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Abstract 

As the number of objectives are increased in the optimization problem, the objective space is increased therefore it is not possible to 

use conventional methods to get answers for these problems. Therefore, some methods are proposed to solve this problem. As one of 

the solutions is called the decomposition. In decomposition the objectives are applied to the scalarization functions, and many sub-

problems are obtained. Based on their neighborhood, the best members in the current generation of the evolutionary algorithm will be 

survived to the next generation. The algorithm which uses that idea is called Multi-objective Evolutionary Algorithm based on 

Decomposition (MOEA/D). Different typed of decomposition methods can be used with the MOEA/D algorithm. However, each of 

them has their own weaknesses or advantages. Therefore, to reduce the disadvantage of the decomposition methods, a hybrid approach 

is proposed in this research such that instead of a single decomposition method, two methods will be use randomly. The performance 

of the proposed hybrid method will be demonstrated on seven benchmark problems by using two metrics. 

 

Keywords: multi-objective optimization, MOEA/D, many-objective optimization, evolutionary algorithms. 

Çok Amaçlı Optimizasyon Problemleri için Ayrıştırmaya Dayalı Çok 

Amaçlı Evrimsel Algoritmada Rastgele Ayrıştırma Yöntemleri 

Öz 

Optimizasyon probleminde amaç sayısı arttıkça amaç uzayı da büyümektedir, bu nedenle bu problemlere cevap almak için geleneksel 

yöntemleri kullanmak mümkün değildir. Bu nedenle, bu sorunu çözmek için bazı yöntemler önerilmektedir. Çözümlerden birine 

ayrıştırma denir. Ayrıştırmada hedefler skalarizasyon fonksiyonlarına uygulanır ve birçok alt problem elde edilir. Komşuluklarına bağlı 

olarak, evrimsel algoritmanın mevcut neslindeki en iyi üyeler, bir sonraki nesile aktarılacaktır. Bu fikri kullanan algoritmaya 

Ayrıştırmaya Dayalı Çok Amaçlı Evrimsel Algoritma (MOEA/D) denir. MOEA/D algoritması ile farklı türde ayrıştırma yöntemleri 

kullanılabilir. Bununla birlikte, her birinin kendi zayıflıkları veya avantajları vardır. Bu nedenle, ayrıştırma yöntemlerinin dezavantajını 

azaltmak için bu araştırmada tek bir ayrıştırma yöntemi yerine rastgele iki yöntemin kullanılacağı hibrit bir yaklaşım önerilmiştir. 

Önerilen hibrit yöntemin performansı, iki metrik kullanılarak yedi test problemi üzerinde gösterilecektir. 

 

Anahtar Kelimeler: çok amaçlı optimizasyon, MOEA/D, çok amaçlı optimizasyon, evrimsel algoritmalar. 
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Table 1. Benchmark Problems [5] 
Id. Mathematical Expression 

DTLZ1 𝑓1 =
1

2
𝑥1𝑥2. . . 𝑥𝑀−1(1 + 𝑔(𝑥𝑀)) . . . (1 − 𝑥𝑀−1)(1 + 𝑔(𝑥𝑀))…𝑓𝑀 =

1

2
(1 − 𝑥1)(1 + 𝑔(𝑥𝑀)) 

𝑔(𝑥𝑀) = 100 [|𝑥𝑀| + ∑ ((𝑥𝑖 −
1

2
)

2

+ 𝑐𝑜𝑠 (20𝜋 (𝑥𝑖 −
1

2
)))

𝑀

𝑖=1

] 

DTLZ2 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1
𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
)… 

𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1

𝜋

2
) 𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −

1

2
)

2

)

𝑀

𝑖=1

 

DTLZ3 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1
𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
)… 

𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1

𝜋

2
) 𝑔(𝑥𝑀) = 100 [|𝑥𝑀| + ∑ ((𝑥𝑖 −

1

2
)

2

+ 𝑐𝑜𝑠 (20𝜋 (𝑥𝑖 −
1

2
)))

𝑀

𝑖=1

] 

DTLZ4 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1
100

𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥100

𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥100

𝑀−1

𝜋

2
) 

…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥100
1

𝜋

2
), 

𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −
1

2
)

2

)

𝑀

𝑖=1

 

DTLZ5 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝜃1
𝜋

2
) . . . 𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝜃𝑀−1

𝜋

2
) . . . 𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝜃𝑀−1

𝜋

2
)… 

𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝜃1

𝜋

2
) 𝜃𝑖 =

𝜋

4(1 + 𝑔(𝑥𝑀))
(1 + 2𝑔(𝑥𝑀)𝑥𝑖), 𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −

1

2
)

2

)

𝑀

𝑖=1

 

DTLZ6 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝜃1

𝜋

2
) . . . 𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝜃𝑀−1

𝜋

2
) 

…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝜃1
𝜋

2
) 

𝜃𝑖 =
𝜋

4(1 + 𝑔(𝑥𝑀))
(1 + 2𝑔(𝑥𝑀)𝑥𝑖), 𝑔(𝑥𝑀) = ∑(𝑥𝑖

0.1)

𝑀

𝑖=1

 

DTLZ7 𝑓1 = 𝑥1, 𝑓2 = 𝑥2…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))ℎ𝑔(𝑥𝑀) = 1 +
9

|𝑥𝑀|
∑ 𝑥𝑖 , 

ℎ = 𝑀 − ∑ (
𝑓𝑖

1 + 𝑔
(1 + 𝑠𝑖𝑛(3𝜋𝑓𝑖)))

𝑀−1

𝑖=1

 

1. Introduction 

The many-objective optimization problems generally 

referred as problems with number of objectives more than three. 

As the number of objectives are increased, more intelligence 

optimization algorithms are needed to solve these problems since 

relatively large computational power is needed by using the 

conventional and classical optimization methods. As a possible 

solution to problem decomposition (or scalarization) is used with 

evolutionary algorithm. The algorithm is called Multi-objective 

Evolutionary Algorithm based on Decomposition (MOEA/D) [1]. 

The performance of the MOEA/D is greatly depended on chosen 

decomposition method [2]. At the same paper [2] weighted sum 

method and Tchebycheff methods are changed through the 

implementation of the algorithm. In [3], a grid-based approach for 

multi usage of the decomposition method is proposed such that 

for each weight a different (one of two decomposition methods) 

decomposition method is used. Recently in [4], a combination of 

decomposition methods with a variable is proposed and showed 

the difference of the proposed method. In this research two 

decomposition/scalarization methods Penalty-based Boundary 

Intersection Scalarization (PBI) and Tchebycheff methods are 

preferred to be used as a hybrid decomposition method. One of 

these two methods are evaluated randomly. A uniform random 

number generator is preferred to generate a random number and 

based on this number one of the scalarization method evaluates. 

To present the performance difference of the proposed method 

seven benchmark problems with different objective numbers 10, 

15, 20 and 25 objectives with five independent runs. Two 

properties of the solutions are compared which are accuracy and 

distribution of the solution by using two metrics which are IGD 

and Spread metrics. This research is organized as four sections 

beginning with the introduction. In the second section MOEA/D 

Algorithm, decomposition methods and benchmark problems are 

explained and then implementation results are reported at the next 

section and finally the conclusion of this study is presented. 

2. Algorithms 

In this section, optimization algorithm with decomposition 

methods -scalarization methods- are proposed. In addition to that 

metrics which are used to compare algorithms are proposed. 

Finally, the benchmark problems and their mathematical 

formulations are defined as a part of implementations. he 

definition of the multi-objective optimization algorithm is given 

as; 

min    𝐹(𝑥) = (𝑓1(𝑥) … 𝑓𝑀(𝑥))                 (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ Ω 

Table 2. IGD Solutions 
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Prob M D PBI 0.4 0.5 0.6 0.7 Tchebycheff 

M=10 

DTLZ1 10 14 

1.4198e-1  

(6.16e-3) + 

1.8162e-1  

(2.98e-3) - 

1.8023e-1  

(2.82e-3) - 

1.7782e-1  

(3.49e-3) = 

1.7192e-1  

(3.44e-3) + 

1.7881e-1  

(6.60e-3) 

DTLZ2 10 19 
5.0005e-1  
(1.15e-3) + 

1.0574e+0  
(7.52e-2) - 

1.0584e+0  
(6.74e-2) - 

1.0504e+0  
(7.09e-2) - 

1.0471e+0  
(5.52e-2) - 

7.2701e-1  
(1.56e-2) 

DTLZ3 10 19 

8.5641e-1  

(3.36e-1) = 

1.2044e+0  

(6.71e-2) - 

1.1904e+0  

(7.57e-2) - 

1.1998e+0  

(5.20e-2) - 

1.1600e+0  

(8.84e-2) - 

7.4049e-1  

(3.59e-2) 

DTLZ4 10 19 
6.7237e-1  
(7.47e-2) + 

1.1193e+0  
(3.55e-2) - 

1.0883e+0  
(5.58e-2) - 

1.0305e+0  
(5.00e-2) - 

9.5809e-1  
(5.96e-2) - 

8.3684e-1  
(4.54e-2) 

DTLZ5 10 19 

7.3730e-2  

(9.76e-6) + 

3.1647e-1  

(5.39e-2) - 

3.3521e-1  

(7.46e-2) - 

2.7439e-1  

(6.06e-2) - 

2.6142e-1  

(5.76e-2) - 

9.2888e-2  

(9.95e-3) 

DTLZ6 10 19 
7.4600e-2  
(1.40e-3) - 

4.2423e-1  
(1.03e-1) - 

4.4320e-1  
(1.18e-1) - 

3.7221e-1  
(1.22e-1) - 

3.6877e-1  
(1.11e-1) - 

6.9955e-2  
(7.92e-3) 

DTLZ7 10 29 

1.9257e+0  

(2.54e-1) + 

3.8710e+0  

(1.23e+0) - 

3.7117e+0  

(1.40e+0) - 

3.4964e+0  

(1.04e+0) - 

3.2663e+0  

(1.33e+0) = 

2.6649e+0  

(8.01e-1) 

M=15 

DTLZ1 15 19 

1.5916e-1  

(7.96e-3) + 

1.8371e-1  

(2.29e-3) + 

1.8285e-1  

(3.06e-3) + 

1.7958e-1  

(2.05e-3) + 

1.7398e-1  

(2.87e-3) + 

2.2589e-1  

(9.65e-3) 

DTLZ2 15 24 

6.2138e-1  

(8.01e-4) + 

1.1673e+0  

(2.28e-2) - 

1.2076e+0  

(7.21e-2) - 

1.1753e+0  

(4.04e-2) - 

1.1764e+0  

(1.22e-2) - 

8.9365e-1  

(5.76e-2) 

DTLZ3 15 24 

1.1143e+0  

(2.75e-1) = 

1.2668e+0  

(1.07e-2) - 

1.2656e+0  

(2.82e-2) - 

1.2615e+0  

(2.64e-2) - 

1.2224e+0  

(6.54e-2) - 

9.3163e-1  

(9.09e-2) 

DTLZ4 15 24 

7.1722e-1  

(4.48e-2) + 

1.2132e+0  

(1.05e-2) - 

1.1784e+0  

(4.66e-2) - 

1.1232e+0  

(3.20e-2) - 

1.0489e+0  

(3.72e-2) - 

9.6914e-1  

(2.93e-2) 

DTLZ5 15 24 

9.5739e-2  

(1.02e-5) = 

2.9748e-1  

(3.78e-2) - 

2.9899e-1  

(9.06e-2) - 

2.9522e-1  

(4.75e-2) - 

2.9920e-1  

(1.13e-1) - 

9.6429e-2  

(8.81e-3) 

DTLZ6 15 24 

9.5732e-2  

(5.63e-6) = 

3.9230e-1  

(5.06e-2) - 

3.2760e-1  

(9.24e-2) - 

3.3345e-1  

(1.33e-1) - 

3.1902e-1  

(6.69e-2) - 

8.1031e-2  

(1.65e-2) 

DTLZ7 15 34 

2.7766e+0  

(3.23e-1) + 

3.4469e+0  

(5.27e-1) = 

4.1344e+0  

(1.67e+0) = 

3.5433e+0  

(9.32e-1) = 

4.4657e+0  

(1.71e+0) = 

4.4884e+0  

(7.43e-1) 

M=20 

DTLZ1 20 24 
1.9488e-1  
(9.11e-4) + 

2.4609e-1  
(1.20e-3) + 

2.4565e-1  
(2.43e-3) + 

2.4312e-1  
(2.23e-3) + 

2.4188e-1  
(1.76e-3) + 

2.6417e-1  
(8.59e-3) 

DTLZ2 20 29 

7.5987e-1  

(4.64e-4) + 

1.2787e+0  

(7.36e-3) - 

1.2740e+0  

(3.33e-2) - 

1.2499e+0  

(5.62e-2) - 

1.1891e+0  

(3.29e-2) - 

1.1115e+0  

(3.20e-2) 

DTLZ3 20 29 
8.7618e-1  
(2.54e-1) = 

1.3282e+0  
(3.89e-3) - 

1.3274e+0  
(4.75e-3) - 

1.3196e+0  
(8.42e-3) - 

1.2992e+0  
(9.41e-3) - 

1.1001e+0  
(3.16e-2) 

DTLZ4 20 29 

8.8050e-1  

(2.81e-2) + 

1.3357e+0  

(3.37e-5) - 

1.2757e+0  

(1.37e-2) - 

1.1911e+0  

(4.31e-2) = 

1.1557e+0  

(2.74e-2) = 

1.1157e+0  

(8.29e-3) 

DTLZ5 20 29 
2.3879e-1  
(6.63e-6) - 

5.8749e-1  
(1.18e-1) - 

5.8803e-1  
(9.65e-2) - 

4.9027e-1  
(1.79e-1) - 

6.0614e-1  
(7.82e-2) - 

7.5367e-2  
(4.33e-3) 

DTLZ6 20 29 

2.3879e-1  

(1.22e-6) - 

6.4695e-1  

(9.64e-2) - 

6.1753e-1  

(8.96e-2) - 

6.0166e-1  

(9.71e-2) - 

5.8823e-1  

(5.25e-2) - 

7.2982e-2  

(3.46e-3) 

DTLZ7 20 39 
3.9573e+0  
(1.06e+0) + 

4.9145e+0  
(7.96e-1) + 

4.3803e+0  
(1.45e+0) + 

6.4104e+0  
(3.21e+0) = 

4.3851e+0  
(8.15e-1) + 

7.4403e+0  
(2.10e+0) 

M=25 

DTLZ1 25 29 

1.7300e-1  

(4.86e-4) + 

2.0981e-1  

(2.00e-3) + 

2.0939e-1  

(1.61e-3) + 

2.0842e-1  

(2.42e-3) + 

2.0909e-1  

(1.72e-3) + 

2.4524e-1  

(2.72e-3) 

DTLZ2 25 34 

7.7169e-1  

(9.83e-4) + 

1.2875e+0  

(7.22e-3) - 

1.3027e+0  

(1.91e-2) - 

1.2260e+0  

(4.10e-2) - 

1.2089e+0  

(3.58e-2) - 

1.1175e+0  

(2.92e-2) 

DTLZ3 25 34 

1.1058e+0  

(3.10e-1) = 

1.3350e+0  

(5.15e-3) - 

1.3184e+0  

(1.37e-2) - 

1.3300e+0  

(9.55e-3) - 

1.2791e+0  

(3.99e-2) - 

1.1375e+0  

(1.96e-2) 

DTLZ4 25 34 

9.0023e-1  

(5.96e-2) + 

1.3395e+0  

(7.17e-7) - 

1.2875e+0  

(8.19e-3) - 

1.2194e+0  

(2.20e-2) - 

1.1533e+0  

(5.45e-2) = 

1.1268e+0  

(1.97e-2) 

DTLZ5 25 34 

2.6392e-1  

(1.03e-6) - 

6.3760e-1  

(1.51e-2) - 

6.1557e-1  

(1.49e-1) - 

6.4484e-1  

(1.94e-2) - 

5.9947e-1  

(3.50e-2) - 

7.3612e-2  

(4.57e-4) 

DTLZ6 25 34 

2.6392e-1  

(2.05e-7) - 

6.7650e-1  

(3.14e-2) - 

7.1245e-1  

(1.82e-2) - 

6.3223e-1  

(7.09e-2) - 

6.0803e-1  

(6.59e-2) - 

7.4097e-2  

(5.05e-3) 

DTLZ7 25 44 

4.2149e+0  

(2.82e-1) + 

4.6013e+0  

(6.34e-1) + 

5.8644e+0  

(1.70e+0) = 

5.3035e+0  

(1.09e+0) = 

7.3928e+0  

(2.51e+0) = 

8.8337e+0  

(2.60e+0) 

where Ω is the decision space and F:Ω→RM is the real valued 

objective space [6, 7], where F is the objective function vector of 

real valued f. The best possible solution on the objective space is 

called Pareto Front (PF) [8]. 

 

2.1. Multi-objective Evolutionary Algorithm based 

on Decomposition (MOEA/D) 

Multi-objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) is proposed by Zhang and Li in 2007 

[1]. MOEAD is an evolutionary algorithm so that three operators 

which are Crossover, Mutation and Selection operators are also 

evaluated inside MOEA/D algorithm. For crossover operator, the 

weights are defined. These weights are reference points on the 

objective space and neighbourhood matrix is defined for the 

neighbourhood of each reference points. The parents from 

neighbourhood are selected and offspring is generated by using 

SBX method. After the offspring are generated mutation operator 

is applied and Polynomial Mutation is preferred in MOEA/D 

algorithm. Therefore, two populations are generated and the best 

members are survived to the next generator. For this purpose, the 

decomposition (scalarization) methods are applied to the 

members of these populations.  
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Table 3. Spread Solutions 
 

Prob M D PBI 0.4 0.5 0.6 0.7 Tchebycheff 

M=10 

DTLZ1 10 14 

1.3120e-1  

(3.71e-2) + 

1.0283e+0  

(7.64e-3) + 

1.0320e+0  

(6.52e-3) + 

1.0371e+0  

(8.31e-3) = 

1.0492e+0  

(1.43e-2) = 

1.0482e+0  

(7.78e-2) 

DTLZ2 10 19 
3.9726e-1  
(6.68e-3) + 

1.0217e+0  
(1.95e-2) + 

1.0243e+0  
(2.25e-2) + 

1.0198e+0  
(1.13e-2) + 

1.0190e+0  
(1.07e-2) + 

1.1519e+0  
(7.57e-2) 

DTLZ3 10 19 

7.7323e-1  

(3.15e-1) + 

1.0054e+0  

(8.79e-3) + 

1.0072e+0  

(7.71e-3) + 

1.0060e+0  

(9.62e-3) + 

1.0093e+0  

(1.22e-2) + 

1.1892e+0  

(3.84e-2) 

DTLZ4 10 19 
1.1835e+0  
(2.12e-1) = 

1.0404e+0  
(3.49e-2) + 

1.0398e+0  
(4.08e-2) + 

1.0595e+0  
(5.05e-2) + 

1.1048e+0  
(5.65e-2) + 

1.2027e+0  
(5.84e-2) 

DTLZ5 10 19 

1.8535e+0  

(2.11e-3) - 

1.0201e+0  

(3.01e-2) + 

1.0181e+0  

(3.33e-2) + 

1.0240e+0  

(3.35e-2) + 

1.0166e+0  

(1.62e-2) + 

1.8300e+0  

(3.94e-2) 

DTLZ6 10 19 

1.8810e+0  

(5.27e-2) - 

1.1112e+0  

(1.93e-1) + 

1.0240e+0  

(6.16e-2) + 

1.0287e+0  

(4.59e-2) + 

1.0172e+0  

(3.06e-2) + 

1.8257e+0  

(6.55e-2) 

DTLZ7 10 29 

1.0436e+0  

(1.41e-2) - 

1.0070e+0  

(4.63e-3) - 

1.0075e+0  

(3.89e-3) - 

1.0101e+0  

(3.30e-3) - 

1.0145e+0  

(9.88e-3) - 

9.4575e-1  

(2.72e-2) 

M=15 

DTLZ1 15 19 
1.8181e-1  
(2.50e-2) + 

1.0170e+0  
(2.11e-3) + 

1.0232e+0  
(8.86e-3) + 

1.0333e+0  
(8.47e-3) + 

1.0659e+0  
(1.53e-2) + 

1.1501e+0  
(4.03e-2) 

DTLZ2 15 24 

3.2317e-1  

(9.63e-3) + 

1.0205e+0  

(1.78e-2) + 

1.0035e+0  

(6.50e-3) + 

1.0148e+0  

(1.55e-2) + 

1.0041e+0  

(1.44e-3) + 

1.1562e+0  

(8.89e-2) 

DTLZ3 15 24 
9.1135e-1  

(3.25e-1) + 
1.0064e+0  
(5.86e-3) + 

1.0027e+0  
(2.12e-3) + 

1.0051e+0  
(4.21e-3) + 

1.0029e+0  
(2.87e-3) + 

1.1780e+0  
(3.46e-2) 

DTLZ4 15 24 

1.1647e+0  

(2.10e-1) = 

1.0513e+0  

(1.80e-2) + 

1.0180e+0  

(2.05e-2) + 

1.0376e+0  

(2.87e-2) + 

1.0738e+0  

(4.41e-2) + 

1.2151e+0  

(3.84e-2) 

DTLZ5 15 24 
1.9686e+0  
(3.11e-5) = 

1.0257e+0  
(4.28e-2) + 

1.0373e+0  
(4.67e-2) + 

1.0154e+0  
(1.18e-2) + 

1.0325e+0  
(4.53e-2) + 

1.9434e+0  
(2.43e-2) 

DTLZ6 15 24 

1.9685e+0  

(1.42e-4) - 

1.0893e+0  

(1.80e-1) + 

1.0249e+0  

(3.26e-2) + 

1.0295e+0  

(5.16e-2) + 

1.0053e+0  

(5.08e-3) + 

1.9088e+0  

(1.58e-2) 

DTLZ7 15 34 
1.0114e+0  
(3.84e-3) - 

1.0038e+0  
(2.53e-3) - 

1.0045e+0  
(1.23e-3) - 

1.0076e+0  
(2.17e-3) - 

1.0080e+0  
(1.09e-3) - 

9.5624e-1  
(3.23e-3) 

M=20 

DTLZ1 20 24 
1.1929e+0  
(3.67e-2) - 

1.0111e+0  
(3.92e-3) = 

1.0122e+0  
(1.62e-3) = 

1.0143e+0  
(5.71e-3) = 

1.0207e+0  
(5.07e-3) = 

1.0144e+0  
(7.97e-3) 

DTLZ2 20 29 

5.1445e-1  

(9.79e-2) + 

1.0084e+0  

(5.07e-3) = 

1.0062e+0  

(4.28e-3) = 

1.0099e+0  

(1.03e-2) = 

1.0101e+0  

(5.94e-3) = 

1.0306e+0  

(2.85e-2) 

DTLZ3 20 29 

7.7904e-1  

(1.28e-1) + 

1.0012e+0  

(7.90e-4) + 

1.0018e+0  

(1.65e-3) + 

1.0023e+0  

(3.87e-3) + 

1.4296e+0  

(9.53e-1) = 

1.0339e+0  

(2.98e-2) 

DTLZ4 20 29 

1.0746e+0  

(2.88e-2) = 

1.0000e+0  

(2.71e-5) + 

1.0161e+0  

(2.37e-2) = 

1.0304e+0  

(4.97e-2) = 

1.0421e+0  

(3.70e-2) = 

1.0329e+0  

(2.38e-2) 

DTLZ5 20 29 

3.5000e+0  

(2.94e-5) - 

1.0175e+0  

(3.43e-2) + 

1.0015e+0  

(8.28e-4) + 

1.0019e+0  

(1.80e-3) + 

1.0042e+0  

(4.29e-3) + 

2.8981e+0  

(1.61e-4) 

DTLZ6 20 29 

3.4999e+0  

(4.51e-5) - 

1.1564e+0  

(3.47e-1) + 

1.0774e+0  

(1.57e-1) + 

1.0149e+0  

(3.14e-2) + 

1.0013e+0  

(5.98e-4) + 

2.8980e+0  

(1.79e-4) 

DTLZ7 20 39 

1.0302e+0  

(1.43e-2) - 

1.0016e+0  

(5.25e-4) = 

1.0025e+0  

(9.37e-4) - 

1.0028e+0  

(7.52e-4) - 

1.0029e+0  

(7.12e-4) - 

1.0008e+0  

(1.42e-3) 

M=25 

DTLZ1 25 29 

1.1866e+0  

(1.72e-2) - 

1.0082e+0  

(4.13e-3) = 

1.0115e+0  

(1.62e-3) = 

1.0146e+0  

(4.62e-3) = 

1.0177e+0  

(4.69e-3) - 

1.0095e+0  

(5.00e-3) 

DTLZ2 25 34 
8.5247e-1  
(4.25e-2) + 

1.0058e+0  
(1.85e-3) + 

1.0045e+0  
(2.45e-3) + 

1.0096e+0  
(6.96e-3) = 

1.0117e+0  
(3.01e-3) = 

1.0240e+0  
(1.02e-2) 

DTLZ3 25 34 

1.0452e+0  

(6.40e-2) = 

1.0005e+0  

(5.29e-4) + 

1.0022e+0  

(2.35e-3) + 

1.0007e+0  

(9.80e-4) + 

1.0039e+0  

(4.98e-3) + 

1.0152e+0  

(3.66e-3) 

DTLZ4 25 34 
1.0680e+0  
(1.81e-2) - 

1.0000e+0  
(4.26e-7) + 

1.0138e+0  
(1.34e-2) = 

1.0335e+0  
(2.24e-2) = 

1.0537e+0  
(3.59e-2) = 

1.0277e+0  
(1.99e-2) 

DTLZ5 25 34 

3.6800e+0  

(4.88e-5) - 

1.0011e+0  

(9.11e-4) + 

1.0020e+0  

(4.10e-3) + 

1.0006e+0  

(4.27e-4) + 

1.0027e+0  

(1.95e-3) + 

3.0292e+0  

(1.81e-4) 

DTLZ6 25 34 
3.6795e+0  
(5.29e-4) - 

1.0006e+0  
(8.05e-4) + 

1.0039e+0  
(8.42e-3) + 

1.0033e+0  
(4.03e-3) + 

1.0038e+0  
(3.48e-3) + 

3.0341e+0  
(1.03e-2) 

DTLZ7 25 44 

1.0087e+0  

(1.00e-3) - 

1.0013e+0  

(6.74e-4) - 

1.0013e+0  

(4.42e-4) - 

1.0012e+0  

(6.06e-4) - 

1.0017e+0  

(7.80e-4) - 

1.0001e+0  

(4.90e-4) 

Based on scalarization values the smallest values are survived and 

based on survived members the neighbourhood matrix is updated. 

This process is repeated until the termination conditions are 

satisfied. 

2.2. Decomposition Methods 

Decomposition (or scalarization) is a function that converts 

multi-objective optimization to single objective optimization with 

a defined weight (w). The sum of these weights will be equal to 

one. However, if it is applied not only a single set of weights but 

also applied to many sets, matrix, a set of solution candidate with 

respect to the weights will be obtained. This is used as a selection 

operator in MOEA/D.  

In this research two different decomposition methods will be 

used. The first one is named as Penalty-based Boundary 

Intersection Scalarization (PBI). In Eq. 2 the mathematical 

expression for the PBI is presented. 

𝑔(𝑥) = 𝑑1 + 𝜃𝑑2                               (2) 

          𝑑1 =
‖𝑤(𝑧−𝐹(𝑥))‖

‖𝑤‖
 and 𝑑2 = ‖𝐹(𝑥) − (𝑧 − 𝑤𝑑1)‖ 

As the second decomposition method in this study 

Tchebycheff method is selected. Unlike previous studies in 

literature weighted sum and Tchebycheff is evaluated in a 

different aspect. However, in literature it is clearly demonstrated 

that weighted sum methods give the worst result on MOEA/D 

algorithm. However, in this study two best decomposition 
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methods will be used and compared with each other. In Eq 3 the 

mathematical description of the Tchebycheff method presented. 

 

𝑔(𝑥) = 𝑚𝑎𝑥(𝑤𝑖|𝑓𝑖(𝑥) − 𝑧𝑖|)                 (3) 

2.3. Metrics 

To compare the performance of the algorithms some 

functions are needed to evaluate the solutions on the objective 

space. Two important parameters are observed for comparison. 

These are accuracy and distribution of the solutions on objective 

space. For the accuracy, inverted generalized distance (IGD) 

metric is proposed and mathematical description of this metric is 

given as [9] 

𝑓𝐼𝐺𝐷 =
∑ 𝑑𝑠(𝑎,𝑃)

|𝑃|
                                (4) 

 

The IGD metric is based on computing the average distance 

between obtained solution candidates and the Pareto Front where  

 

𝑑𝑠(𝑎, 𝑃) =  √∑(𝑎𝑖 − 𝑝𝑖)2 

 

The second metric is related to the distribution of the solution on 

the objective space. It is important because each point in objective 

space corresponds to the solution candidate. The spread metric is 

defined in Eq. 5 [10]. The metric is based on calculation of the 

normalized squared sum of the distance between maximum and 

minimum difference between produced solutions and PF. 

 

𝑓𝑆𝑝𝑟𝑒𝑎𝑑 = √
1

𝑀
∑ (

max(𝑎,𝑃𝐹)−min (𝑎,𝑃𝐹)

𝑃𝐹𝑚𝑎𝑥−𝑃𝐹𝑚𝑖𝑛
)

2

              (5) 

 

2.4. Benchmark Problems 

Table 1 shows the benchmark problems used in this research 

which is proposed by Deb et. Al in [5]. These benchmark 

problems may have many numbers of objectives (M) and in this 

research 10, 15, 20 and 25 objectives are considered. There are 

seven benchmark problems are selected for this study. For DTLZ1 

the dimension of the decision space is M+4, DTLZ2-DTLZ6 M+9 

and for DTLZ7 the dimension is equal to M+19. 

3. Implementation 

In this research six different setups are implemented on seven 

benchmark problems (DTLZ1-7). The implementations are 

repeated 15 independent run and statistics are recorded as mean 

and standard deviation of the results of the metrics IGD and 

Spread metric. The population size of each implementation is 

equal to (M*10) and maximum number of function evaluations is 

equals to (M*104). The MOEA/D implementations are evaluated 

as 1) Just PBI, 2) Random number is smaller 0.4 than apply PBI 

else Tchebycheff, 3) same with smaller 0.5, 4) same with smaller 

0.6, 5) same with smaller 0.7, and 6) Just Tchebycheff. Table 2 

and 3 shows the performance of these algorithm with respect to 

the IGD and Spread metrics. From Table 2, the accuracy of the 

solutions is evaluated and PBI gives almost all cases and all 

objective dimensions. However, the case “0.7” gives the similar 

performance with the PBI. On contrary, in Table 3, it is not 

possible to mention the distribution of the solution for only one 

method. However, from the statistical results (Wilcoxon rank test) 

the case “0.7” gives the average results and statistically almost 

same performance with other cases in general. 

4. Conclusion 

In this research to improve the distribution property of the 

PBI decomposition method a hybrid decomposition method with 

PBI and Tchebycheff are used randomly. The results showed that 

PBI gives almost best results for the accuracy. However, PBI 

could not produce a well distributed solution, in this case 

Tchebycheff helps the PBI to distribute better solution just used 

approximately -randomly- %30 of the total implementation with 

respect to the given results. 
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