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Abstract 

Pneumatic Artificial Muscles (PAM) are soft actuators with advantages such as high force to weight ratio, flexible structure and low 

cost. Pneumatic Artificial Muscles have inherent compliance that makes them feasible for exoskeletons and rehabilitation robots. 

However, their inherent nonlinear characteristics yield difficulties in modelling and control actions, which is an important factor 

restricting use of PAM.  The compliance of  PAM is associated with nonlinearity, hysteresis, and time varying characteristics, which 

makes it more difficult to model the dynamics and operation with model based high-performance controllers. Although there are  

many  studies to overcome the modelling issue such as virtual work , empirical  and phenomenological models, they are either much 

complicated or very approximate ones as a variable stiffness spring for model with nonlinear input-output relationship. Based on the 

analysis of well known previous modeling works in our PAM test bed,  it has been observed that  efficacy of the those methods are 

limited for representing the physical behaviour of PAM and thus there is still requirement for  simple and effective models .  In this 

work, apart from previous modeling approaches, the behaviour of PAM is foreseen as an integrated  response to pressure input, which  

results in  simultaneous force and muscle length change.  Therefore, standard direct input-output identification methods are not 

suitable for modelling that behaviour. An inverse modeling approach is proposed in order to utilize it in control applications. The 

black box model  is implemented by an Artificial Neural Network (ANN) structure using  the experimental data collected from the 

PAM test bed. According to implementation results, an ANN based inverse model has yielded satisfactory performance deducing that 

it could be a simple and effective solution for PAM modelling and control . 
Keywords: Soft Actuators, Pneumatic Artificial Muscles, Inverse Modeling, Artificial Neural Network Based Modelling. 

 

Pnömatik Yapay Kaslar için Yapay Sinir Ağı Esaslı Ters Modelleme  

Öz 

Pnömatik Yapay Kaslar (PAM), yüksek kuvvet / ağırlık oranı, esnek yapı ve düşük maliyet gibi avantajlara sahip yumuşak 

aktüatörlerdir. Pnömatik Yapay Kaslar, dış iskelet ve rehabilitasyon robotlarında kullanımını mümkün kılan doğal bir uyumluluğa 

sahiptir. Bununla birlikte, doğrusal olmayan karakteristik özellikleri,  modelleme ve kontrol eylemlerinde zorluklar sağlayan ve 

kullanımını kısıtlayan önemli bir faktördür.  PAM doğal uyumluluğu, doğrusal olmayan, histerezis ve zamanla değişen özellikleri ile  

ilişkilidir, bu durum da PAM dinamik davranışını ve modele dayalı yüksek performanslı kontrolörlerle çalışmasını modellenmesini 

zorlaştırır. Literatürde modelleme sorununun üstesinden gelmek için,  sanal iş, ampirik ve fenomenolojik modeller gibi birçok çalışma 

olmasına rağmen,  bu çalışmalar  çok karmaşık veya doğrusal olmayan değişken bir sertlikli yay için giriş-çıkış ilişkisi olan model 

gibi çok yaklaşıktır. PAM test düzeneğimizde gerçekleştirdiğimiz iyi bilinen önceki modelleme çalışmalarının deneysel analizine 

dayanarak, bu yöntemlerin etkinliğinin PAM'ın fiziksel davranışını temsil etmek için sınırlı olduğu ve hala basit, etkili modellere 

ihtiyaç duyulduğu gözlemlenmiştir. Bu çalışmada, önceki modelleme yaklaşımlarından farklı olarak, PAM'ın davranışı, giriş işareti 

olarak basınç uygulandığında,  eşzamanlı kuvvet ve kas uzunluğu değişikliğine yol açan entegre bir sistem tepkisi olarak 
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öngörülmüştür. Bu nedenle, standart doğrudan giriş-çıkış tanımlama yöntemleri bu davranışı modellemek için uygun değildir. Bu 

çalışmada, kontrol uygulamalarında etkin kullanmak için bir tersine  modelleme yaklaşımı önerilmektedir. Önerilen kapalı kutu model 

ve PAM test yatağından toplanan deneysel veriler kullanılarak Yapay Sinir Ağı (YSA) yapısı tarafından uygulanmaktadır. Uygulama 

sonuçlarına göre, YSA tabanlı bir tersine model, PAM modelleme ve kontrol sorunu için basit ve etkili bir çözüm olabileceğini 

düşündüren tatmin edici bir performans sağlamıştır. 

Anahtar Kelimeler: Yumuşak Eyleyiciler, Pnömatik Yapay Kaslar, Tersine Modelleme, Yapay Sinir Ağı Tabanlı Modelleme. 
  

1. Introduction 

The pneumatic artificial muscle (PAM) is a fiber braided and coated rubber tube  actuator that changes  its actuating length when 

pressurized . PAM was invented firstly by J. L. McKibben. It was redesigned by Bridgestone Company and used for some 

applications to assist disabled individuals. As compared to other conventional actuators (e.g.,motors, hydraulic actuators, and 

penumatic cylinders), PAM could  be foreseen more similar to the human muscle in behaviour. Pneumatic Artificial Muscles (PAM) 

are type of actuators that mimic behavior of skeletal muscle by contracting and generating force in a nonlinear manner when 

pressurized. PAM has a radially inflation and axially contraction behavior which produces high pulling(tensile) forces along the 

longitudinal axis.  It has  low  weight, and high power/weight output. Moreover, the PAM has inherent compliance that makes it 

feasible for exoskeletons and rehabilitation robots. (Daerden & Lefeber 2002).   

 However, the compliance of the PAM is associated with nonlinearity, hysteresis, and time varying characteristics, which makes it 

more difficult to model the dynamics and design high-performance controllers.  A detailed survey of  McKibben PAM modelling 

approaches  is given by Tondu. (Tondu 2012). Furthermore, the dynamic models of the PAM may be grouped into two classes, a 

theoretical model and a phenomenological model, respectively  (Kelasidi et al 2012). The theoretical model describes the relationship 

between the PAM’s characteristics and the parameters directly related to the PAM’s geometric structure  and material properties, that 

has a complex structure with many parameters.  For example, Chou and Hannaford derived the model from the law of energy 

conservation, and described the relationship among the pressure, the length, and the contractile force of the PAM (Chou and 

Hannaford 1996).  The phenomenological model, on the other hand, is constructed according to the relationship between the input and 

output of the PAM, and is suitable for very complex dynamics that are hard to describe by the theoretical model. Among the 

phenomenological models of the PAM , the most used one is the three-element model proposed by Reynolds, in which the PAM is 

considered as a parallel arrangement of three elements (Reynolds et al 2003). However, both the theoretical and the phenomenological 

models contain time varying parameters and non-modeled uncertainties that need to be compensated by control techniques.  Due to 

the nonlinearity, hysteresis, and time-varying characteristics of the PAM, it is difficult to precisely describe its dynamics in the entire 

range of pressure using only one model with constant parameters. (Zhang et al. 2016). The model-based schemes usually cannot 

obtain high-precision control due to the errors between the actual PAM dynamics. In addition, an emprical modelling approach is 

given by Wickramtunge and Leephakpreda which relates force and muscle legth as a nonlinear elastic relation . (Wickramtunge and 

Leephakpreda 2013). Martens et al. , in their work, performed a comparative analysis of the existing static models developed for Festo 

PAM. (Martens and Boblan 2017). Moreover, Ishikawa et al. also performed model parameter extraction of  structurally different 

PAMs using SVM. (Ishikawa et al. 2018). 

 There are  many  studies to overcome the modelling issue in literature,  such as virtual work , empirical  and phenomenological 

models, AI based models. NNARX based  modelling approaches is given by  Ahn et al. (Ahn et al 2008). A hybrid ANN approach is 

developed by Song et. al. (Song et. al. 2015). A recurrent Neuro-Fuzzy based model is introduced by  Chavoshian et al. (Chavoshian 

and Taghizadeh  2020).  However, they are either much complicated or very approximate ones as a variable stiffness spring for model 

with nonlinear input-output relationship . Majority of the existing methods are standard direct pressure input and force output  models.   

 In this work, initially an experimental analysis for characteristics of PAM  has been performed  using a test bed.  Based on the  

analysis of  some well known previous models using our PAM test bed,  it has been observed that  efficacy of the those methods are 

limited for representing the physical behaviour of PAM due to fact that models mostly concentrate direct input-ouput relation in terms 

of pressure and force estimation. In many existing models, the integrated response behaviour of PAM is not combined effectively in 

terms of simultaneous resultant force and muscle contraction. Hence, we deduce that there is still requirement for  simple, effective 

models . By this foresight, apart from previous modeling approaches, the dynamic behaviour of PAM is modelled as an integrated  

response to pressure input, which  results in  simultaneous force and muscle length change.  In this case, standard direct input-output 

identification methods ,such as NNARX, are not suitable for modelling that behaviour. Furthermore, an inverse modeling approach is 

proposed in order to utilize the model in control applications. The black box model  is implemented by an Articifial Neural Network 

(ANN) structure using  the experimental data collected from the PAM test bed.   

 The rest of the  paper as follows: In section II, the  implementation method is given, where experimental setup and data 

acquisition , modelling approach are explained. In section III, experimental results and discussions are presented. In section IV 

conclusions are drawn. 
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2. Material and Method 

Nowadays, PAM is produced commercially by Festo Company and it is also called Festo fluidic muscle. The Festo muscle is 

structurally different from the general McKibben muscles. The fiber of the fluidic muscle is knit into the rubber tube, offering easy 

assembly and improved hysteric behavior and nonlinearity compared to conventional design (Festo 2018). Due to difference in 

construction, Festo PAM have different properties as compared to other existing PAM models. In figure1, a  DMPS20 series Festo 

fluidic  muscle  and its dynamic characteristics is illustrated. In figure 1, F indicates the generated force by PAM in N and h indicates 

percentage muscle length change in terms of contraction [3] or extension [4], against different applied pressure curves. 

 

  

An experimental analysis has been performed for physical characteristics of Festo PAM, using a hardware test bed. When the dynamic 

characteristics analyzed, it has been observed that PAM had different operating curves for different applied pressure values which is 

also a confirmation of manufacturer's curves. Those different operating curves is the main cause for nonlinear behaviour of PAM. 

During the analysis, it has been observed that although applied pressure was the only input, but there was an integrated response  of 

generated force and muscle length change as the output. In the test bed experiments, data has been obtained for different input 

pressure values  and with different external  loads. During the experiments,  data from test bed has been obtained and compared to 

Matlab simulation results of some well known models. It has been concluded that majority of existing modelling approaches includes 

muscle length but considers solely force as the ouput. However, in our case, when PAM used as actuator, both force and muscle length 

have become equally important. Hence, in this work integrated response approach has been implemented as inverse modelling 

approach. 

2.1.  Overview of  Main Modelling  Approaches 

 In this section, as a starting point, main PAM modelling approaches in literature  has been briefly introduced  in order to illustrate 

the differences.  In  the modeling works, the main purpose is to establish a relationship between pressure, extension of the muscle 

along the entire axis (displacement) and force. Pulling force, air pressure, diameter and length of the muscle, material properties play 

an important role in modeling approaches. PAM's mathematical models relate these factors (Kelasidi et al.,2011). In general, modeling 

approaches depend on the static and dynamic behavior of PAM. 

 When developing a static model of the muscle, the basic approach is based on energy modelling. That approach provides a 

relationship between "actuator force, pressure and length", showing the length or degree of contraction and the diameter of the muscle 

formed by the forces, the actuator performance, taking into account virtual work and energy savings. The Chou and Hannaford model 

is the simplest geometric model for the static performance of a PAM (Chou and Hannaford,1996). In their approach, PAM actuator is 

modeled as a cylinder and the equation showing the expression between pressure, position and pressure according to this model is as 

follows. In the equation 1,b is the thread length. n indicates the number of turns of a thread. θ angle is defined as the angle between 

longitudinal axis and thread. 

𝑭 = 𝑷′
𝒃𝟐

𝟒𝝅𝒏𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏)           ( 1) 

 

Figure 1. Festo Fluidic Muscle and Dynamic Characteristics (Festo 2018) 
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  The aim of the dynamic model, also known as 

the phenomenological model of PAM, is a simple 

approach to evaluate the dynamic behavior of the 

pneumatic muscle. In dynamic modeling, as seen in  

Figure 2, the parallel configuration of the muscle, spring, 

damper and contractile element is used. the coefficients 

corresponding to these three elements depend on the 

input pressure of the PMA (Reynolds et al., 2003).  

𝑴�̈� + 𝑩(𝑷)�̇� + 𝑲(𝑷)𝒙 = 𝑭(𝑷) − 𝑴𝒈       (2)   

In equation 2, M is the load mass , g denotes the 

acceleration of gravity. K(P) indicates the spring 

coefficient. B(P) is damping coefficient and it depends 

on whether the PAM being inflated or deflated. F(P) is 

the effective force provided by the contractile element. 

The details for coefficients could be found in the work by 

Xing (Xing et al 2010). 

      

  

Figure 2. Three Element Phenomenological  Model of PAM 

 

2.2. PAM Test Bed Hardware Implementation and Data Collection. 

  

 Pneumatic Artificial Muscle Test Bed that has 

been used to perform experiments is shown in 

figure 3. The corresponding labels for the 

components of harware are given as follows: 

Electronic Interface and Data Acquisition Module  

is indicated with label I.  Bourne AMS22 type 

encoder labeled with II  is used for the muscle 

active length measurement. The pneumatic artificial 

muscle (PAM) indicated with III is the DMSP 20 

series of Festo and that could  work in the range of 

0-7 bars , with a length of 250 mm.  Label IV marks  

Honeywell 24PCF series pressure sensor operating 

in the range of 0-8 bar. Label V shows Matrix 

MX890 series very fast on/off valves of  used  with 

PWM drives. For the force measurement , Zemic 

H3-P3 S type load cell  with 0-100 kg range is used.  

 

  

 

 

 During the experiments, MATLAB /Simulink blocks are used to implement data acquisition software for sensors and actuator 

configurations and closed loop controllers.  The Simulink blocks are compiled and sent to a microprocessor running in "Data 

Acquisition" unit. In the test bed, ATMEL Arm Cortex M3 microprocessor card is used to control the system. Initially, the accuracy of 

our PAM test bed is checked by  the emprical modelling  experiment  and hence we obtained very similar results to that non-linear 

elastic relation expressed by  Wickramtunge et al. After that, we have concluded that the performance of our test is satisfactory. 

(Wickramtunge and Leephakpreda 2013). The experiments has been performed using 0.05 Hz  sinusodial reference curves with PID 

pressure control in order to obtain data to be used in modelling. The slow pressure reference has been chosen to understand quasi-

static characteristics of  PAM. The collected data used in Matlab  for ANN toolbox. 

Figure 3 Pneumatic Artificial Muscle Test Bed 
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2.3. Neural Network Implementation. 

  In this work, in order to model the dynamic behaviour of PAM as an integrated  response to pressure input, an Artificial Neural 

Network  was chosen and implemented by using Matlab ANN Toolbox. ANN is a basic MLP with 1 hidden layer composed of 20 

neurons. ANN was trained with Levenberq-Marquardt algorithm. Structure of ANN is formed  by empirical manner. Overall block 

diagrams of ANN is given in figure 4 and 5. The experimental data in terms of force, muscle length and pressure was collected from 

the PAM test bed and has been used for training and testing  ANN.  As an inverse relation, the force data and muscle length data were 

used as inputs  to ANN and pressure value was used as desired output for training and for performance analysis. Training and testing 

performance of  ANN is given in figures 6 and 7. Regression results indicate that ANN is successfully trained and tested. 

 

Test Bed

Force Data

Input

f(.)

Test Bed

Muscle

Length Data

Input

f(.)

f(.)

f(.)

b
1 b

2

20

Neurons

Input Layer Hidden Layer

Pressure

Estimation

Output

Output Layer

W
k,l

W
i,j

 

Figure 4 Block Diagram of  Implemented ANN 

 

 

 Figure 5 Matlab Block Diagram of  ANN 

 

 

Figure 6 Training Performance of ANN 
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Figure 7 Testing Performance of ANN 

3. Results and Discussion  

 

 After having the ANN successfully implemented and trained, three other data set has been used for performance analysis. The 

ANN has been transformed into a Simulink model as shown in figure 8.  Different data sets are generated from PAM test and has been 

fed to ANN model test in Simulink. Data generation was performed by applying a closed loop PID pressure control on PAM test bed 

with a 0.05Hz sinusoidal reference signal varying in 0-7 bar, with the test bed under different loads in range of 15-100 kg. During the 

data generation, a full range of muscle contraction (25 %) and extension (5 %) has been reached for the  muscle length variation.  A 

random mixture of data is formed  as Input-Output vectors by a common sequence index in Matlab. The force and muscle length data 

vector is applied as inputs to ANN where as pressure values are used for performance comparison. For performance analysis, the 

output pressure estimation of ANN has been compared to experimental pressure values from new data set. In figure 9,  the first data 

set composed of 85 item vectors is applied to ANN model and the resultant performance occured as quite satisfactory with an error of 

maximum 5-8 %.  In figure 10 a similar performance has been observed with another test data set.  Moreover, another data set 

generated by using a faster reference signal which is 0.5 Hz is  also applied for longer run. Figure 11 indicates the performance of 

ANN for this long run data set. However, percentage error for the fast reference performance has  increased due to effect of fast 

switching on-off valves during data generation.  To conclude, those performances  indicated that a simple ANN could be used as a 

transforming and mapping control  block between high level and low level. A high level desired actuator position in terms of muscle 

length and a simultaneous force generation demand has been mapped into a low level  pressure set value to be used  in  PID pressure 

control loop for PAM. 

 

Figure 8 Simulink Performance Test Application 
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Figure 9 ANN Performance Test Result #1 

 

 

Figure 10 ANN Performance Test Result #2 

 

 Figure 11 ANN Performance Test Result #3 

4. Conclusion 

 In this work, apart from previous modeling approaches, the behaviour of PAM is foreseen as an integrated  response to pressure 

input, which  results in  simultaneous force and muscle length change.  Therefore, standard direct input-output identification methods 

are not suitable for modelling that behaviour. An inverse modeling approach is proposed in order to utilize it in control applications. 

The black box model  is implemented by an Artificial Neural Network (ANN) structure using  the experimental data collected from 

the PAM test bed. According to implementation results, an ANN based inverse model has yielded satisfactory performance deducing 

that it could be a simple and effective solution for the PAM control in terms of high level to low level mapping. 
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