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Abstract 

Data sets in real life are given by real numbers in databases. On the other hand, many data mining methods like association rules and 

induction rules require only discrete attributes. Therefore, in order to use such data mining methods on datasets with continuous 

characteristics, these features in the dataset should be discretized. The discretization process is reducing the number of values by 

dividing the range interval of a continuous attribute into certain intervals. In this paper, eight discretization methods are presented 

with JRip, OneR, J48, and Part classifier algorithms of rules and tress. The applications within the scope of the study include the 

results obtained as a result of ten-fold cross validation and were carried out on real-life data obtained from the UCI repository. We 

show that discretization is important step to significantly increase the classification results of these algorithms. Finally, as a result of 

the study, it was seen that MDL and J48, CAIM and Jrip and Extended Chi and J48 methods gave the highest accuracy for PIMA, 

WBC and DERMA data sets, respectively.  
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Ayrıklaştırma Yöntemlerinin Karar ağaçlar ve Karar Kuralları 

Sınıflandırıcılar için Medikal Veri Setleri Üzerinde Karşılaştırılması 

Öz 

Gerçek hayattaki veri kümeleri, veri tabanlarında reel sayılarla sunulmaktadır. Öte yandan, birliktelik kuralları ve tümevarım kuralları 

gibi birçok veri madenciliği yöntemi yalnızca ayrık öznitelikler gerektirirler. Bu nedenle sürekli özniteliklere sahip veri kümelerinin 

ayrık özniteliklere sahip veri kümelerine dönüştürülmesi gerekmektedir. Ayrıklaştırma işlemi, belirli bir sürekli öznitelik verisini 

aralıklara bölerek değer sayısını azaltmaktır. Bu çalışmada, kural ve ağaç tabanlı JRip, OneR, J48 ve Part sınıflandırıcı algoritmaları 

ile sekiz ayrıklaştırma yöntemi naliz edilmiştir. Denemeler, UCI veri deposundan alınan gerçek veri setlerinden oluşmakta ve on kat 

çapraz doğrulamayı sonuçlarını içermektedir. Bu algoritmaların sınıflandırma başarımı önemli ölçüde artırmada ayrıklaştırmanın 

önemli bir adım araç olduğunu görülmüştür. Son olarak, çalışma sonucunda PIMA, WBC ve DERMA veri setleri için sırasıyla MDL 

ve J48, CAIM ve Jrip ve Extended Chi ve J48 yöntemlerinin en yüksek doğruluğu verdiği görülmüştür.  
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1. Introduction 

Data mining is a very powerful tool to uncover meaningful 

information hidden from large databases. Data preparation, 

which is an important issue in data mining and data 

warehousing, is one of the techniques frequently used in both 

cleaning/correcting missing or outliers and data discretization. 

Several existing data mining techniques, such as association 

rules and induction rules, cannot handle continuous attributes. 

For this reason, continuous features are divided into a series of 

sub-ranges called categories. The process of dividing continuous 

features into categories is referred to as the discretization process 

(Chmielewski & Grzymala-Busse, 1996; Jin et al., 2009). 

Real data sets can show various characteristics such as big 

or small size, large or small number of attributes, various data 

types, and value ranges. In discretization process, several 

advantages are desirable in order to achieve good classification 

results, reduction, and simplification(Abraham et al., 2009; Das 

& Vyas, 2010). 

Garcia et al.(Garcia et al., 2012), compared classification 

successes using various discrimination techniques together with 

lazy, rule, decision tree, and Bayesian learning classifiers. They 

state that their study will guide any researcher in terms of which 

discretization method should be applied to their own data. 

Ferreira and Figueiredo(Ferreira & Figueiredo, 2012) used a 

combining of feature selection techniques and unsupervised 

feature discretization algorithms to examine which of them 

achieved the best success. Another similar study by Tran et al. 

(Tran et al., 2017) demonstrated the performance of two-stage 

approaches by proposing a new approach that combines feature 

selection and discretization. Tsai and Chen(C.-F. Tsai & Chen, 

2019), examined the effects of feature selection and 

discretization processing order on classification performance. 

They also focused on the most appropriate associations between 

feature selection methods and discretization methods.  

Hishamuddin et al. in their work(Hishamuddin et al., 2020),  

applied the fuzzy-based discretization algorithm to increase the 

accuracy of a group of classifiers. As a result of their studies, 

they have seen that the fuzzy discretization method gives the 

highest accuracy with Random Forest. A similar study was 

carried out by Jun(Jun, 2021). In this study, a new approach 

named DIMPLED, which includes Evolutionary Algorithm and 

Multiple sPLits methods, is proposed to increase the 

performance of decision tree-based classifiers with 

discretization. 

The discrimination methods are divided into various groups 

as global vs. local, supervised vs. unsupervised, Top-Down vs. 

Bottom-Up, and static vs. dynamic(Garcia et al., 2012). In this 

paper we explain the supervised vs. unsupervised methods. 

Unsupervised methods perform discretization without taking 

into account class label information (target attributes). The two 

most familiar unsupervised discretization algorithms, the first is 

equal-width discretization and the other is equal-frequency 

discretization(NGUYEN, 1998). Supervised algorithms, such as 

statistics-based(Kerber, 1992; Liu & Setiono, 1995), entropy-

based(U. M. Fayyad & Irani, 1992), and class-attributes 

interdependency-based algorithms(Kurgan & Cios, 2004) use 

class information; however, these algorithms do not make use of 

relations between attributes in the database. 

The main focus of this study is determining which one of 

discretization algorithms supplies more useful discretization for 

decision trees and decision rules classification methods. In this 

study, the accuracy performances of discretized data with 

various discretization methods were compared with the accuracy 

performances of undiscrete data using Jrip, OneR, J48 and PART 

classifiers. 

For discretization of data sets R system and for 

classification algorithms Weka system are used. In section 2, 

information about the discretization methods to be compared in 

this study is given. Details about the datasets used in the study 

are presented in the section 3, and the experimental results are 

presented in the section 4. Finally, the obtained results are 

compared and discussed in section 5. 

2. Material and Method 

2.1. Discretization algorithms 

In this paper, the following eight discretization methods are 

presented. 

2.1.1. Equal-width discretization (EWD) 

It is the most popular and easiest of the unsupervised 

discretization algorithms. In the Equal-width discretization 

(EWD) method, the continuous or numeric values of any 

attribute are divided into equal k intervals between 𝑋𝑚𝑖𝑛 and 

𝑋𝑚𝑎𝑥 . Each cut range equal to 𝑋𝑚𝑖𝑛 +  𝑀 ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) / 𝑘), 

where 𝑀 takes on the value from 0, 1, 2, . . . , (𝑘 − 1) (Li et al., 

2010).  

2.1.2. Equal-frequency discretization (EFD) 

It is another simple an unsupervised discretization method. 

This algorithm determines the bin boundaries by sorting the data 

on ascending values of attribute and subsequently divide the data 

into 𝑘 equally intervals. In this way, each interval is divided into 

discrete intervals with an almost equal number of samples. In 

Equal frequency discretization (EFD) method each interval 

contains 𝑛 / 𝑘 conjunct values (Li et al., 2010). 

2.1.3. Minimum description length (MDL) 

Minimum description length (MDL), on offer by Fayyad 

and Irani, is a supervised hierarchical discretization algorithm(U. 

Fayyad & Irani, 1993). MDL discretization is a method that uses 

class information-based entropy to detect categorical boundaries. 

Decision attribute’s information entropy value is the amount of 

information that would be used for which class an instance 

belongs (Kotsiantis & Kanellopoulos, 2006). In this approach, an 

attribute has a range value that initially contains all its values. 

This interval/range is then recursively divided into smaller sub-

intervals according to a specified stopping criterion(U. Fayyad & 

Irani, 1993).  

2.1.4. Chi-merge 

Chi-merge is an algorithm that combines adjacent ranges on 

a bottom-up basis. For this, it is one of the supervised methods 

because it uses attributes together with class information. It 

explains the Chi2 criterion to decide whether 2 neighbor 

intervals are similar to be merged. The relationships between 

condition and decision attributes values handle by Chi2 is a 

statistical measure (Kerber, 1992). The Chi2 test is applied for 

all pairs of split neighbour intervals. Neighbour intervals with 
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the smallest Chi2 value are combined until the specified criterion 

is met. Here, the merging process is performed based on the 

Chi2 statistic (such as 0.01, 0.05, and 0.1 levels), which 

determines the similarities between neighboring intervals.  

Accordingly, adjacent intervals are merged as long as the Chi2 

values are above a certain significance level. 

2.1.5. Ameva 

An autonomous discretization algorithm (Ameva) approach 

uses a benchmark based on the Chi2 test. This criterion 

considers the discrete variable to have the least number of 

intervals and the least loss of correlation with the target variable 

(class label) (Gonzalez-Abril et al., 2009). 

The Ameva coefficient is describe as follows: 

𝐴𝑚𝑒𝑣𝑎(𝑘) =
𝜒2(𝑘)

𝑘 ∗ (𝑙 − 1)
 (1) 

here k is the number of intervals, l ≥ 2 indicates the number of 

classes. The Ameva rate is calculated from a probability table 

between the row of the class variable and the column of the 

discreated ranges (Gonzalez-Abril et al., 2009). 

2.1.6. Class-attribute contingency coefficient (CACC) 

Class-attribute contingency coefficient (CACC) 

discretization method is obtained as follows: 

𝐶𝐴𝐶𝐶 = √
𝑦

𝑦 + 𝑀
 

𝑦 = 𝜒2/ log(𝑛) 

(2) 

where M and n denote the total number of samples and the 

number of intervals into which the continuous feature is divided, 

respectively. The CACC value is calculated from the discreated 

intervals and class variable. The row matrix specifies the class 

variable, and the column matrix specifies each discreated range 

(C.-J. Tsai et al., 2008). 

2.1.7. Class-attribute interdependence maximization 

(CAIM) 

The purpose of Class-attribute interdependence 

maximization (CAIM) method is to incrase the relationship 

between attribute values with continuous characteristics and 

class attribute values and to decrase the number of intervals 

required for discretization. The CAIM algorithm works on the 

top-down principle based on the greedy approach. The algorithm 

initially starts with only one interval and iteratively repeats the 

division using the boundary, which ensures the highest CAIM 

ratio. One of the critical features that distinguishes the algorithm 

from other discretization algorithms is that it can automatically 

determine the number of discrete intervals. The CAIM criterion 

is calculated between Class (𝐶), discrization (𝐷) and attiribute 

(𝐹) as in Equation 3: 

𝐶𝐴𝐼𝑀(𝐶, 𝐷|𝐹) =
∑ 𝑚𝑎𝑥𝑖

2

𝑀𝑖𝑟

𝑛
𝑖=1

𝑛
 (3) 

where 𝑛 and 𝑚𝑎𝑥𝑖  represent the number of intervals and the 

maximum value in the 𝑖. column of the quantile matrix, 

respectively (𝑖 =  1, 2, … , 𝑛). 𝑀𝑖𝑟  is the total number of 𝐹 

attribute with continuous values in the range (𝑑𝑟−1, 𝑑𝑟] (𝑟 =
1,2, . . . , 𝑆; where 𝑆 is the class number) (Kurgan & Cios, 2004). 

2.1.8. Extended Chi 

In order to avoid the inconsistency of the Chi2 algorithm in 

the extended Chi2 method, a stopping criterion is used for the 

upper bound ( 𝜉) in each step of the discretization process. The 

stopping criterion is expressed as (𝜉 discretized < 𝜉 original) (Su 

& Hsu, 2005). 

2.2. Classification methods 

We used classifiers, representatives of different recognition 

models. These are Jrip, OneR, J48, and Part, which are realized 

in the Waikato Environment for Knowledge Analysis (Weka) 

(Hall et al., 2009). The software can be obtained from 

http://www.cs.waikato.ac.nz/ml/weka/. 

2.2.1. JRip (RIPPER) 

Jrip is a popular propositional rule learning algorithm based 

on Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER). This algorithm generated a detection model 

composed of rules database that was built to detect new 

examples (Rajput et al., 2011). For more information see (Holte, 

1993). 

2.2.2. OneR 

The OneR classification method is a simple rule-based 

method. OneR is the abbreviation of “One Rule”. As the name 

suggests, the decision tree created in this method is single-level. 

Rule-based methods create rules based on attributes. Although it 

is simple, the method, which is very effective, is widely used in 

machine learning applications(Xu, 2006). For more details see 

(Holte, 1993). 

2.2.3. J48 

Another well-known and popular decision-tree-based 

classification method is J48 proposed by Quinlan(Quinlan, 

2014). J48 is a decision tree classification approach. It is a 

supervised machine learning method that performs estimation of 

test data based on available attributes. Internal nodes of decision 

trees specify different attributes. Likewise, the branches (links) 

between these nodes (attributes) indicate the possible values that 

the attributes have in the observed samples. In decision trees, 

extreme values (leaves) indicate the class label. For more details 

see (Cohen, 1995). 

2.2.4. Part 

The PART is supervised classification method uses the 

divide-and-conquer strategy. It recursively creates rules first, 

then deletes the instances affected by these rules and repeats the 

process until there are no instances left (Frank & Witten, 1998). 

2.3. Performance measures 

Classification accuracy is measured using the equation 

(Menéndez et al., 2010): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑇𝑟𝑢𝑒𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
 (4) 
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Table 1. All the attributes found in the DERMA dataset. 

Clinical Attributes Histopathological Attributes 

ID Attribute ID Attribute ID Attribute ID Attribute ID Attribute ID Attribute 

1 Erythema 7 Follicular 

papules 
12 Melanin 

incontinence 
23 Spongiform 

pustule 
18 Hyperkeratosis 29 Saw-tooth 

appearance of 

retes 

2 Scaling 8 Oral mucosal 

involvement 
13 Eosinophils in 

the infiltrate 
24 Munro 

microabcess 
19 Parakeratosis 30 Follicular 

horn plug 

3 Definite 

borders 
9 Knee and 

elbow 

involvement 

14 PNL infiltrate 25 Focal 

hypergranulosis 
20 Clubbing of the 

rete ridges 
31 Perifollicular 

parakeratosis 

4 Itching 10 Scalp 

involvement 
15 Fibrosis of 

the papillary 

dermis 

26 Disappearance 

of the granular 

layer 

21 Elongation of 

the rete ridges 
32 Inflammatory 

monoluclear 

inflitrate 

5 Koebner 

phenomenon 
11 Family history 

(0 or 1) 
16 Exocytosis 27 Vacuolisation 

and damage of 

basal layer 

22 Thinning of the 

suprapapillary 

epidermis 

33 Band-like 

infiltrate 

6 Polygonal 

papules 
34 Age (linear) 17 Acanthosis 28 Spongiosis     

3. Data Sets 

The dermatology(Dermatology Dataset. Available from: 

Https://Archive.Ics.Uci.Edu/Ml/Datasets/Dermatology), 

diabetes(Pima Indians Diabetes Dataset. Available from: 

Https://Archive.Ics.Uci.Edu/Ml/Datasets/Diabetes) and Breast 

Cancer Wisconsin (Original)(Wolberg & Mangasarian, 1992) 

datasets are used in our study. All data sets are obtained from 

UCI Machine learning Repository (UCI-MLR) (Dua & Graff, 

2019). In this section, details about the number of instance and 

features related to the datasets used in the study and their 

distribution according to classes are presented. 

3.1. The dermatology (DERMA) data set 

The dermatology (DERMA) dataset consists of 358 samples 

and 34 attributes remaining after missing observations are 

deleted. As seen in Table 1, 12 of the features in the data set are 

clinical and the remaining 22 are Histopathological features. The 

diseases in this group are lichen planus, seboreic dermatitis, 

cronic dermatitis, pityriasis rubra pilaris, psoriasis, and pityriasis 

rosea. Diseases/classes in the DERMA dataset are pityriasis 

rosea, pityriasis rubra pilaris, lichen planus, psoriasis, cronic 

dermatitis, and seboreic dermatitis, with sample distributions of 

111, 60, 71, 48, 48, and 20, respectively. 

3.2. The Pima Indian diabetes (PIMA) data set 

PIMA data set contains 768 samples with 8 attributes. All 

samples were used as there were no missing observations in the 

data set. The class variable of the dataset indicates whether the 

person has diabetes or not. It has negative and positive forms. 

500 cases are positive and 268 cases are negative. The attributes 

of the dataset are given in Table 2.  

Table 2. Attributes found in the PIMA dataset. 

ID Attribute ID Attribute 

1 No. of times preg. 5 2-h serum insulin  

2 Plasma gluc. Conc. 6 Body mass index  

3 Diast. blood press.  7 Diabetes pedigree function 

4 Triceps skin fold 

thickness  
8 Years of age 

 

3.3. The Wisconsin Breast Cancer (WBC) data set 

WBC dataset was collected from the Madison hospital at the 

University of Wisconsin. The data set consists of 699 samples. 

16 samples were excluded from the data set as they contain 

missing observations. 683 samples were used in the analysis. 

Information about the data set is given in Table 3. As can be 

seen, the values of the variables consist of values between 1 and 

10. Of the 683 samples, 444 were healthy and 239 were cancer 

patients. 

Table 3. Attributes found in the WBC dataset. 

ID Attribute ID Attribute 

1 Clump Thickness 6 Bare Nuclei 

2 Uniformity of Cell Size 7 Bland Chromatin 

3 Uniformity of Cell Shape 8 Normal Nucleoli 

4 Marginal Adhesion 9 Mitoses 

5 Single Epithelial Cell Size   

4. Experimental results 

In this study, 2 unsupervised and 6 supervised discretization 

methods were compared to each other with 4 classification 

methods. The unsupervised algorithms were equal-width (EWD) 

and equal-frequency (EFD) and the supervised algorithms were 

the CAIM, Chi-merge, Extended Chi2, Ameva, CACC, and 

Fayyad-Irani discretization. 

In the following sections, the results of the discretization 

algorithms on the Pima Indians diabetes, Wisconsin Breast 

Cancer, and DERMA data sets, a well-known data set from the 

UCI-MLR, are presented. 

For the PIMA data set, the MDL discretization method with 

a J48 approach showed better results (78.25%) than other 

discretization and classifier methods (see Table 4). The CACC 

discretization method with Jrip got a better result (77.9%) than 

other discretization methods. The accuracy was 76.3% for the 

PART classifier with the MDL discretization method. Generally, 

the MDL method gave much better results than other 

discretization methods. The classification accuracies for the 

PIMA data set are shown in Figure 1.  
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Table 4. Classification accuracy of 4 classifiers for the PIMA data set. 

Method Jrip OneR J48 Part 

EWD 72.6563% 73.5677% 73.8281% 73.4375% 

EFD 71.7448% 74.4792% 72.2656% 73.8281% 

MDL 77.8646% 74.7396% 78.2552% 76.3021% 

Chi-merge 74.0885% 72.1354% 77.2135% 72.3958% 

Ameva 76.5625% 73.5677% 77.2135% 73.4375% 

CACC 77.9948% 73.5677% 77.9948% 74.0885% 

CAIM 75.1302% 75% 75.2604% 74.2188% 

Extended chi 76.3021% 74.7396% 74.0885% 74.8698% 

Without dis. 75.1302% 73.0469% 73.8281% 75.2604% 

 

 

Figure 1. Classification accuracy of 4 classifiers for the PIMA 

data set. 

The classification accuracy of the WBC data set is presented 

in Table 5. For the WBC data set, the CAIM discretization 

method with a Jrip approach shows better results than (96.88%) 

other discretization methods (see Table 5).  The extended Chi 

discretization method with J48 showed better accuracy (96.77%) 

results than other discretization methods. The the Ameva, 

CACC, and CAIM discretization methods got better accuracy 

(96.48%) when compared to other discretization methods. 

Finally, MDL and Extended Chi discretization methods, with 

OneR, showed the same classification accuracies (92.67%). The 

classification accuracies for the WBC data set are shown in 

Figure 2. 

  

Figure 2. Classification accuracy of 4 classifiers for the WBC 

data set. 

The classification accuracy of the DERMA data set is 

presented in Table 6. For the DERMA data set, the extended Chi 

discretization method with J48 approach showed better (96.08%) 

classification accuracies (see Table 6). The MDL discretization 

method with Part showed better (95.81%) accuracy results than 

other discretization methods. The extended Chi2, and MDL 

discretization methods with the Jrip approach showed better 

(94.41%) accuracy than other discretization methods. The 

classification accuracies for the DERMA data set are shown in 

Figure 3. 

  

Figure 3. Classification accuracy of 4 classifiers for the DERMA 

data set. 

5. Conclusion 

One of the most important operations of data mining 

preprocessing processes is discretization. Apart from its effect on 

success, one of the most important reasons for this is that many 

data mining methods are compatible with attributes with 

categorical characteristics. Therefore, it is necessary to discretize 

data with continuous characteristics before it can be processed 

by methods compatible with such categorical feature sets. The 

purpose of discretization algorithms can be expressed as 

dividing the value space into a limited number of categorical 

values for any feature with continuous characteristics in the data 

sets. 
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Table 5. Classification accuracy of 4 classifiers for the WBC data set. 

Method Jrip OneR J48 Part 

EWD 93.9971% 91.2152% 93.4114% 93.5578% 

EFD 95.754% 91.2152% 93.9971% 92.9722% 

MDL 95.9004% 92.6794% 96.1933% 95.6076% 

Chi-merge 96.3397% 91.8009% 95.9004% 95.3148% 

Ameva 95.1684% 91.2152% 95.1684% 96.4861% 

CACC 95.1684% 91.2152% 95.1684% 96.4861% 

CAIM 96.8861% 92.2401% 95.9004% 96.4861% 

Extended chi 95.4612% 92.6794% 96.7789% 95.754% 

Without dis. 95.754% 91.8009% 96.0469% 95.4612% 

 

Table 6. Classification accuracy of 4 classifiers for the DERMA data set. 

Method Jrip OneR J48 Part 

EWD 89.3855% 50.838% 93.5754% 95.5307% 

EFD 90.2235% 50.838% 93.5754% 95.5307% 

MDL 94.4134% 50.838% 95.8101% 95.8101% 

Chi-merge 93.8547% 50.838% 95.8101% 94.6927% 

Ameva 94.1341% 50.838% 95.2514% 93.5754% 

CACC 94.1341% 50.838% 95.2514% 93.5754% 

CAIM 93.2961% 50.838% 95.2514% 93.2961% 

Extended chi 94.4134% 50.838% 96.0894% 94.9721% 

Without dis. 94.1341% 50.838% 95.2514% 93.2961% 

 

In this study, the contribution of discretization algorithms to 

classification performance in datasets with continuous or both 

categorical and continuous features is presented comparatively. 

In the light of the findings, it can be said that discretization in 

the preprocessing stage greatly increases the performance of the 

classifier methods. For this purpose, we compared classification 

results using PIMA diabetes, Wisconsin Breast Cancer and 

DERMA datasets. It was found that using discretization methods 

before decision trees and decision rule classifiers achieves better 

results than using these classifier methods without the 

discretization process of data. Our study revealed that the 

discretization methods for Jrip, J48, and PART classifiers lead to 

an important average increase in accuracy. 

Jrip’s performance was significantly improved on the PIMA 

diabetes data set using CACC, on the WBC data set using 

CAIM, and on the DERMA data set using the extended Chi 

discretization method. OneR’s performance was significantly 

improved on the PIMA diabetes data set using CAIM, on the 

WBC data set using the MDL and Extended Chi discretization 

method, and did not significantly degrade on the DERMA data 

set. J48’s performance was significantly improved on the PIMA 

diabetes data set using MDL, on the WBC and DERMA data 

sets using the Extended Chi discretization method. PART’s 

performance was significantly improved on the PIMA diabetes 

data set using MDL, on the WBC data set using Ameva, CACC, 

and CAIM, and on the DERMA data sets using the MDL 

discretization method. The results of the experiments make it 

clear that discretization techniques can indeed improve the 

performance of the Jrip, OneR, J48, and PART. 
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