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Abstract 

Listen, Attend and Spell (LAS) network is one of the end-to-end approaches for speech recognition, which does not require an explicit 

language model. It consists of two parts; the encoder part which receives acoustic features as inputs, and the decoder network which 

produces one character at a time step, based on the encoder output and an attention mechanism. Multi-layer recurrent neural networks 

(RNN) are used in both decoder and encoder parts. Hence, the LAS architecture can be simplified as one RNN for the decoder, and 

another RNN for the encoder. Their shapes and layer sizes can be different. In this work, we examined the performance of using multi 

RNNs for the encoder part. Our baseline LAS network uses an RNN with a hidden size of 256. We used 2 and 4 RNNs with hidden 

sizes of 128 and 64 for each case. The main idea behind the proposed approach is to focus the RNNs to different patterns (phonemes in 

this case) in the data. At the output of the encoder, their outputs are concatenated and fed to the decoder. TIMIT database is used to 

compare the performance of the mentioned networks, using phoneme error rate as the performance metric. The experimental results 

showed that proposed approach can achieve a better performance than the baseline network. However, increasing the number of RNNs 

does not guarantee further improvements. 

Keywords: Attention networks, Recurrent neural networks, Speech recognition, Timit.   

Konuşma Tanıma için Kodlayıcı Olarak Paralel Kapılı Tekrarlayan 

Birim Ağları 

Öz 

Listen, Attend and Spell (LAS) ağı konuşma tanıma için belli bir dil modeline gereksinim duymayan uçtan-uca yaklaşımlardan biridir. 

İki kısımdan oluşur; akustik öznitelikleri girdi olarak alan kodlayıcı kısmı, kodlayıcı çıkışı ve dikkat mekanizmasına bağlı olarak bir 

zaman adımında tek bir karakter üreten kod çözümleyici kısmı. Hem kod çözümleyici hem de kodlayıcı kısımlarında çok katmanlı 

tekrarlayan sinir ağları (RNN) kullanılır. Bu nedenle LAS mimarisi kod çözümleyici için bir RNN ve kodlayıcı için bir başka RNN 

olarak basitleştirilebilir. Şekilleri ve katman boyutları farklı olabilir. Bu çalışmada, kodlayıcı kısmı için çoklu RNN kullanımının 

performasını inceledik. Temel alınan LAS ağı 256 gizli boyutu olan bir RNN kullanmaktadır. 128 ve 64 gizli boyutları için 2 ve 4 RNN 

kullandık. Önerilen yaklaşımın ardındaki ana fikir, RNN’leri verilerdeki farklı örüntülere (bu çalışma için fonemler) odaklamaktır. 

Kodlayıcının çıkışında bunların çıkışları birleştirilir ve kod çözümleyiciye iletilir. TIMIT veritabanı, performans metriği olarak fonem 

hata oranı seçilerek bahsedilen ağların performansını karşılaştırmak için kullanılmıştır. Deneysel sonuçlar, önerilen yaklaşımın temek 

alınan ağdan daha iyi bir performans elde edebileceğini göstermiştir. Ancak RNN’lerin sayısını artırmak daha fazla iyileşmeyi garanti 

etmemektedir. 

 

Anahtar Kelimeler: Dikkat ağları, Tekrarlayan sinir ağları, Konuşma tanıma, Timit 
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1. Introduction 

Traditional speech recognition systems consists of an 

acoustic model, a language model, a pronunciation model, etc. 

[1]. Hidden Markov Model (HMM) method was the dominating 

approach for speech recognition [2], however, end-to-end 

systems, where different components trained jointly, gained 

popularity recently. Deep neural networks (DNNs) based systems 

achieved a higher performance on several speech recognition 

benchmarks [3]. End-to-end training was achieved with the aid of 

Connectionist Temporal Classification (CTC) and Recurrent 

Neural Network (RNN) [4], [5]. 

Another popular architecture, namely Listen, Attend and 

Spell (LAS) is an alternative end-to-end system which can emit 

one character at a time at the output, without CTC or language 

model [6]. Further, the LAS network does not make any 

independence assumption on the output probabilities, contrary to 

the CTC. Two main parts of the LAS network are encoder and 

decoder, where both are realized with RNNs, and this type of 

networks called as sequence-to-sequence networks [7]–[9]. 

In this work, we use a similar network to the LAS architecture 

and its modifications for speech recognition on TIMIT database, 

which is a classical database for phoneme/speech recognition or 

related studies [10]–[12]. The inputs of the networks are filter 

bank energies, which usually work well with neural networks 

compared to the conventional mel-frequency cepstral coefficients 

[13], [14]. For the modified encoders, we increased the number of 

RNNs to 2 and 4, instead of the single RNN of the baseline. Also, 

the baseline system has the hidden size of 256, where we tried 128 

and 64 in the modified networks. Using 2 (or 4) parallel RNNs, 

we aim to achieve finer models for different patterns, as different 

RNNs may focus on different sections of the data during training. 

The experiments showed that the proposed modifications increase 

the performance of the LAS network, and also, they can have a 

reduced number of trainable parameters, compared to the baseline 

network. 

2. Modified LAS Network 

We used the modified versions of [6]. The original LAS 

network used pyramidal long short-term memory (LSTM) layers 

in the encoder. In this work, gated recurrent unit (GRU) [9] layers 

were preferred as they include one less gate than the LSTM, and 

can achieve a higher performance for small databases [15]. GRU 

layers were also used in the decoder, and a fully-connected 

network with two layers was used as the attention layer [16]. The 

baseline LAS network is given in Figure 1. The encoder part is 

represented with green, and decoder part is represented by blue. 

The inputs of the decoder are ground-truth phoneme labels in the 

training. In the evaluation mode, the inputs are the predictions of 

the previous time step. Fully-connected layers serve as embedding 

layers for both encoder and decoder. After the embedding layer of 

the encoder, sigmoid activation is applied. 

 

Fig. 1 Block diagram of LAS network  

The GRU layers of the encoder are bidirectional, hence both 

the input sequence and its reversed form are learned. This is also 

true for the proposed multi RNN layers. The output of the decoder 

at time step i depends on current decoder state (si) and the context 

vector (ci, obtained via attention layer). When we use more than 

one GRU in parallel, their outputs are concatenated to create the 

decoder state. Three fully-connected layers are used for the 

attention. One of those layers takes its inputs from the decoder, 

and another layer takes them from the final GRU layer (or layers 

for the parallel GRUs) of the encoder. The outputs of these two 

fully-connected layers are added together, and sent to the third 

layer. It should be noted that the size of the inputs from the 

encoder will vary (depending on the number of GRUs and their 

hidden sizes). The dimensions were adjusted accordingly in the 

experiments. The output of the third layer is the attention vector. 

The purpose of the attention layer is to focus the decoder on a few 

frames of the encoder output [6], as not all of the frames affect the 

output equally. The output of the attention layer is therefore can 

be thought of a mask that weights features based on their relation 

with the target output. Therefore, encoder output states are 

multiplied with the attention mask.    

After obtaining the masked output vector, it is concatenated 

with the last GRU layer of the decoder and served as input to the 

fully-connected layer before the classification layer. Softmax 

function is used in the classification layer where the phoneme 

with the maximum probability is chosen as the output of that time 

step. The classification stops when end-of-sentence token is 

produced. 

Table 1 shows the total number of trainable parameters for 

the encoder parts of the baseline and modified LAS networks. 

Except the two GRUs with 128 hidden size, the other 

configurations have less trainable parameters compared to the 

baseline architecture. This will lead to faster training and 

execution times. Hence, even if the proposed architectures 

perform similar to the baseline, they will still possess an 

advantage due to the reduced number of parameters. 
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Fig. 2 Multi GRU approach for the encoder part  

 

Table 1. Total number of trainable parameters for the encoder 

part 

Hidden size * # GRUs # Parameters 
Absolute 

Change 

Baseline / 256 * 1 3,179,776 - 

128 * 2 1,787,392 -1,392,384 

128 * 4 3,566,848 +387,072 

64 * 2 553,984 -2,625,792 

64 * 4 1,100,032 -2,079,744 

3. Experiments 

The modified LAS networks’ performance for phoneme 

recognition was examined on TIMIT database, where 3696 

sentences from 462 speakers were used for training (SA records 

were removed), 400 sentences were chosen as the validation data, 

and the test set contains 192 sentences from 24 speakers. 

Transcriptions of TIMIT are based on 61 phonemes. However, 

typical approach is to map those phonemes into 48 for modelling. 

Further, confusions among some of the phones are not considered 

as error, so only 39 phoneme categories are used in the evaluation 

[17].  

For the baseline system, all of the GRU layers have 256 

hidden states. The networks were trained for 200 epochs, using a 

batch size of 16, and ADAM optimizer. Learning rate was 3e-4 

initially, and reduced by half if there is no improvement after ten 

epochs. Also, dropout was used after the GRU layers with a 0.5 

probability. Pytorch was used to build, test, and train the network. 

Torchaudio was used for feature extraction, mel-scaled log 

filter bank energies were used as the features. Frame length was 

25 ms, and frame shift was 10 ms. The number of triangular filters 

was 30. All other parameters were used as their default values. 

The results for the baseline system and the modified versions 

are given in Table 2. Using four GRUs with the size of 128 yielded 

the best performance, 16.71%. Only the case where two GRUs 

with the size of 64 performed worse than the baseline. The results 

indicate that using a single GRU may not always be the best 

option. Although the main advantage of the GRUs is the ability to 

model long relations of the input, using several GRUs to 

specialize in the different sections of input can provide extra 

information to network, which may vanish otherwise. On the 

other hand, increasing the number of parallel GRUs will increase 

the training time as the required mathematical operations will 

increase. Reducing the hidden size may counter this problem, but 

the observed results showed that it may deteriorate the 

performance as using 64 hidden nodes performed poor compared 

to the others. 

 

Table 2. Phoneme error rates (PER, %) for different encoder 

configurations 

Hidden size * # GRUs PER 
Relative 

Reduction 

Baseline / 256 * 1 17.67 - 

128 * 2 17.11 3.17 

128 * 4 16.71 5.43 

64 * 2 17.84 -0.96 

64 * 4 17.21 2.60 

 

It should be noted that at the first glance, the performance 

improvements may be assigned to the increased number of hidden 

nodes (hence number of trainable parameters). As the GRUs used 

in the encoder are bi-directional, the output size of the baseline 

encoder is 512. The best performing system (4 GRUs with 128 

nodes) has the output size of 1024. However, if the 2 GRU of 128 

nodes is considered, it has the same output size of the baseline, 

which is 512. Its performance is still 3.17% better than the 

baseline, relatively. Also, the number of trainable parameters in 

that case is almost 1,4 million less than the baseline. 

Nevertheless, when we reduced the number of trainable 

parameters of the encoder over 2,6 million, the performance loss 

was less than 1%. Even a 2.6% PER improvement was achieved 

with 2 million less parameters for the four GRUs with 64 hidden 

sizes. Therefore, besides the number of trainable parameters, the 

architecture itself plays an important role on the final recognition 

performance. Still, there is a trade-off between the number of 

parameters and the performance of the network. The results tell 

us that after reaching a limit, the recognition performance will 

drop if we further decrease the trainable parameters. This is 

mainly due to the fact that the network will not have the flexibility 

to model different patterns and tend to overfit to the training data. 

So, in the test stage where the network can encounter with some 

unseen data, it will likely to be misclassified. 

4. Conclusions  

Phoneme recognition performance of the modified LAS 

network was examined in this work, using the TIMIT database. 

Instead of the single GRU of the encoder part, we used two and 

four GRUs in parallel. Hidden node sizes of 128 and 64 were 

considered, compared to the 256 nodes of the baseline network. 

Two GRUs with 64 hidden nodes performed worse than the 

baseline, however the performance loss was under 1% and about 

3-fold less learnable parameters were used. On the other hand, the 

other modifications achieved better performances. The best 

performance was achieved with four GRUs with 128 hidden 

nodes, with 16.71% PER. The relative error reduction for the best 

case was 5.43%.  
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The results indicate that the encoder-decoder type end-to-end 

networks’ performances could be increased with this slight 

modification. By using parallel GRUs, the number of trainable 

parameters were also reduced, without compromising the 

performance. However, as the network gets smaller, its 

performance will decrease. So, a sweet point should be aimed 

with comparing different networks experimentally. 

For further improvements, using different activation 

functions, different dropout rates, etc. will be considered in the 

future works. The network can focus on different patterns found 

in the data with this approach. Also, using different number of 

hidden nodes in each network may affect the performance. A more 

detailed investigation is necessary to analyze performances of 

different architectures. For these mentioned modifications, 

behavior of the attention may also play an important role in the 

recognition performance, hence it should also be considered. 
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