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Abstract 

In this study, we focus on nonlinear forward fractional difference equations with order 𝜈 ∈ (0,1] and construct stability analysis 

regarding ℎ-stability and Mittag-Leffler stability notions. The main results of the paper are obtained by equiparating the equation in 

the spotlight with an auxiliary fractional difference equation. The outcomes of the manuscript provide an alternative approach to the 

ongoing theory of discrete fractional equations since the method used in the main results deviates from the fundamental tools of 

stability theory, namely fixed point theory and Liapunov's direct method.  

 

Keywords: ℎ-stability, Mittag-Leffler stability, Forward fractional difference equation, Perturbed equation.   

Doğrusal Olmayan Kesirli Fark Denklemlerinin Kararlılık Analizi 

Üzerine Bir Not: Karşılaştırmalı Yaklaşım 

Öz 

Bu çalışmada 𝜈 ∈ (0,1] mertebesinde doğrusal olmayan kesirli fark denklemleri üzerinde durulmuş olup, ℎ-kararlılık ve Mittag-

Leffler kararlılığı kavramları kullanılarak bir kararlılık analizi yapılmıştır. Makalenin temel sonuçları odaklanılan kesirli fark 

denkleminin yardımcı bir kesirli fark denklemi ile karşılaştırılması ve kıyaslanması ile elde edilmiştir.  Bu çalışmanın çıktıları 

literatürde kesirli denklemlerin kararlılık analizinde genellikle kullanılan sabit nokta teorisi ve Liapunov teorisi gibi araçların dışında 

bir yol kullanılarak elde edildiği için halen gelişmekte olan ayrık kesirli denklemlerin teorisine farklı bir bakış açısı sunarak katkı 

sağlamıştır.  
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1. Introduction 

Noninteger-order equations, namely fractional equations, 

have become a voguish research area in the last two decades due 

to their potential application in theoretical and applied sciences. 

The popularity of the subject has directed researchers from a 

wide range of disciplines to construct fractional analogs of real-

life models, and this eventuates excellent applications of 

fractional equations. By a quick literature review, one may 

easily find out the utilization of fractional equations in neural 

networks, signal processing, mechanics, biology, medicine, 

finance, and economics. 

The qualitative theory of fractional equations is a fruitful 

and developing research area for mathematicians, and 

undoubtfully these types of equations are appreciably studied on 

continuous and discrete-time domains. Consequentially, the 

theories for fractional differential and difference equations have 

been enhanced correspondingly. As it is well known, one of the 

landmark branches of qualitative theory of differential and 

difference equations is the stability theory, and naturally, 

stability analysis of fractional equations on continuous and 

discrete-time domains is extensively studied. We refer to readers 

(Baleanu, Wu, Bai, & Chen, 2017; Choi, Kang, & Koo, 2014; 

Choi & Koo, 2011; Kang & Koo, 2019) as the remarkable 

studies for stability analysis of fractional differential equations, 

and also we indicate the inspiring papers (Chen, 2011; Chen & 

Liu, 2012; Wyrwas & Mozyrska, 2015) for the stability analysis 

of discrete fractional equations. In the present work, we aim to 

contribute to the already established literature regarding stability 

analysis of fractional equations by focusing on nonlinear 

forward fractional difference equations and providing sufficient 

conditions for the stability of the solutions. Indeed, the main 

objective of the paper is two-fold: 

(I) 𝒉-stability: As the first objective, we examine the ℎ-

stability of the solutions for nonlinear fractional difference 

equations and their perturbations. The notion of ℎ-stability was 

initially introduced as an extension of the exponential stability 

definition for solutions of differential equations by Pinto (1984). 

By ℎ-stability of the zero solution for the initial value problem 

{
𝑥′(𝑡) = 𝑓(𝑡, 𝑥)

𝑥(𝑡0) = 𝑥0
, 𝑓(𝑡, 0) = 0,                                                 

we mean the solution 𝑥 satisfies |𝑥(𝑡)| ≤ 𝑐|𝑥₀|
ℎ(𝑡)

ℎ(𝑡₀)
 where 𝑐 ≥

1 and ℎ is a bounded function. Discussion of ℎ-stability is also 

carried to discrete-time domains. We refer to (Choi, Koo, & 

Song, 2004; Medina, 1998; Medina & Pinto, 1996) as related 

studies. Besides, this definition is adopted to fractional 

equations defined on continuous-time by Choi et al. (2014). 

(II) Mittag-Leffler stability: Secondly, we investigate the 

sufficient conditions for the Mittag-Leffler stability of the 

nonlinear forward fractional difference equations and their 

perturbations. It should be noted that the Mittag-Leffler function 

is primarily proposed in the paper (Mittag-Leffler, 1902) and 

has become essential for fractional equations. It is possible to 

establish an analogy between the exponential functions in 

differential and difference equations and Mittag-Leffler 

functions in fractional calculus since Mittag-Leffler functions 

are used as a fractional exponential function. On the other hand, 

Mittag-Leffler stability is proposed via the Mittag-Leffler 

function, and the Mittag-Leffler stability for the solutions of 

fractional equations is vastly studied on both continuous and 

discrete-time domains. 

In our analysis, we are inspired by the papers (Choi, Koo, & 

Ryu, 2003; Choi et al., 2014; Choi & Koo, 2011; Choi et al., 

2004) and invert an inequality which is crucial to conduct a 

comparative approach between two nonlinear fractional discrete 

initial value problems. To the best of our knowledge, such a 

correlative approach has not been performed in discrete 

fractional calculus. Thus, the main results of this paper are 

distinguished from the stability results in the existing literature 

regarding fractional difference equations since the outcomes of 

the manuscript avoid utilization of the fixed point theory or 

Liapunov's direct method. 

    The organization of the manuscript is as follows: In the 

next section, we provide a summary for forward discrete 

fractional calculus. Section 3 is devoted to the presentation of 

our stability results regarding ℎ-stability and Mittag-Leffler 

stability. 

2. Essentials for forward discrete 

fractional calculus 

This chapter is devoted to the presentation of basic 

definitions and results on forward fractional discrete calculus. 

Given definitions and results can be found in (Atici & Eloe, 

2007; Atıcı & Eloe, 2009b; Atici & Eloe, 2015). 

Let Γ stand for the conventional gamma function. First, we 

introduce the following notation  

𝑡(𝜇) =
Γ(𝑡 + 1)

Γ(𝑡 + 1 − 𝜇)
. 

Note that if 𝑡 + 1 − 𝜇 ∈ {0, −1, ⋯ , −𝑘, ⋯ }, then we set 𝑡(𝜇) =
0. For the readership, it is convenient to list the following 

identities: Assume that the factorial functions are well defined. 

Then 

i.  (𝑡 − 𝜇)𝑡(𝜇) = 𝑡(𝜇+1)for 𝜇 ∈ ℝ 

ii.  𝜇(𝜇) = Γ(𝜇 + 1), 

iii.  If 𝑡 ≤ 𝑟, then 𝑡(𝜈) ≤ 𝑟(𝜈) for any 𝜈 > 𝑟, 

iv.  If 0 < 𝜈 < 1, then 𝑡(𝛼𝜈) ≥ (𝑡(𝛼))𝜈 , 

v.  𝑡(𝛼+𝛽) = (𝑡 − 𝛽)(𝛼)𝑡(𝛽). 
In the sequel, the forward fractional summation is given by 

∆𝑎
−𝜈𝑓(𝑡) = ∑

(𝑡 − 𝜎(𝑠))
(𝜈−1)

Γ(𝜈)
𝑓(𝑠)

𝑡−𝜈

𝑠=𝑎

, 

where 𝜎(𝑠) = 𝑠 + 1, 𝜈 ≥ 0, and 𝑎 ∈ ℝ. The notation ℕ𝑎 

indicates the set {𝑎, 𝑎 + 1, 𝑎 + 2, ⋯ }, and obviously, the 

operator ∆𝑎
−𝜈 maps ℕ𝑎 to ℕ𝑎+𝜈. Also, we write ∆−𝜈𝑓(𝑡) when 

𝑎 = 0. Next, we present the Riemann-Liouville forward 

fractional difference as follows: 

∆𝑎
𝜇

𝑓(𝑡) = ∆𝑎
𝑚−𝜈𝑓(𝑡) = ∆𝑚(∆𝑎

−𝜈𝑓(𝑡)),                                                

where 𝜇 > 0, 𝑚 − 1 < 𝜇 ≤ 𝑚 for positive integer 𝑚, and −𝜈 =
𝜇 − 𝑚. We shall recall the following properties regarding the 

Riemann-Liouville forward fractional difference: 

vi.  ∆𝑡(𝜇) = 𝜇𝑡(𝜇−1), 
vii.  If 𝜇 ≠ −1 and 𝜇 + 𝜈 + 1 is not a non-positive integer, then 
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∆𝜇
−𝜈𝑡(𝜇) =

Γ(𝜇 + 1)

Γ(𝜇 + 𝜈 + 1)
𝑡(𝜇+𝜈). 

Furthermore, we list some auxiliary results on forward 

fractional discrete calculus. 

Theorem 2.1: Let 𝑓 be a real valued function defined on ℕ𝑎 and 

suppose that 𝜇, 𝜈 > 0. Then 

∆−𝜈(∆−𝜇𝑓(𝑡)) = ∆−𝜈−𝜇𝑓(𝑡) = ∆−𝜇(∆−𝜈𝑓(𝑡)). 

Theorem 2.2: For any function 𝑓 defined on ℕ𝑎 and 𝜈 > 0, the 

equation, 

∆−𝜈(∆𝑓(𝑡)) = ∆(∆−𝜈)𝑓(𝑡) −
(𝑡−𝑎)(𝜈−1)

Γ(𝜈)
𝑓(𝑎).  

As it is highlighted in Remark 2.1 of (Atıcı & Eloe, 2009b), if 

one replaces 𝜈 with 𝜈 + 1 and utilizes Theorem 1, the following 

identity, 

∆−𝜈𝑓(𝑡) = ∆−𝜈−1(∆𝑓(𝑡)) +
(𝑡−𝑎)(𝜈)

Γ(𝜈+1)
𝑓(𝑎)  

is straightforward. 

Theorem 2.3: For any 𝜈 ∈ ℝ and positive integer 𝑝, the 

following equality holds 

∆−𝜈∆𝑝𝑓(𝑡) = ∆𝑝∆−𝜈𝑓(𝑡) − ∑
(𝑡 − 𝑎)(𝜈−𝑝+𝑘)

Γ(𝜈 − 𝑝 + 𝑘 + 1)
∆𝑘𝑓(𝑎)

𝑝−1

𝑘=0

        (1) 

where 𝑓 is defined on ℕ𝑎. 

Theorem 2.4: Let 𝑝 be a positive integer and 𝜈 > 𝑝. Then 

∆𝑝(∆−𝜈𝑓(𝑡)) = ∆−(𝜈−𝑝)𝑓(𝑡). 

The following result, which appears as Lemma 2.1 in (Atıcı 

& Eloe, 2009a), establishes a linkage between forward and 

backward fractional summation operators. 

Lemma 2.5: Let 0 ≤ 𝑚 − 1 < 𝜈 ≤ 𝑚 where 𝑚 is an integer, 𝑎 

be a positive integer and 𝑦(𝑡) be defined on ℕ𝑎. Then the 

following identities hold: 

(1)∆𝑎
𝜈𝑦(𝑡 − 𝜈) = ∇𝑎

𝜈𝑦(𝑡) for 𝑡 ∈ ℕ𝑚+𝑎. 

(2)∆𝑎
−𝜈𝑦(𝑡 + 𝜈) = ∇𝑎

−𝜈𝑦(𝑡) for 𝑡 ∈ ℕ𝑎. 

 

3. Main Results  

In this part, we concentrate on the forward fractional 

discrete initial value problem 

{
∆𝜈𝑥(𝑡) = 𝑓(𝑡 + 𝜈 − 1, 𝑥(𝑡 + 𝜈 − 1))

𝑥(0) = 𝑥0
,                                        (2) 

and its perturbation 

{
∆𝜈𝑧(𝑡) = 𝑓(𝑡 + 𝜈 − 1, 𝑧(𝑡 + 𝜈 − 1)) + 𝑔(𝑡 + 𝜈 − 1, 𝑧(𝑡 + 𝜈 − 1))

𝑧(0) = 𝑧0
,    (3) 

where 𝑡 ∈ ℕ1−𝜈, 𝜈 ∈ (0,1], and 𝑓(𝑡, 0) = 𝑔(𝑡, 0) = 0. With 

reference to Lemma 2.4 of (Chen, Luo, & Zhou, 2011) and 

Lemma 2.2 of (Chen, 2011), we express the solutions 𝑥: ℕ → ℝ 

and 𝑧: ℕ → ℝ of nonlinear fractional equations (2) and (3) as 

𝑥(𝑡) = 𝑥0 +
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑓(𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1))

𝑡−𝜈

𝑠=1−𝜈

,      

(4) 

and 

𝑧(𝑡) =  𝑧0 +
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
[𝑓(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))

𝑡−𝜈

𝑠=1−𝜈

 

+𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))], 

(5) 

respectively. We pursue two approaches for stability, namely ℎ-

stability and Mittag-Leffler stability, for the zero solutions of 

problems (2) and (3). To achieve this task, we employ an 

inequality that enables us to conduct a fractional comparison 

between (2) & (3) and auxiliary fractional difference equations 

and obtain sufficient conditions to ensure stability. 

Inspired by (Choi et al., 2003), we prove the following 

lemma, which is crucial for the setup of our stability results. 

Lemma 3.1: Let the function 𝑓(𝑡, 𝑟) be nonnegative and 

nondecreasing in its second argument for any fixed 𝑡 ∈ ℕ. 

Suppose that the nonnegative functions 𝑥 and 𝑦 satisfy 

𝑥(𝑡) −
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑓(𝑠, 𝑥(𝑠)) <

𝑡−𝜈

𝑠=1−𝜈

𝑦(𝑡) −
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑓(𝑠, 𝑦(𝑠))

𝑡−𝜈

𝑠=1−𝜈

. 

(6) 

If 𝑥(0) < 𝑦(0), then 𝑥(𝑡) < 𝑦(𝑡) for all 𝑡 ∈ ℕ. 

Proof: Suppose that 𝑓 is nonnegative, nondecreasing in its 

second argument, and the inequality (6) holds. Also, we assume 

that 𝑥(0) < 𝑦(0). To obtain a contradiction, we suppose 

𝑥(𝑡∗) = 𝑦(𝑡∗), and 𝑥(𝑠) < 𝑦(𝑠) for 0 ≤ 𝑠 < 𝑡∗. By using (6), we 

write 

𝑥(𝑡∗) < 𝑦(𝑡∗) +
1

Γ(𝜈)
[ ∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑓(𝑠, 𝑥(𝑠))

𝑡∗−𝜈

𝑠=1−𝜈

 

− ∑ (𝑡 − 𝜎(𝑠))
(𝜈−1)

𝑓(𝑠, 𝑦(𝑠))

𝑡∗−𝜈

𝑠=1−𝜈

] 

              ≤  𝑦(𝑡∗), 

where we used the monotonicity of the function 𝑓. This is a 

contradiction, and the proof is complete.                                    ⧠ 

3.1. 𝒉-Stability 

We shall introduce the notion of ℎ-stability due to 

Definition 12 of (Choi et al., 2014) on fractional calculus as the 

initial step. 

Definition 3.2: The zero solution of the forward fractional 

difference equation given in (2) is said to be ℎ-stable if there 

exist a constant 𝑐 ≥ 1 and a bounded, positive function ℎ: ℕ →
ℝ such that 

|𝑥(𝑡)| ≤ 𝑐|𝑥(𝑎)|
ℎ(𝑡)

ℎ(𝑎)
, 𝑡 ≥ 𝑎 ≥ 0, 

for |𝑥(𝑎)| < 𝛿. 

Next, we present our first result regarding the ℎ-stability of 

the zero solution for the initial value problem (2). 

 

Theorem 3.3: Suppose that the function 𝑓 in (2) satisfies 
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|𝑓(𝑡, 𝑥)| ≤ 𝑞(𝑡, |𝑥|),                                                                          (7) 

where 𝑞: ℕ × ℝ+ → ℝ+ is nondecreasing in its second argument 

and 𝑞 (𝑡, 0)  =  0. Moreover, consider the following forward 

fractional difference equation 

{
∆𝜈𝑦(𝑡) = 𝑞(𝑡 + 𝜈 − 1, 𝑦(𝑡 + 𝜈 − 1))

𝑦(0) = 𝑦0
, 𝑡 ∈ ℕ1−𝜈                      (8) 

as the auxiliary problem. If the zero solution of (8) is ℎ-stable, 

then the zero solution of (2) is also ℎ-stable whenever 𝑦0 > |𝑥0|. 

Proof: Let 𝑥 be the solution of (2), and suppose that condition 

(7) holds. By (4), we write 

 

|𝑥(𝑡)| ≤ |𝑥0| +
1

Γ(ν)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑡−𝜈

𝑠=1−𝜈

|𝑓(𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1))| 

        ≤ |𝑥0| +
1

Γ(ν)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑡−𝜈

𝑠=1−𝜈

𝑞(𝑠 + 𝜈 − 1, |𝑥(𝑠 + 𝜈 − 1)|).   

(9) 

Assuming that |𝑥₀| < 𝑦₀, we have 

 

|𝑥(𝑡)| −
1

Γ(ν)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑡−𝜈

𝑠=1−𝜈

𝑞(𝑠 + 𝜈 − 1, |𝑥(𝑠 + 𝜈 − 1)|) 

≤ |𝑥0| < 𝑦0 = 𝑦(𝑡) −
1

Γ(ν)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑡−𝜈

𝑠=1−𝜈

𝑞(𝑠 + 𝜈 − 1, 𝑦(𝑠 + 𝜈 − 1)), 

which leads to |𝑥(𝑡)| < 𝑦(𝑡) for all 𝑡 ∈ ℕ by Lemma 3.1. If the 

solution 𝑦 of the auxiliary problem (8) is ℎ-stable, i.e., 

𝑦(𝑡) ≤ 𝑐∗|𝑦(𝑎)|
ℎ(𝑡)

ℎ(𝑎)
, 𝑡 ≥ 𝑎 ≥ 0, 

for |𝑦(𝑎)| < 𝛿, then  

|𝑥(𝑡)| < 𝑦(𝑡) ≤ 𝑐∗|𝑦(𝑎)|
ℎ(𝑡)

ℎ(𝑎)
= 𝑐|𝑥(𝑎)|

ℎ(𝑡)

ℎ(𝑎)
, 

where 𝑦(𝑎) = 𝑘|𝑥(𝑎)| and 𝑐 = 𝑘𝑐∗ with 𝑘 > 1. This completes 

the proof.                                                                                       ⧠ 

Subsequently, we aim to present another result regarding ℎ-

stability for the perturbed equation (3). For this purpose, first, 

we have to derive a nonlinear variation of parameters formula, 

which is instrumental in obtaining the solution 𝑧(𝑡, 𝑥₀) of (3) in 

terms of the solution 𝑥(𝑡, 𝑥₀) of the problem (2). The nonlinear 

variation of parameters formula for perturbed nabla fractional 

difference equations and the dependence of solutions on initial 

conditions are studied in detail by the papers (Mohan, 2013) and 

(Deekshitulu & Mohan, 2013). It should be highlighted that the 

nabla fractional difference equation 

{
∇𝜈𝑥(𝑛 + 1) = 𝑓(𝑛, 𝑥(𝑛))

𝑥(0) = 𝑥0
, 𝑛 ∈ ℕ, 𝜈 ∈ (0,1] 

examined in (Deekshitulu & Mohan, 2013) and the forward 

fractional difference equation (2) are identical due to Lemma 

2.5. More explicitly, we have ∇𝜈𝑥(𝑛 + 1) = ∆𝜈𝑥(𝑛 + 1 − 𝜈), 
and a substitution 𝑡 = 𝑛 + 𝜈 − 1 yields the desired identity. 

Inspired by the papers mentioned above, we aspire to adapt the 

nonlinear variation of parameters formula given in (Mohan, 

2013; Deekshitulu & Mohan, 2013) for (3) to propose sufficient 

conditions for the ℎ-stability of its zero solution. 

We provide the following crucial result by rewriting 

Theorem 2.2 of (Deekshitulu & Mohan, 2013) in terms of 

forward fractional calculus to obtain the variation of parameters 

for the nonlinear perturbed equation in (3). The proof is omitted 

since it is tantamount to the proof of Theorem 2.2 by 

Deekshitulu and Mohan (2013). 

Theorem 3.4: Suppose that the partial derivative 
𝜕𝑓

𝜕𝑥
 exists for 

the function 𝑓: ℕ × ℝ → ℝ. Let 𝑥(𝑡, 𝑥0) be the solution of the 

initial value problem (2) and set 

𝐻(𝑡 + 𝜈 − 1) =
𝜕

𝜕𝑥
𝑓(𝑡 + 𝜈 − 1, 𝑥(𝑡 + 𝜈 − 1)). 

Then                                                           

Φ(𝑡 + 𝜈 − 1, 𝑥0) =
𝜕

𝜕𝑥0
𝑥(𝑡 + 𝜈 − 1, 𝑥0)                                (10) 

exists, and it is the solution to the initial value problem 

{
∆𝜈Φ(𝑡, 𝑥0) = 𝐻(𝑡 + 𝜈 − 1)Φ(𝑡 + 𝜈 − 1, 𝑥0)

Φ(0, 𝑥0) = 𝐼
,   𝑡 ∈ ℕ.          (11) 

The next result enables us to construct a comparative 

stability result for the solution of (3) since it describes how to 

express the solution of the perturbed problem (3) in accordance 

with the unperturbed equation in (2). It should be emphasized 

that the following outcome is originated from Theorem 3.1 of 

(Deekshitulu & Mohan, 2013), and its proof is presented by 

following the similar steps of the principal result established for 

nabla fractional difference equations. 

Theorem 3.5 (Nonlinear variation of parameters formula): 

Let 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) be two functions, and assume that 
𝜕𝑓

𝜕𝑥
 

exists and continuous. Also, consider the function Φ which is 

defined as in (10). Then any solution 𝑧(𝑡) = 𝑧(𝑡, 𝑥0) of the 

problem (3) with the updated initial condition 𝑧(0) =
𝑥0 satisfies the equation 

𝑧(𝑡, 𝑥0) = 𝑥 (𝑡, 𝑥0 +
1

Γ(𝜈)
∑[𝜉−1(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈))

𝑡−𝜈

𝑘=0

 

∑ (𝑘 + 𝜈 − 𝜎(𝑠))
(𝜈−1)

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))

𝑘

 𝑠=1−𝜈

]) 

                         (12) 

where  

𝜉(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈)) = ∫ Φ(𝑘 + 𝜈, 𝑟𝑤(𝑘 + 𝜈) + (1 − 𝑟)𝑤(𝑘))

1

0

𝑑𝑟. 

Proof: Consider the forward fractional difference equation in 

(3) with the initial condition 𝑧(0) = 𝑥₀. Then, the solution 𝑧 of 

the perturbed problem is given by 

𝑧(𝑡 + 𝜈, 𝑥₀) = 𝑥₀ +
1

Γ(𝜈)
∑ ((𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡−𝜈

𝑠=1−𝜈

 

[𝑓(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1, 𝑥0)) + 𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1, 𝑥0))]) 

(13) 

due to (5). To propose the variation of parameters formula for 

the forward fractional perturbed equation, we shall determine a 

function so that 𝑧(𝑡, 𝑥₀) = 𝑥(𝑡, 𝑤(𝑡)) with 𝑤(0) = 𝑥₀. Once the 

desired identity 𝑧(𝑡, 𝑥₀) = 𝑥(𝑡, 𝑤(𝑡)) is achieved, one may 

easily write 
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𝑥(𝑡 + 𝜈, 𝑤(𝑡 + 𝜈)) = 𝑥₀ +
1

Γ(𝜈)
∑ ((𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡

𝑠=1−𝜈

 

[𝑓(𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1, 𝑤(𝑠))) + 𝑔(𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1, 𝑤(𝑠)))]) 

(14) 

Consequentially, the desired equation 𝑧(𝑡, 𝑥0) = 𝑥(𝑡, 𝑤(𝑡)) holds 

whenever 𝑤 is as in (18). The proof is complete.                       ⧠ 

Remark 3.6: To provide an alternative representation of (12), 

we consider 

𝑥(𝑡, 𝑤(𝑡)) − 𝑥(𝑡, 𝑥0)

𝑤(𝑡) − 𝑥0
= ∫

𝜕

𝜕𝑥₀

1

0

 𝑥(𝑡, 𝑟𝑤(𝑡) + (1 − 𝑟)𝑥0)𝑑𝑟 

with the help of (13). Since 𝑥(𝑡, 𝑥0) is the solution to problem 

(2), it is clear that 

𝑥(𝑡 + 𝜈, 𝑤(𝑡)) = 𝑥0 +
1

Γ(𝜈)
∑ (𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡

𝑠=1−𝜈

𝑓 (𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1, 𝑤(𝑠))). 
 

(15) 

By using (14) and (15), we have 

1

Γ(𝜈)
∑ (𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡

𝑠=1−𝜈

𝑔 (𝑠 + 𝜈 − 1, 𝑥(𝑠 + 𝜈 − 1, 𝑤(𝑠))) 

  = 𝑥(𝑡 + 𝜈, 𝑤(𝑡 + 𝜈)) − 𝑥(𝑡 + 𝜈, 𝑤(𝑡)). 

(16) 

We employ the mean value theorem on the right-hand side of 

(16) and obtain 

∫
𝜕

𝜕𝑥₀

1

0

 𝑥(𝑡 + 𝜈, 𝑟𝑤(𝑡 + 𝜈) + (1 − 𝑟)𝑤(𝑡))𝑑𝑟 

=
𝑥(𝑡 + 𝜈, 𝑤(𝑡 + 𝜈)) − 𝑥(𝑡 + 𝜈, 𝑤(𝑡))

𝑤(𝑡 + 𝜈) − 𝑤(𝑡)
, 

where 
𝜕

𝜕𝑥₀
 indicates the partial derivative of the function with 

respect to its second argument. This yields  

due to the mean value theorem. This implies 

𝑥(𝑡, 𝑤(𝑡)) =  𝑥(𝑡, 𝑥0) + (𝑤(𝑡) − 𝑥0)𝜉(𝑡, 𝑤(𝑡), 𝑥₀) 

which results in 

𝑧(𝑡, 𝑥0) = 𝑥(𝑡, 𝑥0) +
1

Γ(𝜈)
∑[𝜉(𝑡, 𝑤(𝑡), 𝑥₀)𝜉−1(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈))

𝑡−𝜈

𝑘=0

 

∑ (𝑘 + 𝜈 − 𝜎(𝑠))
(𝜈−1)

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))

𝑘

 𝑠=1−𝜈

]. 

 

Now, we are all set to present our next stability result based 

on the ℎ-stability of the zero solution of perturbed forward 

fractional difference equation with the initial condition 𝑧(0) =
𝑥₀. 

Theorem 3.7: Suppose that the zero solution of the problem (2) 

is ℎ-stable with nonincreasing function ℎ and the solution Φ of 

(11) is bounded, i.e., 𝑛 ≤ |Φ(𝑡, 𝑥0)| ≤ 𝑁 for all 𝑡 ∈ ℕ. 
Additionally, we assume  

𝑔(𝑡, 𝑧) ≤ 𝑞(𝑡, |𝑧|),                                                                   (19) 

Where 𝑞: ℕ × ℝ+ → ℝ+ is strictly increasing in its second 

argument, and 𝑞(𝑡, 0) = 0. Consider the following forward 

fractional difference equation   

(𝑤(𝑡 + 𝜈) − 𝑤(𝑡)) ∫
𝜕

𝜕𝑥₀
𝑥(𝑡 + 𝜈, 𝑟𝑤(𝑡 + 𝜈) + (1 − 𝑟)𝑤(𝑡))𝑑𝑟

1

0

 

=
1

Γ(𝜈)
∑ (𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡

𝑠=1−𝜈

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1, 𝑥₀)). 

For the sake of brevity, we set 

𝜉(𝑡 + 𝜈, 𝑤(𝑡), 𝑤(𝑡 + 𝜈)) = ∫ Φ(𝑡 + 𝜈, 𝑟𝑤(𝑡 + 𝜈) + (1 − 𝑟)𝑤(𝑡))

1

0

𝑑𝑟, 

then write 

𝑤(𝑡 + 𝜈) − 𝑤(𝑡) =
𝜉−1(𝑡 + 𝜈, 𝑤(𝑡), 𝑤(𝑡 + 𝜈))

Γ(𝜈)
∑ [(𝑡 + 𝜈 − 𝜎(𝑠))

(𝜈−1)
𝑡

𝑠=1−𝜈

 

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1, 𝑥₀)). ] 

(17) 

Taking the sum of both sides provides the following equation 

𝑤(𝑡) = 𝑥₀ +
1

Γ(𝜈)
∑[𝜉−1(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈))

𝑡−𝜈

𝑘=0

 

{
∆𝜈𝑢(𝑡) = 𝑐∗𝑞(𝑡 + 𝜈 − 1, 𝑢(𝑡 + 𝜈 − 1)), 𝑡 ∈ ℕ1−𝜈

𝑢(0) = 𝑢0
.            (20) 

If the zero solution of (20) is ℎ-stable, then the zero solution of 

the perturbed equation in (3) with 𝑧(0) = 𝑥₀ is also ℎ-stable 

when 𝑢0 = 𝑐∗|𝑥0| for 𝑐∗ ≥ 1. 

Proof: Suppose that the zero solution of (2) is ℎ-stable and (19) 

is satisfied. First of all, we write 

𝑧(𝑡, 𝑥0) = 𝑥(𝑡, 𝑥0) +
1

Γ(𝜈)
∑[𝜉(𝑡, 𝑤(𝑡), 𝑥₀)𝜉−1(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈))

𝑡−𝜈

𝑘=0

 

    ∑ (𝑘 + 𝜈 − 𝜎(𝑠))
(𝜈−1)

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))

𝑘

 𝑠=1−𝜈

] 

by Remark 1. 

Then, we consider 

|𝑧(𝑡, 𝑥0)| ≤ |𝑥(𝑡, 𝑥0)| 

                     +
1

Γ(𝜈)
∑[|𝜉(𝑡, 𝑤(𝑡), 𝑥₀)𝜉−1(𝑘 + 𝜈, 𝑤(𝑘), 𝑤(𝑘 + 𝜈))|

𝑡−𝜈

𝑘=0

 

∑ (𝑘 + 𝜈 − 𝜎(𝑠))
(𝜈−1)

𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))

𝑘

 𝑠=1−𝜈

]. 

(18)

        ∑ (𝑘 + 𝜈 − 𝜎(𝑠))
(𝜈−1)

|𝑔(𝑠 + 𝜈 − 1, 𝑧(𝑠 + 𝜈 − 1))|

𝑘

 𝑠=1−𝜈

]
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≤ 𝑐|𝑥0| +
1

Γ(𝜈)

𝑁

𝑛
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑞(𝑠 + 𝜈 − 1, |𝑧(𝑠 + 𝜈 − 1)|)

𝑡−𝜈

𝑠=1−𝜈

 

≤ 𝑐∗|𝑥0| + 𝑐∗
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑞(𝑠 + 𝜈 − 1, |𝑧(𝑠 + 𝜈 − 1)|)

𝑡−𝜈

𝑠=1−𝜈

, 

(21) 

where 𝑐∗ = max{𝑐,
𝑁

𝑛
}. As an implementation of (21), we get 

|𝑧| − 𝑐∗
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑞(𝑠 + 𝜈 − 1, |𝑧(𝑠 + 𝜈 − 1)|)

𝑡−𝜈

𝑠=1−𝜈

 

≤ 𝑐∗|𝑥0| = 𝑢0 

= 𝑢(𝑡) − 𝑐∗
1

Γ(𝜈)
∑ (𝑡 − 𝜎(𝑠))

(𝜈−1)
𝑞(𝑠 + 𝜈 − 1, 𝑢(𝑠 + 𝜈 − 1)).

𝑡−𝜈

𝑠=1−𝜈

 

Then by Lemma 3.1, |𝑧(𝑡)| < 𝑢(𝑡) for all 𝑡 ∈ ℕ. To conclude, we 

write the following due to the condition regarding ℎ-stability of 

the zero solution for (20) 

|𝑧(𝑡)| <  𝑢(𝑡) ≤ �̂�𝑢0

ℎ(𝑡)

ℎ(0)
= 𝑑|𝑥0|

ℎ(𝑡)

ℎ(0)
, 

where 𝑑 = �̂�𝑐∗ ≥ 1. Therefore, the zero solution of the perturbed 

equation is ℎ-stable.                                                                     ⧠ 

3.2. Mittag-Leffler Stability 

In this part, we examine the Mittag-Leffler stability of the 

solutions of the forward fractional difference equations given in 

(2) and (3). First, we present the discrete counterpart of the 

Mittag-Leffler function given in (Abdeljawad, 2011) and the 

stability notion for fractional difference equations in the sense of 

Mittag-Leffler due to (Wyrwas & Mozyrska, 2015; Choi & Koo, 

2011). 

Definition 3.8: For 𝜆 ∈ ℝ and 𝛼, 𝛽, 𝛾 ∈ ℂ (Re 𝜆 > 0), the discrete 

Mittag-Leffler function is defined by 

𝐸(𝛼,𝛽)(𝜆, 𝛾) = ∑ 𝜆𝑘
(𝛾 + (𝑘 − 1)(𝛼 − 1))

(𝑘𝛼)
(𝛾 + 𝑘(𝛼 − 1))

(𝛽−1)

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

. 

(22) 

For 𝛽 = 1, (22) turns to  

𝐸(𝛼)(𝜆, 𝛾) = 𝐸(𝛼,1)(𝜆, 𝛾) = ∑ 𝜆𝑘
(𝛾 + (𝑘 − 1)(𝛼 − 1))

(𝑘𝛼)

Γ(𝛼𝑘 + 1)

∞

𝑘=0

. 

Remark 3.9: It should be highlighted that there is another 

Mittag-Leffler function used in the existing literature, and the 

following representation does not contradict Definition 2 given 

in (Abdeljawad, 2011). The alternative form of the Mittag-

Leffler function is given by  

𝐸(𝛼,𝛽)(𝜆, 𝛾) = ∑ 𝜆𝑘 (
𝛾 − 𝑘 + 𝛼𝑘 + 𝛽 − 1

𝛾 − 𝑘
)

∞

𝑘=0

, 

and if 𝛽 = 1, then  

𝐸(𝛼)(𝜆, 𝛾) = 𝐸(𝛼,1)(𝜆, 𝛾) = ∑ 𝜆𝑘 (
𝛾 − 𝑘 + 𝛼𝑘

𝛾 − 𝑘
)

∞

𝑘=0

. 

Next, we give the following definition based on the discrete 

counterpart of the Mittag-Leffler function, which can be found in 

(Wyrwas & Mozyrska, 2015; Choi & Koo, 2011). 

Definition 3.10: The solution of the initial value problem (2) is 

said to be Mittag-Leffler stable if 

|𝑥(𝑡)| ≤ (𝑚(𝑥0)𝐸(𝛼)(𝜆, 𝑡))
𝑏

, 

where 𝜆 < 0, 𝛼 ∈ (0,1], 𝑚(0) = 0, 𝑚(𝑥) ≥ 0, and 𝑚 is locally 

Lipschitz with Lipschitz constant 𝑚0.  

Theorem 3.11: Consider the forward fractional difference 

equation (2), and let us recall the auxiliary equation given in (8) 

{
∆𝜈𝑦(𝑡) = 𝑞(𝑡 + 𝜈 − 1, 𝑦(𝑡 + 𝜈 − 1))

𝑦(0) = 𝑦0
, 

where 𝑞: ℕ × ℝ+ → ℝ+ is nondecreasing in its second argument 

and 𝑞 (𝑡, 0)  =  0. Additionally, suppose that condition (7), i.e., 

|𝑓(𝑡, 𝑥)| ≤ 𝑞(𝑡, |𝑥|) 

holds. If the zero solution of the problem (8) is Mittag-Leffler 

stable, then the zero solution of (2) is also Mittag-Leffler stable 

when 𝑦0 > |𝑥0|. 

Proof: Consider (2) and suppose that condition (7) holds. If we 

use (4) together with condition (7), then the inequality (9) is 

straightforward, as it is done in the proof of Theorem 3.3. By 

assuming 𝑦0 > |𝑥0|, one may easily deduce that |𝑥(𝑡)| < 𝑦(𝑡) 

for all 𝑡 ∈ ℕ due to Lemma 3.1. Sequentially, we have 

|𝑥(𝑡)| < 𝑦(𝑡) ≤ (𝑚(𝑦0)𝐸(𝛼)(𝜆, 𝑡))
𝑏

 

                           ≤ (𝑚0𝑦0𝐸(𝛼)(𝜆, 𝑡))
𝑏

 

                           = (𝑚0𝑑|𝑥0|𝐸(𝛼)(𝜆, 𝑡))
𝑏

 

                           = (𝑚∗(|𝑥0|)𝐸(𝛼)(𝜆, 𝑡))
𝑏

, 𝑡 ∈ ℕ, 

where 𝜆 < 0, 𝑦₀ = 𝑑|𝑥₀| with 𝑑 > 1, 𝑚∗(|𝑥0|) = 𝑚0𝑑|𝑥0|, and 

𝑚∗ is locally Lipschitz. Thus the zero solution of (2) is Mittag-

Leffler stable.                                                                                 ⧠  

Theorem 3.12: Suppose that the zero solution of the problem (2) 

is ℎ-stable with nonincreasing function ℎ and the solution Φ of 

(11) is bounded, i.e., 𝑛 < |Φ(𝑡, 𝑥0)| ≤ 𝑁 for all 𝑡 ∈ ℕ. 
Additionally, we assume that the condition (19), that is, 

𝑔(𝑡, 𝑧) ≤ 𝑞(𝑡, |𝑧|), 

holds where the function 𝑞 is strictly increasing in its second 

argument and 𝑞 (𝑡, 0) =  0. Also, we consider the forward 

fractional difference equation given in (20), i.e., 

{
∆𝜈𝑢(𝑡) = 𝑐∗𝑞(𝑡 + 𝜈 − 1, 𝑢(𝑡 + 𝜈 − 1)),   𝑡 ∈ ℕ1−𝜈

𝑢(0) = 𝑢0
 

If the zero solution of (20) is Mittag-Leffler stable, then the zero 

solution of the perturbed equation in (3) with 𝑧(0) = 𝑥0 is also 

Mittag-Leffler stable when 𝑢0 > |𝑥0|. 

Proof: The proof can be completed on the grounds of the proofs 

of Theorem 3.7 and Theorem 3.11. Therefore, we omit the proof.  

⧠ 
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4. Conclusion 

In the stability theory of fractional equations, fixed point 

theory and Liapunov's direct method can be regarded as the 

classical instruments to analyze the qualitative behavior of 

solutions. In our work, we aim to pursue a comparative approach 

as an alternative to these conventional tools of stability analysis 

and study ℎ-stability and Mittag-Leffler stability of forward 

fractional difference equations. This paper handles nonlinear 

forward fractional difference equations in the form of (2) and 

their perturbation in (3). The setup of the paper relies on the 

introduction of an auxiliary fractional difference equation and 

inquiring about its stability. This enables us to obtain stability 

results for the equations (2) and (3) without restrictive conditions 

adopted in the standard methods. Thus, we illustrate an 

alternative path in the qualitative analysis of discrete fractional 

equations and contribute to the established literature. 

5. Acknowledgement 

We would like to express our sincere gratitude to Professor 

Ferhan Atıcı for her valuable and directive comments, which 

helped us form the last version of the study. 

References 
 

Abdeljawad, T. (2011). On Riemann and Caputo fractional 

differences. Computers and Mathematics with Applications, 

62 (3), 1602-1611. Doi: 10.1016/j.camwa.2011.03.036  

Atıcı, F. M., & Eloe, P. W. (2007). A transform method in 

discrete fractional calculus. International Journal of 

Difference Equations, 2 (2), 165-176. 

Atıcı, F. M., & Eloe, P. W. (2009a). Discrete fractional calculus 

with the nabla operator. Electronic Journal of Qualitative 

Theory of Differential Equations, Spec. Ed. I, 3, 1-12.     

Doi: 10.14232/ejqtde.2009.4.3   

Atıcı, F. M., & Eloe, P. W. (2009b). Initial value problems in 

discrete fractional calculus. Proceedings of the American 

Mathematical Society, 137 (3), 981-989.                          

Doi: 10.1090/S0002-9939-08-09626-3 

Atıcı, F. M., & Eloe, P. W. (2015). Linear forward fractional 

difference equations. Communications in Applied Analysis, 

19 (1), 31-42. 

Baleanu, D., Wu, G.–C., Bai, Y.–R., & Chen, F.–L. (2017). 

Stability analysis of Caputo–like discrete fractional systems. 

Communications in Nonlinear Science and Numerical 

Simulation, 48, 520-530. Doi: 10.1016/j.cnsns.2017.01.002 

Chen, F. (2011). Fixed points and asymptotic stability of 

nonlinear fractional difference equations. Electronic Journal 

of Qualitative Theory of Differential Equations, 39, 1-18. 

Doi: 10.14232/ejqtde.2011.1.39 

Chen, F., & Liu, Z. (2012). Asymptotic stability results for 

nonlinear fractional difference equations. Journal of Applied 

Mathematics, 2012, Article ID 879657.                            

Doi: 10.1155/2012/879657 

 

Chen, F., Luo, X., & Zhou, Y. (2011). Existence results for 

nonlinear fractional difference equation. Advances in 

Difference Equations, 2011, Article ID 713201.               

Doi: 10.1155/2011/713201 

Choi, S. K., & Koo, N. (2011). The monotonic property and 

stability of solutions of fractional differential equations. 

Nonlinear Analysis, 74 (17), 6530-6536.                          

Doi: 10.1016/j.na.2011.06.037 

Choi, S. K., Kang, B., & Koo, N. (2014). Stability for Caputo 

fractional differential systems. Abstract and Applied 

Analysis, 2014, Article ID 631419.                                   

Doi: 10.1155/2014/631419 

Choi, S. K., Koo, N. J., & Song, S. M. (2004). h-Stability for 

nonlinear perturbed difference systems. Bulletin of the 

Korean Mathematical Society, 41 (3), 435-450.               

Doi: 10.4134/BKMS.2004.41.3.435 

Choi, S. K., Koo, N. J., & Ryu, H. S. (2003). Asymptotic 

equivalence between two difference systems. Computers 

and Mathematics with Applications, 45 (6-9), 1327-1337. 

Doi: 10.1016/S0898-1221(03)00106-8 

Deekshitulu, G., & Mohan, J. J. (2013). Solutions of perturbed 

nonlinear nabla fractional difference equations of order 0 <
α < 1. Mathematica Aeterna, 3 (2), 139-150. 

Kang, B., & Koo, N. (2019). Stability properties in impulsive 

differential systems of non-integer order. Journal of the 

Korean Mathematical Society, 56 (1), 127-147.               

Doi: 10.4134/JKMS.j180106 

Medina, R. (1998). Asymptotic behavior of nonlinear difference 

systems. Journal of Mathematical Analysis and 

Applications, 219 (2), 294-311.                                         

Doi: 10.1006/jmaa.1997.5798 

Medina, R., & Pinto, M. (1996). Stability of nonlinear difference 

equations. Dynamic Systems and Applications, 2, 397-404. 

Mittag-Leffler, M. G. (1902). Sur l'intégrale de Laplace-Abel. 

Comptes Rendus de l'Académie des Sciences, Series II, 135, 

937-939. 

Mohan, J. J. (2013). Solutions of perturbed nonlinear nabla 

fractional difference equations. Novi Sad Journal of 

Mathematics, 43 (2), 125-138. 

Pinto, M. (1984). Perturbations of asymptotically stable 

differential systems. Analysis 4, 161-175. 

Wyrwas, M., & Mozyrska, D. (2015). On Mittag-Leffler stability 

of fractional order difference systems. Advances in 

Modelling and Control of Non-integer-Order Systems, 

Lecture Notes in Electrical Engineering.320, pp. 209-220. 

Opole, Poland: Springer. 

https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1016/j.camwa.2011.03.036

