element of FS, i.e., every binary vector of length 6 corresponding
to the 8-ary 2-tuples, can be represented by a linear combination
of at most that number of columns to determine the covering
radius of the code C. Clearly, there are 7 columns of H and the

numbers 1+ (Z) =8 and 1+ (Z) + (;) = 29 of the linear

combinations of at most one and two columns, respectively, are
less than the number 26 = 64 of the elements of FS. Thus, the
covering radius should be greater than 2. One can
computationally check that when we take into account the linear
combinations of 3 columns, all the binary vectors of length 6 are
produced, and consequently the covering radius of the code C;
obtained from the inverse function f(x) =x3 on F, is 3.
Notice that the code C; has minimum distance 5 due to Lemma
2.1, and hence the condition of being quasi-perfect given by
Definition 2.1 is satisfied.

4. Conclusions and Recommendations

In this paper, we studied on the covering radii of some cyclic
codes defined by the quadratic and non-quadratic APN functions
over the finite fields F,m.We first gave a discussion on some
equivalences of quasi-perfect codes defined by Gold functions,
and showed that by applying the result of (Tutdere, 2022), one
can obtain the covering radii of these codes. Next, by computing
the covering radii of the codes defined by some non-quadratic
APN functions over the finite field F,m, for 1 <m < 8, we
showed that these codes are quasi-perfect. Moreover, we found
out in the process that the covering radii of the codes defined by
the inverse function for odd values of m, which are not APN, is
the same as those of the APN functions. By studying on the
method of (Tutdere, 2022), one may obtain the covering radii of
the codes defined by the non-quadratic APN functions for large
values of m (m = 9) as a future work. If it is true that all these
codes have covering radius 3, then as the minimum distance of
these codes is 5, one obtains a large class of binary quasi-perfect
codes.
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