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Abstract 

The quality of observations is fundamental issue in natural sciences. Here, the accurate and complete data is required to accomplish 

satisfactory estimations. There are several factors impairing the quality of measurements, such as a broken or mis-calibrated device and 

error in reading the measurements. Thus, this study primarily aims the imputation of the missing values in measurement of solar radiation 

data. Deep Neural Network (DNN) method was used to handle the missing data, and benchmarked with the classical approaches, i.e., 

Mean Imputation (MI), which one of the most frequently adopted data imputation method in the pertinent literature, the Linear 

Interpolation (LI) and Spline Interpolation (SI). The overall results highlighted that the DNN method outperformed its counterparts in 

terms of missing value handling through providing a greater accuracy according to the various performance metrics compared to the 

classical methods. It is believed that the proposed approach could make valuable contribution to the body of knowledge as well as 

providing significant overview to the interested researchers by filling the important gap exists in the pertinent literature.  
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Eksik Solar Radyasyon Verilerinin Derin Sinir Ağları ile 

Tamamlanması 

Öz 

Gözlemlerin kalitesi doğa bilimlerinde önemli bir konudur. Tatmin edici tahminleri gerçekleştirmek için doğru ve eksiksiz veriler 

gereklidir. Bozuk veya yanlış kalibre edilmiş bir cihaz ve ölçümlerin okunmasındaki hata gibi ölçümlerin kalitesini bozan çeşitli 

faktörler vardır. Bu çalışmada, güneş radyasyonu verilerinin ölçümünde kayıp değerlerin tamamlanması amaçlanmaktadır. Eksik 

verileri işlemek için Derin Sinir Ağı (DNN) yöntemi kullanılmış ve ilgili literatürde en sık benimsenen veri atama yöntemlerinden biri 

olan Ortalama Atama (MI) gibi klasik yaklaşımlarla, Doğrusal İnterpolasyon (LI) ve Spline İnterpolasyon ile kıyaslama yapılmıştır. 

Genel sonuçlar, DNN yönteminin, klasik yöntemlere kıyasla çeşitli performans ölçütlerine göre daha fazla doğruluk sağlayarak eksik 

veri tamamlama açısından benzerlerinden daha iyi performans gösterdiğini vurguladı. Önerilen yaklaşımın, ilgili literatürde var olan 

önemli boşluğu doldurarak ilgili araştırmacılara önemli bir genel bakış sağlamanın yanı sıra bilgi birikimine değerli katkılarda 

bulunabileceğine inanılmaktadır. 
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1. Introduction 

Solar radiation values play a key role in the recent instances 

of hydrological drought. It is known that solar radiation is a 

critical factor in evaporation (Heck et al., 2020). All 

meteorological readings that are known to affect drought should 

be known to determine its extent and take measures. Any analysis 

or modeling requires such data to be complete and highly 

accurate. In developing countries, measurement of meteorological 

data may be subject to some disruptions (Hunziker et al., 2017). 

These disruptions may be associated with the instruments used, 

human error, and environmental factors. Measurement of solar 

radiation data is vulnerable to errors. Instruments should be 

calibrated and physically cleaned regularly. Otherwise, serious 

omissions and deviations may occur in the readings. 

Some omissions in solar radiation data may be compensated 

for by classical methods. Such methods principally involve 

compensation using basic statistical indicators. Mean, mode or 

median values of a time series are used to compensate for the 

missing data in the series (Awawdeh et al., 2022; Schneider, 

2001). Another classical method is the use of multiple linear 

regression (MLR) to restore the missing data. Missing data in a 

dataset may be recovered using independent variables of the same 

date. Such independent variables may be other meteorological 

parameters that are known to be associated with solar radiation 

(Başakın et al., 2021). The major drawback of the MLR method 

is that it is subject to many prerequisites including normal 

distribution, stability of variance, significance of coefficients, and 

normal distribution of errors (Başakın & Ekmekcioğlu, 2021). 

Another classical method is the interpolation method. Linear or 

spline interpolation of a time series data can be used to restore the 

missing data (Stisen & Tumbo, 2015). The stations measuring 

solar radiation close to the relevant area may also be used for this 

purpose. Geostatistical methods are used for spatial studies. The 

most common methods among them are the Krigging and the 

inverse distance weighting method (Nikroo et al., 2010). 

Recent advancement of machine learning methods has 

enabled significant improvements in compensating for missing 

data. One of the key characteristics of machine learning in this 

regard is that it allows to work flexibly with nonlinear data and 

make highly accurate estimations. K-nearest neighbor 

(Ratolojanahary et al., 2019), support vector machine (Gill et al., 

2007), decision tree (Hamzah et al., 2021), fuzzy logic (Saplioglu 

& Kucukerdem, 2018) and artificial neural networks (Coutinho et 

al., 2018) are the methods used in completing hydrological data. 

Among them the most frequently used and developed method is 

ANN. Positive developments in computer technologies have 

enabled to develop many ANN methods with greater flexibility. 

Greater amounts of data and increased numbers of variables have 

given rise to more complex ANNs that yield better results. Today, 

the most frequently used ANN architectures are deep neural 

network models. DNN marked a significant progress in ANN. 

In this study, DNN was used to restore the missing data of 

total daily solar radiation. Meteorological variables were used to 

estimate the missing data. The meteorological variables used were 

temperature, wind speed, humidity and sunshine hours. Random 

gaps of different sizes were made in a definite full set. The data at 

hand were used to train the DNN model, and the gaps were 

estimated. The study also involved a comparative analysis using 

classical imputation methods. Then the outcomes were 

statistically analyzed to pick the most appropriate model. 

2. Material and Methods 

2.1. Study area and data 

This study measures the missing solar radiation values of a 

station located in the Central Anatolia region of Turkey, where the 

climate is semi-arid. The station is located at latitude 38.37255, 

longitude 34.02537 and at an altitude of 980 meters. The studied 

area is a continental climate zone that is poor in water resources. 

The yearly average precipitation is 300 mm which is below the 

Turkey average. The level of ground water has also dropped 

remarkably in recent years (Demir et al., 2021).  The agriculture 

mode of the area is dry grain farming. 1857 instances of data 

collected from 2016 to 2021 were used in the study. Descriptive 

statistical information on all meteorological data is available in 

Table 1. When table 1 is examined, it is observed that solar 

radiation values are close to the normal distribution, but other 

parameters are far from the normal distribution. 

 

Figure 1. Study area 

2.2. Classic imputation methods 

2.2.1. Mean Imputation (MI) 

Imputation of missing data using mean value can be 

considered the simplest imputation method. It operates on the 

principle of filling the gaps using the mean values of the entire 

data. The most significant disadvantage of this method is that the 

mean value affected by extreme values. Since variations between 

maximum and minimum values affect the mean value, 

undesirable estimations may ocur (Osman et al., 2018) 

2.2.2. Linear and Spline Interpolation (LI and SI) 

Interpolation methods are usually implemented by generating 

curve(s) for the existing data points (xi, fi). The functions used for 

this purpose are called interpolation functions (Figure 2). Mostly 

polynomials of different orders are used as interpolation 

functions. However, in some cases, more special functions such 

as logarithmic, exponential and hyperbolic functions, or for 

periodic data values, trigonometric functions can be used. It 

would be better to use finite difference-based interpolation 

methods if the data points are at equal intervals, or linear 
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interpolation, Lagrange interpolation, etc. if the data points are not 

at equal intervals.hyperbolic functions, or for periodic data values,  

 

 

Table 1. Descriptive Statistics

Parameters Unit Maximum Minimum Mean Median St. Dev. Skewness 

Maximum 

Temperature 
℃ 38.7 -5.5 20.28 21.2 9.83 -0.32 

Minimum 

Temperature 
℃ 24.8 -16.5 8.09 8.3 7.76 -0.23 

Average 

Temperature 
℃ 31 -11.1 13.91 14.15 8.91 -0.21 

Maximum 

Relatiive 

Humidity 

% 96 24 71.12 73 15.95 -0.41 

Minimum 

Relatiive 

Humidity 

% 91 5 29.91 25 16.44 0.98 

Average 

Relatiive 

Humidity 

% 94.9 14.1 50.6 48.7 17.42 0.26 

Sunshine 

Duration 

Hr 14 0 7.31 7.8 4.1 -0.31 

Wind Sped m/s 4.9 0.4 1.75 1.6 0.69 1.04 

Total 

Solar Radiation 

W/m2/day 532578 6000 282429 285600 144874 -0.07 

trigonometric functions can be used. It would be better to use 

finite difference-based interpolation methods if the data points 

are at equal intervals, or linear interpolation, Lagrange 

interpolation, etc. if the data points are not at equal intervals. 

It is possible to modify the attained equation to make them 

suitable for direct interpolation rather than solving a linear 

equation set to interpolate by running a polynomial through a 

group of points. 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥                                                                            (1)    

Let the points (𝑥0, 𝑓0) and (𝑥1, 𝑓) are the cartesian 

coordinates. Since the interpolation based on these two 

consecutive points satisfies the Eq. (1), Eq. (2) and Eq. (3) can 

be obtained as follows:  

 𝑓0 = 𝑎0 + 𝑎1𝑥0                                                                              (2)                                                                                                                            

𝑓1 = 𝑎0 + 𝑎1𝑥1                                                                               (3)                                                                                                                          

Here, the coefficients, i.e., 𝑎0 and 𝑎1, can be expressed as 

follows:  

𝑎0 =
𝑓0𝑥1−𝑓1𝑥0

𝑥1−𝑥0
;                              𝑎1 =

𝑓1−𝑓0

𝑥1−𝑥0
;  

Thus, one can identifies the equation for a linear system as 

follows:  

𝑓(𝑥) =
𝑓0𝑥1−𝑓1𝑥0

𝑥1−𝑥0
+

𝑓1−𝑓0

𝑥1−𝑥0
𝑥                                                           (4)    

The final equation can be obtained through Eq. (5) 

 

𝑓(𝑥) = 𝐿0𝑓0 + 𝐿1𝑓1                                                                       (5)    

                                                                                                                    

𝐿0 =
𝑥−𝑥1

𝑥0−𝑥1
;     𝐿1 =

𝑥−𝑥0

𝑥1−𝑥0
     

 

Figure 2. Graphical representation of Linear Interpolation 

2.3. Deep Neural Network (DNN) 

Deep learning is a field of machine learning that stands on 

the intersection of neural networks, artificial intelligence, 
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graphic modeling, optimization, pattern recognition and signal 

processing. Deep learning networks represent a revolutionary 

development in neural networks, and used to make more 

powerful estimations (Lecun et al., 2015). Deep learning is 

about supervised or unsupervised learning from data using 

multi-layer machine learning models (Figure 3). Layers in these 

models are made up of multiple stages of non-linear data 

transformations where properties of the data are represented in 

increasing and more abstract layers. 

 

Figure 3. Architecture of DNN 

 

2.4 Performance Criteria 

In this study, the root mean square error (RMSE),mean 

absolute percentage error (MAPE) and Nash-Sutcliffe 

efficiency (NSE) (Nash & Sutcliffe, 1970) coefficient was used 

to evaluate the accuracy of the proposed models. The MSE 

value ranges from 0 to ∞ and the best value is 0. Zero indicates 

that the prediction process is performed without error. The NSE 

is a ratio of the mean square errors and the variance of the 

observed values. NSE is calculated by subtracting this ratio 

from 1. The resulting coefficient ranges from 1 to -∞, while 1 

represents the highest accuracy. The equations of RMSE and 

NSE are given as follows in Equation 6 and Equation 7, 

respectively: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑅𝑝𝑖 − 𝑅𝑜𝑖)

2𝑛
𝑖=1                                                 (6)                                                                                                   

𝑁𝑆𝐸 = 1 − [
∑ (𝑅𝑝𝑖−𝑅𝑜𝑖)

2𝑛
𝑖=1

∑ (𝑅𝑜𝑖−�̅�𝑜)2𝑛
𝑖=1

]                                                        (7)    

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑅𝑜𝑖−𝑅𝑝𝑖

𝑅𝑜𝑖
|𝑛

𝑖=1                                                      (8)                                                                                                       

where, n represents number of observation and prediction, 

Rpi represents the ith solar radiation predicted value, Roi denotes 

ith solar radiation observed value, �̅�𝑜 denotes the average of 

observed solar radiation. 

Table 2. Model Performance 

Model Gap Size Gap Size Gap Size 

1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 

RMSE NSE MAPE 

DNN 69014 24431 60789 50048 69624 0.821 0.969 0.819 0.877 0.775 21 19 20 19 23 

LI 52022 63405 60484 65583 66134 0.898 0.796 0.821 0.790 0.797 20 21 20 23 22 

SI 50232 75797 72005 77660 82461 0.905 0.705 0.746 0.709 0.684 20 28 28 31 35 

MI 159313 139794 142651 143862 146792 0.050 -7.1E-05 0.005 0.002 7.61E-05 97 59 87 90 100 

3. Results and Discussion 

Three classic methods and a modern method were used to 

impute missing data in the study. A verified dataset was selected 

for using the methods. In the dataset, inputs were 

meteorological data, and outputs were daily total solar radiation 

data. Random gaps were created in the solar radiation dataset. 

Gaps were categorized in five different groups: 1%, 5%, 10%, 

20%, and 30%. A fixed distinction was not made between the 

training and test datasets. Only for the DNN method, a 

distinction of 80-20% was made in the verification phase, then 

a test was run for the parts where there were missing data.  Only 

solar radiation time series data were used for the imputation 

done by classical methods. One of the classic methods, mean 

imputation was calculated by taking the arithmetic average of 

the solar radiation time series values. This value was assigned 

to all missing data to complete the simulation. The mean 

imputation method did not yield good results due to the 

nonlinear nature of the radiation data. When the root mean 

square error (RMSE) and Nash- Sutcliffe (NSE) values based 

on the magnitudes of the missing data, the mean imputation 

method performed poorly in all groups. 

Linear and spline interpolation methods were selected for 

the completion using interpolation. They performed better than 

the DNN model in the estimations for the 1%, 10% and 30% 

gap rates. The SI method performed the best in the 1% gap rate 

with simulation RMSE of 50232. In the 10%-gap group, LI 

performed the best simulation with RMSE of 60585. Lastly, LI 

performed the best in the 10%-gap group with 66134 RMSE. It 

is thought that the main reason the aforementioned models 

performed better than the DNN model is the distribution of the 

gaps. 
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Five different models for five different gap groups using 

the DNN model. Three hidden layers, and 100, 50, and 30 

hidden neurons were used in each of the hidden layers. The 

“ReLu” activation function was used as the activation function. 

A grid search algorithm was used to optimize the 

hyperparameters. DNN was the third best model in the 1% gap 

group after LI and SI with RMSE = 69624. For the 5% gap 

group, the most successful method was DNN with RMSE 

=50048. It ranked second by a narrow margin in the 10% gap 

group, and outperformed the other estimation models by a 

considerable margin in the 20% gap group. In the last group, 

DNN made the second-best estimations again by a small margin 

for a gap rate of 30% (Table 2).  

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 4. Scatter plot of DNN model different gap size 

a)1%, b)5%, c)10%, d)20%, e)30% 

Figure 4, 5, and 6 show the scatter plots of the estimated 

and observed values. Figure 4 indicates that almost all DNN 

models scatter closely to the ideal estimation line. This implies 

that the model is not subject to any overfitting and the models 

do not have errors entailing and affecting each other. Only the 

number of hidden layers and hidden neurons may be considered 
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inadequate for the model devised for the gap rate of 30%. The 

model performed poorly in estimating small values. An 

examination of the figure 5 reveals distributions far from the 

ideal estimation line for any gap rate. Even if estimation errors 

show a normal distribution, it is fair to say that model variances 

have some excess. An examination of the observed and 

simulated values of the SI method reveals underestimation for 

all gap groups (Figure 6). The estimated values were mostly 

below the observed values. This implies that it is likely for a 

systematic series of errors to arise from the outcomes derived 

from this method. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 5. Scatter plot of Linear Interpolation model 

different gap size a)1%, b)5%, c)10%, d)20%, e)30% 
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4. Conclusions  

Data quality is essential in natural sciences. Data 

engineering favors quality over quantity of data. This study was 

about imputation of missing solar radiation data using several 

methods. Three of the methods were classical methods which 

involved estimation of missing data using solar radiation values 

only. In addition to the classical methods, the DNN method that 

has become popular in recent years was used. Inputs of the 

DNN method were the meteorological parameters that were 

known to affect the solar radiation data. Using meteorological 

data obtained from the same station on the same date, the solar 

radiation values were estimated to a statistically successful 

extent. The DNN method performed well in four models out of 

five generated for the gap rates, and was outperformed 

significantly by the classical methods in only one of the models. 

It was concluded from the study that distribution of missing 

data may affect the estimation outcomes. Considering the 

structure of the randomly generated gaps, classical methods 

may also yield good outcomes. In future studies, data sets with 

different gap distributions will be generated to investigate 

which model can yield better outcomes for each distribution 

type. The study highlighted that the DNN algorithm, which 

broke new grounds in natural sciences as well as computer 

science, is useful for imputation of missing data and superior to 

the classical methods in some respects. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 6. Scatter plot of Spline Interpolation model 

different gap size a)1%, b)5%, c)10%, d)20%, e)30% 

 

 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  555 

5. Acknowledge 

We would like to thank Meteorological General Institution 

for providing meteorological data. The authors would like to 

acknowledge that this paper is submitted in partial fulfillment 

of the requirements for PhD degree of Eyyup Ensar Başakın at 

Istanbul Technical University. 

References 

Awawdeh, S., Faris, H., & Hiary, H. (2022). EvoImputer: An 

evolutionary approach for Missing Data Imputation and 

feature selection in the context of supervised learning. 

Knowledge-Based Systems, 236, 107734. 

https://doi.org/10.1016/j.knosys.2021.107734 

Başakın, E. E., & Ekmekcioğlu, Ö. (2021). Letter to the Editor 

“Estimation of global solar radiation data based on 

satellite-derived atmospheric parameters over the urban 

area of Mashhad, Iran.” Environmental Science and 

Pollution Research, 28(15), 19530–19532. 

https://doi.org/10.1007/s11356-021-13201-4 

Başakın, E. E., Ekmekcioğlu, Ö., Özger, M., Altınbaş, N., & 

Şaylan, L. (2021). Estimation of measured 

evapotranspiration using data-driven methods with limited 

meteorological variables. Italian Journal of 

Agrometeorology, 2021(1), 63–80. 

https://doi.org/10.36253/ijam-1055 

Coutinho, E. R., da Silva, R. M., Madeira, J. G. F., Coutinho, P. 

R. de O. dos S., Boloy, R. A. M., & Delgado, A. R. S. 

(2018). Application of artificial neural networks (ANNs) in 

the gap filling of meteorological time series. Revista 

Brasileira de Meteorologia, 33(2), 317–328. 

https://doi.org/10.1590/0102-7786332013 

Demir, V., Uray, E., Orhan, O., Yavariabdi, A., & Kusetogullari, 

H. (2021). Trend Analysis of Ground-Water Levels and The 

Effect of Effective Soil Stress Change: The Case Study of 

Konya Closed Basin. European Journal of Science and 

Technology, 24, 515–522. 

https://doi.org/10.31590/ejosat.916026 

Gill, M. K., Asefa, T., Kaheil, Y., & McKee, M. (2007). Effect 

of missing data on performance of learning algorithms for 

hydrologic predictions: Implications to an imputation 

technique. Water Resources Research, 43(7), 1–12. 

https://doi.org/10.1029/2006WR005298 

Hamzah, F. B., Hamzah, F. M., Razali, S. F. M., & Samad, H. 

(2021). A comparison of multiple imputation methods for 

recovering missing data in hydrological studies. Civil 

Engineering Journal (Iran), 7(9), 1608–1619. 

https://doi.org/10.28991/cej-2021-03091747 

Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). 

Influence of Radiation on Evaporation Rates: A Numerical 

Analysis. Water Resources Research, 56(10). 

https://doi.org/10.1029/2020WR027332 

Hunziker, S., Gubler, S., Calle, J., Moreno, I., Andrade, M., 

Velarde, F., Ticona, L., Carrasco, G., Castellón, Y., Oria, C., 

Croci-Maspoli, M., Konzelmann, T., Rohrer, M., & 

Brönnimann, S. (2017). Identifying, attributing, and 

overcoming common data quality issues of manned station 

observations. International Journal of Climatology, 37(11), 

4131–4145. https://doi.org/10.1002/joc.5037 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. 

Nature, 521(7553), 436–444. 

https://doi.org/10.1038/nature14539 

 

Nash, E., & Sutcliffe, V. (1970). River flow forecasting 

Through conceptual models PART I- A Discussion of 

principles. Journal of Hydrology, 10, 282–290. 

Nikroo, L., Kompani-Zare, M., Sepaskhah, A. R., & Fallah 

Shamsi, S. R. (2010). Groundwater depth and elevation 

interpolation by kriging methods in Mohr Basin of Fars 

province in Iran. Environmental Monitoring and 

Assessment, 166(1–4), 387–407. 

https://doi.org/10.1007/s10661-009-1010-x 

Osman, M. S., Abu-Mahfouz, A. M., & Page, P. R. (2018). A 

survey on data imputation techniques: Water distribution 

system as a use case. IEEE Access, 6, 63279-63291. 

https://doi.org/10.1109/access.2018.2877269 

Ratolojanahary, R., Houé Ngouna, R., Medjaher, K., Junca-

Bourié, J., Dauriac, F., & Sebilo, M. (2019). Model 

selection to improve multiple imputation for handling high 

rate missingness in a water quality dataset. Expert Systems 

with Applications, 131, 299–307. 

https://doi.org/10.1016/j.eswa.2019.04.049 

Saplioglu, K., & Kucukerdem, T. S. (2018). Estimation of 

missing streamflow data using anfis models and 

determination of the number of datasets for anfis: The case 

of yeŞİlirmak river. Applied Ecology and Environmental 

Research, 16(3), 3583–3594. 

https://doi.org/10.15666/aeer/1603_35833594 

Schneider, T. (2001). Analysis of incomplete climate data: 

Estimation of Mean Values and covariance matrices and 

imputation of Missing values. Journal of Climate, 14(5), 

853–871. https://doi.org/10.1175/1520-

0442(2001)014<0853:AOICDE>2.0.CO;2 

Stisen, S., & Tumbo, M. (2015). Interpolation des données 

pluviométriques journalières pour la modélisation 

hydrologique dans des régions à données clairsemées en 

utilisant des informations issues de données satellitaires. 

Hydrological Sciences Journal, 60(11), 1911–1926. 

https://doi.org/10.1080/02626667.2014.992789 

 

 

 

 

 

 

https://doi.org/10.1016/j.knosys.2021.107734
https://doi.org/10.1007/s11356-021-13201-4
https://doi.org/10.1590/0102-7786332013
https://doi.org/10.31590/ejosat.916026
https://doi.org/10.1029/2006WR005298
https://doi.org/10.28991/cej-2021-03091747
https://doi.org/10.1029/2020WR027332
https://doi.org/10.1002/joc.5037
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10661-009-1010-x
https://doi.org/10.1016/j.eswa.2019.04.049
https://doi.org/10.15666/aeer/1603_35833594
https://doi.org/10.1175/1520-0442(2001)014%3c0853:AOICDE%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014%3c0853:AOICDE%3e2.0.CO;2

