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Abstract
In this study, we acquire I-statistical convergence of sequences of fuzzy star—shaped numbers. We examine topological and algebraic

features of the obtained new sequence spaces. We put forward to significant examples of these new notions.
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Bulamik Yildiz-Sekilli Sayilarin I-Istatistiksel Yakinsak Dizi Uzaylar

Oz
Bu ¢aligmada, bulanik yildiz-sekilli sayilarin I-istatistiksel yakinsakligini elde ettik. Elde edilen yeni dizi uzaylarinin bazi topolojik ve
cebirsel 6zelliklerini inceledik. Bu yeni kavramlarin 6nemli 6rneklerini ortaya koyduk.

Anahtar Kelimeler: I-yakinsaklik, Bulanik yildiz-sekilli sayilar, Ly-uzayi.
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1. Introduction

Kostyrko et al. [7] proposed ideal convergence and
examined significant features of this convergence concept. Then,
ideal convergence of fuzzy numbers was presented by Kumar
and Kumar [8]. Some implementations of ideal convergence can
be seen in [6,9]. I-statistical convergence was investigated by
Savas and Das [10]. Theory of fuzzy was firstly originated by
Zadeh [11]. Zadeh primarily studied the convexity feature of
fuzzy sets. Some applications of fuzzy sets can be found in [11].
As a result of the significance of the star-shapedness and
convexity that can be examined as a natural extension to this
feature, it can be investigated in various ways ([2,3]). Diamond
[1] presented the formulation of the fuzzy star-shaped numbers
and examined the features of L,-metric for p = 1 on the same
study.

Throughout the study, we denote the set of all sequences t =
(ty) of fuzzy star-shaped numbers in R™ by w*(S™). Significant
definitions and notations which are used in present paper can be
found in [4,5,10,12].

2. Material and Method

With the description in the introduction, it can be observed
that this study is qualitative with grounded theory method.
Papers [1] and [12] put forward to concept of fuzzy star-shaped
numbers and also [4], [5] provide a fundamental survey of the
convergence concepts of fuzzy star-shaped numbers.

By utilizing the notions of statistical convergence, ideal and
fuzzy star-shaped numbers, we acquire new class of I-statistical
convergence of sequences of fuzzy star—shaped numbers.

3. Results and Discussion

Now, we aim to present the sequence spaces ¢5@(§™), cg 0 $s™

and lfom (8™) of fuzzy star-shaped numbers with regards to the
Ly,-metric. We identify

SOm = {e = (60
1
€ W*(S"):{k € N:E|n < kipp(te to) = €|

> (} € I for some £ > 0 and some ¢, € S”};

VM ={e = 00
1 _
e w(s™):{l € Nio [ < ki (6,0) 2 ¢
2{}61forsome§ > 0 and some 0 ES"};
150 (smy = {t = (t,) € w*(S™):3H
> 0 such that {k
1 _

N E|n < k:p,(ty,0) > H| > (} EI;}

mS(I)(Sn) — CS(I)(Sn) n lfo(l)(sn) and mg(l)(sn) — Cg(l)(sn) n
50 (s™.
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Definition 3.1. 4 sequence t = (t;,) is named to be I-statistically
Cauchy if for each £, > 0,

1
{k € N:E|n <k:p,(ti t;) = €| = (} el
Theorem 3.1. The spaces c*P(S™), cg(l) (S™) and 15V (S™) are
linear.

Proof. Assume t = (t;) and r = (r;,) be sequences of ¢5P(S™)
which convergence to t, and 1, respectively and a, 8 be scalars.
Then

K{£,0} = {k € N:% |n < ki py(te to) = §| > c} €l

L{¢, ¢} = {k € N:%|n < k:pp(re, 7o) 2§| > {} €l

pp(at + pr,aty + o)
: v
= [ puttaty + pre.laty + prl7y? do
0

[ putated” + i, aleol®
0

1 BIr]o) do

< f pu(laty] + [ate]7)? da)

+ j pu((Brd’ + [Brol®)? do
0

= lal| [ pu(le]” + [el)? do

0

1

S

+ 18] f pu([° + [r]°)? do

0

= lalpy(t, to) + |Blpy (r, 7).

Now

1
M{¢§,(} = {k € N-—|n < k.pp(at+ﬂr,ato + Bry) = §| > {}

{k |n < k:|alp, (¢, to) z% > z}
ofken: | <k 81,0 2 3] 2 )
{ke |n<kpp(tt0)>% 2{}
U{k |n<kpp(rr0)>% 2{}

{ 2l

ol

et
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This gives that (at + Br) € c5P(S™). As a result, c°P(S™) is a
linear space.

Theorem 3.2. The inclusions c3%’(S™) € ¢SD(s™) c 15D (s™)
are strict.

Proof. Obviously c; D (sm) ¢ SO(S™). Now, to indicate that
cgm(S") is a proper subset of c$(V(S™), consider t = (t;) €
w*(8™) as

S, 0<s<?2
tk(s)=3_5, 2SSS3
0, otherwise.

Obviously the sequence (t,) € c5P(S™) but (t;) ¢ cg(l)(S"),
that is (t,) € c5® (S”)/cg(l) (S™). Now, contemplate a sequence
t = (t) € c5D(S™). Then, there is a t, € S™ such that | —
stlimt, = t,, that is,

1
{k €Ny |n < ki py (b ) 2 €| 2 q} €l
We get
Pp(ti, 0) < pp(ti, to) + pp (o, 0).

This denotes that (t,) have to belongs to lfo(l) (8™). Subsequent
is an example to demonstrate the strictness of the inclusion

S0 (s™ c lfo(’)(S”).

Example?2.1. Contemplate the subsequent sequence:

(Lt2s for_—1<s<1

2’ 27 T2

tk(s)z%Z(l—s), for%SsSl
0, otherwise.

Take [ as a non maximal ideal. Determine a sequence r = (r})
as

o {tk, kek
k=10, otherwise.

We acquire (r;,) € 3P(S™) but (1) & ¢SO (S™).

Also, assume the sequence (t;) be identified as
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i

0<s<

1—ks,
t(s) = -1

1+ ks, TSSSO fork =2m

0, otherwise.
Otherwise
s+5, -5<s5<0
1, 0<s<2
b() =9 _5{s  2<s<s
0, otherwise.

Consequently, (t;) € 3P (S™) but () & cSP(S™). Hence, the
inclusions cj D(smy e SO(sm) < 15D (™) are strict.

Theorem 3.3. If I is not maximal then c$P(S™) is neither
normal nor monotone.

Proof. We examine the subsequent example. Think a sequence
t = (t) EW'(S™)

2s, if 0<s< %
1 3
te(s) = 1, if ESSSE
—2(s — 2), if%SsSZ
0, otherwise.

Then, (t,) € cSP(S™). As [ is not maximal, we identify a
sequence r = (1) as

o {tk, kek
k=10, otherwise.

such that = (ry) exists in the canonical pre-image of (t;) of K-
step spaces of c*(V(S™). But (1) & c*P(S™). Hence, c5?(S™)
is not monotone, so it is not normal.

Theorem 3.4. The spaces cg(l)(S"),cs(I)(S"), D™y are
sequence algebra.

Proof. When K and L are fuzzy star-shaped numbers then, their
product is determined as

ti L (¥) = supy_,, min(pug (2), p,(x))
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for every y € R. Assume t, be I — stlimt, and ry be [ —
stlimr,. For o € [0,1] and a, B = 0.

pu ([t 117, [to]7[ro]7)
< app([t:]?, [t0]?) + Bpp([1i]?, [ro]%).

Thus, we obtain
pu(teTi, toTo) < apy(ty, to) + Loy (1, o).

Let &, > 0 be taken. Then
§ 1 $
K E,( = kEN:E nSk:pp(tk'tO)ZE Z( EI,

Lg,(} = {k € N:%|n < k:pp (1, 7o) 2§| > (} €l

Think the set

1
M{¢, (3 = {k €N In < ki p, (tmi toro) = €| = (},

It suffices to denote that M{¢,{} € K{¢,{} U L{¢,{}. Then

1
{k € N:E|n < ki p, (b, tor) = €| = (}
1
c a{k € N:Eln < k:py(ti, to) = §| > {}

U,B{k € N:%|n < k:p, (1, o) = §| > (}.

Since

1
M{¢§,{} {k € N:E|n < k:py(ty, to) 2 %| > {}
1
u {k € N:Eln < k:py(r, o) = % > (}.
Asaresult M{&,{} € K{§,{} U L{¢, (3.

Theorem 3.5. The function h:m5P(S™) = R given by h(p) =
I — stlimp is a Lipschitz function and so uniformly continuous.

Proof. Assume t,r € m5® (§™) with p # r such that h(t) = —
stlimt and h(r) = I — stlimr. Then

1
Ky = {k e N |n < kepy (6h(0) = lle =7l 2 ¢f €1,
e-ISSN: 2148-2683

1
L, = {k € N:E|n < k:pp(r,h(r)) > ||t —r||| > (} €l
Therefore

c 1
KS = {k € N:E|n <k:ip,(t,R®) = It —ll| < {} eF(),

1
LS = {k € N:E|n <k:p,(r,h(1) = llt —7|l| < (} € F(D.

So My = K5 n L € F(I). Namely My # @. Let k € My such
that

pp(h(1), h(1)) < py((8), ) + py (t,7) + pyp(r, (1))
<3|lt—rl.

As aresult, 4 is Lipschitz continuous.

Theorem 3.6. When t,r € mSD(S™), then (t.r) € mSD(S™)
and h(tr) = h(t)h(r).

Proof. As t,r € mSD(S™), for &¢>0 the subsequent
conditions supplies

1 ¢
K, = {k €N:z [n < kip,(t,h() =] < W} eF(),

¢

1
L, ={k EN:E|nSk:pp(r,h(r)) > ¢| <ﬁ

fera,

where M,N >0 where p,(t,0) <M and p,(r,0) < N. Think
the set

R = {k € N:%|n < k:p,(tr,h(HA()) = &| < (}

andletk € K, N L,..

Now

pp(tr, R(OR(M)) < p,(tr, th(r)) < p,(th(r), R(A(T))
< p,(£,0)p,(r, h(r))
¢ ¢

+ pp(h(1), O)pp(t, h(t)) < WM + WN
=
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Hence, K, N L, € R, so that R € F(I). So (t.7) € m*¥(s™) and
h(tr) = h(t)h(r).

4. Conclusions and Recommendations

In this study, we investigate I-statistical convergence of
sequences of fuzzy star—shaped numbers. We put forward to
topological and algebraic features of the obtained new sequence
spaces. We examine significant examples of these new notions.
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