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Abstract
Pneumatic Artificial Muscles (PAM) are soft actuators with advantages such as high to ratio, flexible structure and low
cost. Pneumatic Artificial Muscles have inherent compliance that makes the i or e ons and rehabilitation robots.
However, their inherent nonlinear characteristics yield difficulties in modelling I actions, which is an important factor
restricting use of PAM. The compliance of PAM is associated with nonlineasi esis,‘apd time varying characteristics, which

icial Muscles.

complicated or very approximate ones as a variable stiffness§pri near input-output relationship. Based on the
analysis of well known previous modeling works in our PA en observed that efficacy of the those methods are

work, apart from previous modeling approaches, the anviour of RAM is foreSeen as an integrated response to pressure input, which
results in simultaneous force and muscle length“@hange. Theref@ke, standard direct input-output identification methods are not
suitable for modelling that behaviour. An inverse modeli is proposed in order to utilize it in control applications. The
ici structure using the experimental data collected from the
PAM test bed. According to implementatiomyre model has yielded satisfactory performance deducing that
it could be a simple and effective solution for P,
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cin Yapay Sinir Ag1 Esash Ters Modelleme

aktiiat aslar, dis iskelet ve rehabilitasyon robotlarinda kullanimini miimkiin kilan dogal bir uyumluluga
sahip, ikte, ‘@ogrusal olmayan karakteristik 6zellikleri, modelleme ve kontrol eylemlerinde zorluklar saglayan ve
kulla: onemli bir faktordiir. PAM dogal uyumlulugu, dogrusal olmayan, histerezis ve zamanla degisen 6zellikleri ile

a*PAM dinamik davranisin1 ve modele dayali yiiksek performansli kontrolorlerle ¢alismasini modellenmesini
zorlastirirli urde modelleme sorununun iistesinden gelmek i¢in, sanal is, ampirik ve fenomenolojik modeller gibi bir¢ok ¢alisma
olmasina ra u caligmalar ¢ok karmagik veya dogrusal olmayan degisken bir sertlikli yay i¢in giris-¢ikis iliskisi olan model
gibi ¢ok yaklagiktir. PAM test diizenegimizde gerceklestirdigimiz iyi bilinen dnceki modelleme g¢aligmalarinin deneysel analizine
dayanarak, bu yontemlerin etkinliginin PAM'n fiziksel davranigini temsil etmek i¢in sinirli oldugu ve hala basit, etkili modellere
ihtiyag duyuldugu gézlemlenmistir. Bu ¢alismada, 6nceki modelleme yaklagimlarindan farkl olarak, PAM'in davranisi, giris isareti
olarak basing uygulandiginda, eszamanli kuvvet ve kas uzunlugu degisikligine yol acan entegre bir sistem tepkisi olarak
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ongoriilmiistiir. Bu nedenle, standart dogrudan girig-¢ikis tanimlama yontemleri bu davranisi modellemek i¢in uygun degildir. Bu
calismada, kontrol uygulamalarinda etkin kullanmak icin bir tersine modelleme yaklasimi énerilmektedir. Onerilen kapali kutu model
ve PAM test yatagindan toplanan deneysel veriler kullanilarak Yapay Sinir Ag1 (YSA) yapisi tarafindan uygulanmaktadir. Uygulama
sonuglarina gore, YSA tabanli bir tersine model, PAM modelleme ve kontrol sorunu i¢in basit ve etkili bir ¢oziim olabilecegini
diisiindiiren tatmin edici bir performans saglamistir.

Anahtar Kelimeler: Yumusak Eyleyiciler, Pnématik Yapay Kaslar, Tersine Modelleme, Yapay Sinir Ag1 Tabanli Modelleme.

1. Introduction

The pneumatic artificial muscle (PAM) is a fiber braided and coated rubber tube actuator that changes its actuating length when
pressurized . PAM was invented firstly by J. L. McKibben. It was redesigned by Bridgestone Company al ed for some
applications to assist disabled individuals. As compared to other conventional actuators (e.g.,motors, hydr
penumatic cylinders), PAM could be foreseen more similar to the human muscle in behaviour. Pneumatic A i
are type of actuators that mimic behavior of skeletal muscle by contracting and generating forc@in a a
pressurized. PAM has a radially inflation and axially contraction behavior which produces high pullipg(teh along the
longitudinal axis. It has low weight, and high power/weight output. Moreover, the PAM has I
feasible for exoskeletons and rehabilitation robots. (Daerden & Lefeber 2002).

However, the compliance of the PAM is associated with nonlinearity, hysteresis, and time vaRging cha istics, which makes it

more difficult to model the dynamics and design high-performance controllers. A detail of McKibben PAM modelling
approaches is given by Tondu. (Tondu 2012). Furthermore, the dynamic models of t M uped into two classes, a
theoretical model and a phenomenological model, respectively (Kelasidi et al 2012). theo odel describes the relationship
between the PAM’s characteristics and the parameters directly related to the PA ric s re and material properties, that

has a complex structure with many parameters. For example, Chou and Han ed the model from the law of energy
conservation, and described the relationship among the pressure, the len conteactile force of the PAM (Chou and
Hannaford 1996). The phenomenological model, on the other hand 4 tru o0 the relationship between the input and
output of the PAM, and is suitable for very complex dynamics g\hardito deSgribe by the theoretical model. Among the
phenomenological models of the PAM , the most used one i N roposed by Reynolds, in which the PAM is
considered as a parallel arrangement of three elements (Reynold§set al 200 veyer, both the theoretical and the phenomenological
models contain time varying parameters and non-modeled uncertainties thatWgeed to be compensated by control techniques. Due to

the nonlinearity, hysteresis, and time-varying characteftics of the RAM, it is difficult to precisely describe its dynamics in the entire
range of pressure using only one model with con . hang et al. 2016). The model-based schemes usually cannot
obtain high-precision control due to the errors betweefiath dynamics. In addition, an emprical modelling approach is
given by Wickramtunge and Leephakpreda 0 legth as a nonlinear elastic relation . (Wickramtunge and

Leephakpreda 2013). Martens et al. ,
PAM. (Martens and Boblan 2017).

parative analysis of the existing static models developed for Festo
also performed model parameter extraction of structurally different

There are many studies to overcome Issue in literature, such as virtual work , empirical and phenomenological
pproaches is given by Ahn et al. (Ahn et al 2008). A hybrid ANN approach is

and Taghizadeh 2020). Ho
with nonlinear input‘utput r

r much complicated or very approximate ones as a variable stiffness spring for model
ity of the existing methods are standard direct pressure input and force output models.

In this work, initial analysis for characteristics of PAM has been performed using a test bed. Based on the
Is using our PAM test bed, it has been observed that efficacy of the those methods are
ur of PAM due to fact that models mostly concentrate direct input-ouput relation in terms
®In many existing models, the integrated response behaviour of PAM is not combined effectively in
nt force and muscle contraction. Hence, we deduce that there is still requirement for simple, effective
, apart from previous modeling approaches, the dynamic behaviour of PAM is modelled as an integrated
, Which results in simultaneous force and muscle length change. In this case, standard direct input-output
s ,such as NNARX, are not suitable for modelling that behaviour. Furthermore, an inverse modeling approach is
utilize the model in control applications. The black box model is implemented by an Articifial Neural Network
(ANN) structure using the experimental data collected from the PAM test bed.

The rest of the paper as follows: In section Il, the implementation method is given, where experimental setup and data
acquisition , modelling approach are explained. In section Ill, experimental results and discussions are presented. In section 1V
conclusions are drawn.
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2. Material and Method

Nowadays, PAM is produced commercially by Festo Company and it is also called Festo fluidic muscle. The Festo muscle is
structurally different from the general McKibben muscles. The fiber of the fluidic muscle is knit into the rubber tube, offering easy
assembly and improved hysteric behavior and nonlinearity compared to conventional design (Festo 2018). Due to difference in
construction, Festo PAM have different properties as compared to other existing PAM models. In figurel, a DMPS20 series Festo
fluidic muscle and its dynamic characteristics is illustrated. In figure 1, F indicates the generated force by PAM in N and h indicates
percentage muscle length change in terms of contraction [3] or extension [4], against different applied pressure curves.
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Figure 1. Festo Fluidic Muscle and Dynamic Characteristics (Festo 2018)
-
An experimental analysis has been performed for physical charact@gistics of PAM, using a hardware test bed. When the dynamic
characteristics analyzed, it has been observed that operating curves for different applied pressure values which is
also a confirmation of manufacturer's curves. ThoseWgi curves is the main cause for nonlinear behaviour of PAM.
During the analysis, it has been observed that although was the only input, but there was an integrated response of
generated force and muscle length change a experiments, data has been obtained for different input
pressure values and with different external® loa L experiments, data from test bed has been obtained and compared to
Matlab simulation results of some webl known asdeen concluded that majority of existing modelling approaches includes

muscle length but considers solely forc
have become equally important. Hence,
approach.

2.1. Overview of Main Mod oaches

In this section,
the differences. In the
along the entire axis (@i

modelling approaches in literature has been briefly introduced in order to illustrate
the main purpose is to establish a relationship between pressure, extension of the muscle
ce. Pulling force, air pressure, diameter and length of the muscle, material properties play

model of the muscle, the basic approach is based on energy modelling. That approach provides a
tor force, pressure and length”, showing the length or degree of contraction and the diameter of the muscle
actuator performance, taking into account virtual work and energy savings. The Chou and Hannaford model
etrlc model for the static performance of a PAM (Chou and Hannaford,1996). In their approach, PAM actuator is
modeled as a der and the equation showing the expression between pressure, position and pressure according to this model is as
follows. In the equation 1,b is the thread length. n indicates the number of turns of a thread. 6 angle is defined as the angle between
longitudinal axis and thread.

2
F=P

e (3cos?0 — 1) (D
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Contractile Spring Damping approach to evaluate the dynamic behavior of the

pneumatic muscle. In dynamic modeling, as seen in
Element Element Element Figure 2, the parallel configuration of the muscle, spring,

F(P) K(P) B(P) damper and contractile element is used. the coefficients
corresponding to these three elements depend on the
input pressure of the PMA (Reynolds et al., 2003).

Mx + B(P)x+ K(P)x=F(P)—-Mg (2)

In equation 2, M is the load ma
acceleration of gravity, K(P i
coefficient. B(P) is damping ca

on whether the PAM dei

the effective force pro

The details for coeffigi
Load

Xing (Xing et al 201

Figure 2. Three Element Phenomenological Model of PAM \\ :

2.2. PAM Test Bed Hardware Implementation agd Da ect

Pneumatic Artificial Muscle Test Bed that has €
been used to perform experiments is shown i
figure 3. The corresponding labels for the
components of harware are given as :
Electronic Interface and Data Acquisition@iVo
is indicated with label 1. Bourne AMS22
encoder labeled with Il is used
active length measurement. The pneum
muscle (PAM) indicated with I is
series of Festo and that cou
0-7 bars , with a length of
Honeywell 24PCF series p
in the range of 0-8ybar. L
MX890 series very fast
PWM drives. For th
H3-P3 S type load ¢

Figure 3 Pneumatic Artificial Muscle Test Bed

Durin riments, MATLAB /Simulink blocks are used to implement data acquisition software for sensors and actuator
configurations and closed loop controllers. The Simulink blocks are compiled and sent to a microprocessor running in "Data
Acquisition" unit. In the test bed, ATMEL Arm Cortex M3 microprocessor card is used to control the system. Initially, the accuracy of
our PAM test bed is checked by the emprical modelling experiment and hence we obtained very similar results to that non-linear
elastic relation expressed by Wickramtunge et al. After that, we have concluded that the performance of our test is satisfactory.
(Wickramtunge and Leephakpreda 2013). The experiments has been performed using 0.05 Hz sinusodial reference curves with PID
pressure control in order to obtain data to be used in modelling. The slow pressure reference has been chosen to understand quasi-
static characteristics of PAM. The collected data used in Matlab for ANN toolbox.
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2.3. Neural Network Implementation.

In this work, in order to model the dynamic behaviour of PAM as an integrated response to pressure input, an Artificial Neural
Network was chosen and implemented by using Matlab ANN Toolbox. ANN is a basic MLP with 1 hidden layer composed of 20
neurons. ANN was trained with Levenberg-Marquardt algorithm. Structure of ANN is formed by empirical manner. Overall block
diagrams of ANN is given in figure 4 and 5. The experimental data in terms of force, muscle length and pressure was collected from
the PAM test bed and has been used for training and testing ANN. As an inverse relation, the force data and muscle length data were
used as inputs to ANN and pressure value was used as desired output for training and for performance analysis. Training and testing
performance of ANN is given in figures 6 and 7. Regression results indicate that ANN is successfully trained and tested.

Input Layer Hidden Layer Output Layer

Test Bed
Force Data
Input

Pressure
Estimation

Test Bed
Muscle
Length Data

Input

20
w A4
\ Wlock Diagram of ANN
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Figure 6 Training Performance of ANN
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Figure 7 Testing Performance of ANN V

3. Results and Discussion

After having the ANN successfully implemented and trained, ghre et haS"Been used for performance analysis. The
i ta géts are generated from PAM test and has been

A d loop PID pressure control on PAM test bed
&b different loads in range of 15-100 kg. During the
a)has been reached for the muscle length variation. A
on sequence index in Matlab. The force and muscle length data

with a 0.05Hz sinusoidal reference signal varying in 0-7 bar, wi
data generation, a full range of muscle contraction (25 %) and e
random mixture of data is formed as Input-Output yectérs by a co

vector is applied as inputs to ANN where as pressufg for performance comparison. For performance analysis, the
output pressure estimation of ANN has been compared-te i ressure values from new data set. In figure 9, the first data
set composed of 85 item vectors is applied to : performance occured as quite satisfactory with an error of
maximum 5-8 %. In figure 10 a similar’erfo gen “observed with another test data set. Moreover, another data set

generated by using a faster referencegsignal 5~ also applied for longer run. Figure 11 indicates the performance of

ANN for this long run data set. Ho
switching on-off valves during data gen

de, those performances indicated that a simple ANN could be used as a

transforming and mapping control € evel and low level. A high level desired actuator position in terms of muscle

length and a simultaneous f; en d has been mapped into a low level pressure set value to be used in PID pressure

control loop for PAM. 2
|ANN Output |
for Pressure
|Estimation

CvBVeri1_Test_Inp :]
Experimental Test-Bed Test Scope
Data for Input

Force and Length
Pneumatic Articifial Muscle
MLP Neural Network Estimator

CVBVeri1_Test_Out

Experimental Test-Bed
Data for
Output Pressure

Figure 8 Simulink Performance Test Application
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4. Con

In this work, apart from previous modeling approaches, the behaviour of PAM is foreseen as an integrated response to pressure
input, which results in simultaneous force and muscle length change. Therefore, standard direct input-output identification methods
are not suitable for modelling that behaviour. An inverse modeling approach is proposed in order to utilize it in control applications.
The black box model is implemented by an Artificial Neural Network (ANN) structure using the experimental data collected from
the PAM test bed. According to implementation results, an ANN based inverse model has yielded satisfactory performance deducing
that it could be a simple and effective solution for the PAM control in terms of high level to low level mapping.
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