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Abstract

Fibonacci polynomial sequence is an extension of Fibonacci sequence. Here we define a polynomial sequence generalizing the integer
sequence which enumerates the number of subsets of the set [n] including no two consecutive even integers. The polynomial sequence
is associated with the Fibonacci polynomials. Some basic properties of the polynomial sequence are obtained.
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[n] Kiimesinin Ardisik Iki Cift Tamsay1 icermeyen Alt Kiimelerinin
Sayisim1 Veren Tamsay1 Dizisini Genelleyen Polinom Dizisi

Oz
Fibonacci polinom dizisi Fibonacci dizisinin bir genislemesidir. Burada [n] kiimesinin ardisik iki tamsayi igermeyen alt kiimelerinin

sayisin1 veren tamsay1 dizisini genelleyen bir polinom dizisi tanimladik. Bu polinom dizisi Fibonacci polinomlart ile iliskilendirildi.
Polinom dizisinin bazi temel 6zellikleri elde edildi.

Anahtar Kelimeler: Fibonacci sayilari, Fibonacci polinomlari, Poinom dizisi, Ardisik ¢ift sayilar, Ureteg fonksiyon, Kombinatoryal
gosterim.
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1. Introduction

The Fibonacci polynomials are a polynomial sequence which
can be considered as a generalization of the Fibonacci numbers.
You can see more about Fibonacci polynomials in [5]. The
polynomials F,(x) studied by Belgian Mathematician Eugene
Charles Catalan are defined by the recurrence relation as follows:

0, ifn=0
E,(x) = {1, ifn=1 €Y
an—l(x) + Fn—Z(x); ifn =2

When x =1and x =2, we obtain respectively the nth
Fibonacci number F, and the nth Pell number P,. Generating
function for Fibonacci polynomial sequence and Binet’s formula
of Fibonacci polynomials are given in [5] by

c t
Zﬂ RO = e @
F() = (c+VXZ+ )" — (x —VxZ+ 4" -
e 2nVxZ + 4 '

Consider the sequence (a,),so Which enumerates the number
of subsets S of the set [n] = {1,2, . ..
no two consecutive odd integers. You can see [6] for recursive
definition, the generating function, the closed form formula and

,n} such that S contains

the sum of first n terms of the sequence (a,),»o:
a, =2a, , +4a,_4, n>3, 4

a0:1, a1:2,a2:4, a3:8.

[oe]

4x3 + 2x% +2x + 1

— k _
F(x>-zakx T 1 2x% — 4xt ®
k=0
Ao = 2"Fpyz. (6)
Aoni1 = 2" . @)
n+1 9
Dt =T s + sl — 2 ®
0<ks<2n
3.2n+1 9
Z ax = 5 [Fn+2 + Fn+4] - g . 9
0<k=2n+1

In this paper we first define the polynomial sequence
(a,(X))nso using (4) and we obtain some basic properties of the
polynomial sequence.
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2. Main Results

2.1. Recursive definition of the polynomial
sequence

Let’s define the polinomial sequence (a,(x)) like Eugene
Charles Catalan defined in (1) for F,(x):

1, ifn=0
2, ifn=1
a,(x) =44 ifn=2 (10)
8, ifn=3
2x%a, (%) + 4a,_,(x), ifn=4

The first few polynomials are:

a,(x) =1
a,(x) = 2
a,(x) = 4
as(x) = 8

a,(x) =8x? +4
as(x) = 16x%+8
ag(x) = 16x* + 8x% + 16
a;(x) = 32x* + 16x2 + 32
ag(x) = 32x% + 16x* + 64x2 + 16

Notice that a,(1) = a, which is _A279312 in the On-Line
Encyclopedia of Integer Sequences (OEIS) [2].

2.2. Generating function and the closed form
formula of the polynomial sequence (a,(x))
Let’s try to find generating function G (x, t) of the polynomial

sequence (a, (x)) using the formal power series.

[oe]

G(x,t) = Z a, ()t"

n=0

To find G(x,t), multiply both sides of the recurrence relation
(10) by t™ and sum over the values of n for which the recurrence
is valid, namely, over n > 4. We get,

Z a,(x)t" = Z 2x%a,_,(x)t"

n=4 nz4

+ Z 4a,_4(x)t".

n=4

(11

Then try to relate these sums to the unknown generating
function G (x, t). We have
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D @I = 60 1) = ay(x) — 4, (It = () — a ()

n=4

=G(x,t) —1— 2t — 4t% — 8t3,

Z 2x%a,_,(x)t" = 2x2t? Z Ay (X)t"2

nz4 nz4
=2x%t2 (G(x,t) — ay(x) — a, (x)t)

= 2x2t? (G(x,t) — 1 — 2¢t),

Z da,_,(0)t" = 4t* Z da,_,(x)t"*

nz4 nz4
= 4t*G (x,t).

If we write these results on the two sides of (11), we find that

G(x,t) —1— 2t — 4t% — 8¢3
= 2x%t2 (G(x,t) — 1 — 2t) + 4t*G(x,t)

which is trivial to solve for the unknown generating function
G(x,t), in the form
142t + (4 - 2xH)t? + (8 — 4xD)t?

G(xt) 1 — 2x2t2 — 4t

(12)
Substituting x = 1, we get the generating function for the
sequence (a,)nso Which is given in (5).

Theorem 1. Let (a,(x)) is the polynomial sequence defined by
(10). Then we have

aZn(x) = Zn[Fn—l(xz) + ZFn(xz)]'
Aonq (X) = 2" [Fyy (02) + 2, (xP)],

where F,(x) is the nth Fibonacci polynomial with the Binet’s
formula

(X +VRZ+ D" — (x —VxZ + &)™
2x2+ 4 '

Proof. If A(x,t) is the generating function for even terms of the
polinomial sequence (a,(x))then it is clear that A(x,t) =

; (G(x,t) + G(x,—t)). Using generating function (12) we get,

F,(x) =

1+ (4 —2xH)t?
— 2x2t2 — (2t2)2 )

A(x,t) = 1

Substituting u for 2t*we have

AGo) = 1+ 2 —x®u

1—x2u—u?

e-ISSN: 2148-2683

=Tz T

(13)

1—x?u—u?
The generating function of the Fibonacci polynomial given by (2)

18

Flrt) = 1=

xt — t?
=0t + 1t + xt? + (x2 + D3+, . AEQt"+ ... (14)

Let’s indicate the correspondence between a sequence and its
generating function with a double-sided arrow as follows:

t

(0, 1,x,x2 + 1,) m (15)
) 1

(1,x,x +1,) m (16)

If we right-shift the polynomial sequence in (16) by adding one
leading zero, we obtain the polynomial sequence in (15). Hence
the generating function of the polynomial sequence F,,,(x) is

1
1—xt—t2

160 + xt + (x2 + D2+ . . +F(0)t" + . .. (17)

Substituting x? for x into the equation (17) and replacing t with u
we have

1 —
1—x%u—u?
1u® + x%ut + (c* + Dul+. . 4F  (Du + ...
Substituting u = 2t? in the right side of the equation we have
T u—wZ = 1(2t2)0 + x2(2t2)?
+(x*+ 12t 4. . +F (xR + ...
=1.20% + x22%2 + (x* + 1).2%t* +. . .

+Fp 1 (x?).2M 2 + L (18)

Using (15) we have

u

1—x%u—u?
0u® + 1ut + x2u? + (x* + Du+. . . +E,&Hu™+. ..
Substituting u = 2t? in the right side of the equation we have

u

1— x%u — u?
12t + 22232 + (x* + D(2t2)3 +. ..
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+E,(x)RtH"+ . ..
=1.2%¢% + x22%t* + (x* + 1).23t® +

c B (3).2m 2+ L (19)

Substituting (18) and (19) into the equation (13) we get the
coefficients of t2" which gives the general term for the
polynomial subsequence (a,, (x))

A () = 2MFpyy (x?) + 2 = x)E ()] (20)

Since F,(x) = xF_1(x) + F,_,(x) we have F,(x?)=
x2E,(x?) + F,,_;(x?). Using this fact and (20) we obtain

Agn () = 2" [Foy (x?) + 2F, (x?)]. (21)

If B(x,t) is the generating function for odd terms of the
polinomial sequence (a,(x)) then it is clear that B(x,t) =

%(G (x,t) — G(x, —t)). Using generating function (12) we get,

2t + (8 — 4x?)¢t3
1—2x2t2 — (2t2)2

B(x,t) =

t 2 +t(4 — 2x?) 2t
T = 2x2t2 — (2t2)2 YT oz — (2t2)2 )

Using (18) we have

2
1 — 2x2%t? — (2t?)?

=1.20% + x222¢2 + (x* + 1). 23t  +. ..
+Fppq(x?). 2020

2
t
1— 2x2t% — (2t2)2

= 1.2 + 222263 + (x* + 1).23t5 +. ..

+Fpq(x?). 2042t (22)
Using (19) we have
. 2t?
1 — 2x2t2 — (2t2)2
=123 + 22225 + (x* + 1).23t7 +. ..
+E, (x?). 2" (23)

From (22) and (23) we get the coefficients of t2"*1 which gives
the general term for the polynomial subsequence (@yy,41(x))
A1 (x) = 2" [Fryy (x) + 2 = xP)E,(x?)] (24)

Since E,(x) = xF,_1(x) + F,_»(x), we have F, (x?) =
x%E,(x?) + F,_1(x?). Using this fact and (24) we obtain

e-ISSN: 2148-2683

Agn1 (%) = 2" [Fpy (%) + 2F, (x?)], (25)
where
F(x) = (x+ Va2 + 4" — (x - \/m)n.
2/x% + 4
The proof is completed.

Notice that a,, (1) = a,, = 2"F,,, which is given in (6).
Notice that ay,41(1) = azpeq = 2™1F, ., which is given in (7).
It is clear that (21) and (25) implies

Ap41(X) = 2 azp (%)

2.3. The sum of the first n terms of the polynomial
sequence

The sum of the first n Fibonacci polynomials is given in [3] as
follows:

X

ZFL‘ (X) — Fn+1(x) + Fn(x) - 1.

Theorem 2. Let (a,(x)) is the polynomial sequence defined by
(10). Then we have

2n

> a0

k=0

_2MH(2x% + 9 F (x?) + (9 — 2xP)Fy_1 ()] + 6x% — 15
B 2x%2+3 ’

2n+1

Z a (x)

k=0

_ 2"(6x% + 15)F,(x?) + 12F,_1(x*)] + 6x? — 15
- 2x% + 3 ’

where F,(x) is the nth Fibonacci polynomial with the Binet’s

formula
(T D - (= VT F D"
2x2 + 4 '

Proof. Let (S,(x))nso be the sum of first n terms of the
polynomial sequence (a, (x)) :

F(x) =

n

5200 = ) @ ()

k=0
Using recurrence relation (10) and its initial conditions we have

an(x) = zxzan—z(x) + 4an—4—(x):
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ag(x) =1, a1(x) =2, a,(x) =4, az(x) =8,

For n > 3, we can write the following equations:

a,(x) = 2x2%a,(x) + 4ay(x)

as(x) = 2x2%a;(x) + 4a,(x)

a,(x) = szan—z(x) +4a,_4(x)
Adding all these equations term by term we get

Sp(x) — ag(x)—a,(x) — ay(x) — az(x)

= 2x%(Sp (%) — ag(x) — a1 (%) — a1 (x) — an(x)

+4(Sn(x) - an—3(x) - an—Z(x) - an—l(x) - an(x))'

Substituting initial values we have

(2x* + Dla, () + ap-1(x)]

Sn(x) = 2x2 +3

4[an 2(0) + ap_3(x)] + 6x2 —15
2x%2+3

(26)

Let’s obtain respectively S,, (x) and S,,,,1(x) using the equation
(26),

2x% + D [az, (x) + azp—1 ()]

SZn(x) =

2x% + 3
, oo () +;1;121 j(;)] +6x*—15 27
Sonaa(n) = Do) )
L oo 1(0) + agn_p(x)] + 6x° — 5 (28)

2x%2+3

Using (27), (28), Theorem 1 and the fact that F,(x) =
xFp,_1(x) + Fp_,(x) forn = 2 we have

2n 2

6x 15
Za"(x) T 2x2+3
k=0

2"”[(2x + DE,(x%) + (9 — 2x3)F,_1(x?)]

2
2x%2+3 (29)
2n+1
Z o) = 6x% — 15
B =5
k=0
2"’r1 6x2 + 15)E, (x%) + 12F,_; (x?
[( )E,(x%) n—1(x?)] (30

2x%2+3
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The proof is completed.

Writing x = 1 in (29), we have

< 2"[11E, + 7F,_4] — 9
:E: ak = 5 .
k=0

And using the definition of the Fibonacci sequence, we obtain

n+1 9

Z ag :T[Fn+3 + Fpis] — X

0<k=<2n

which is the summation formula given in (8).

Similarly writing x =1 in (30), we obtain the summation
formula given in

2.4. The combinatorial
polynomial sequence

representation of the

The explicit formula of Fibonacci polynomial sequence is given
in [4] by the formula:

]

n—1-i .
Bw= ) ("7 ) (31)
i=0 l
You can see [3] for the equivalent formula as follows
. =
— n n—2i-1,,.2 i
F(0) =5 Z (zl. N 1)x (x%+4) (32)

i=0

We use the explicit formula (32) to prove the following corollary.

Corollary 1. Let (a,(x)) is the polynomial sequence defined by
(10). Then for n = 1 we have

azn(x) =4 Z [ 20 — 1 (;__11)] X2 (x4 4)i71

2
a1 (x) =8 Z [ 2i — 1 (;ll__ll)] x 24 (% 4 4)i1

where the limit of the index of the summations are irrelevant, as
() =0fork<0andk > n.

Proof. Using Theorem 1 and (32) we obtain the explicit formulas
easily.
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2.5. Some basic properties of the polynomial
sequence

We will give asymptotic behaviour of the polynomial sequence,
Honsberger’s formula and derivative of the polynomial sequence.

Proposition 1. (Asymptotic behaviour of the quotient of the
consecutive terms)

A1 (X)

lim =2, (33)

oo Ao (X)

i pni2(X)  x%2+Vx*+4
im = .

o Ayp iy (X) 2

(34)

Proof. (33) and (34) are immediate consequences of Theorem 1
and Binet’s formula of Fibonacci polynomials given in (3).

If x = 1, we have

. Qania
lim—— =2,
n—oo a2n

_ Ggnyz 1445
lim = .

=0 Aopntq 2

Proposition 2.
Gomian(X) = 2" [Fr gy (00 (2 (2%) + F_y (%))
i (6%) (2Fp_1 (x2) + o (x))]
where F, (x) is the nth Fibonacci polynomial.

Proof. For m, n integers Honsberger’s formula is given in [3] as
follows:

Frpn (%) = Fp1 () Fo (%) + B () Frmq (%) (35)
The identity is easily obtained from (35) and Theorem 1.

Proposition 3. Let F,(x) be the nth Fibonacci polynomial. For
n = 2 derivatives of a,,(x) and a,,,,(x) are given as follows:

n+1

a3 () = S (@0 = DEa(7) + (= DEGD)

+(2n + 2)F,_;(x2) + nF,_,(x?)],

n+2

Uons1(0) = 37 [0 = DFyy () + (n = 2)Fy(x*)

+(2n + 2)F,_1(x2) + nF,_,(x?)].
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Proof. The relation between Fibonacci polynomial sequence and
its derivative sequence is given in [3] as follows:

nFn+1(x) - XFn(x) + nFn—l(x)

B = X2 + 4

(36)

Derivatives of a,,(x) and a,,.;(x) are easily obtained using
Theorem 1, (36) and the definition of the polynomial sequence

E,(x).

3. Conclusion

We first defined a polynomial sequence (a, (X))o Which is
an extension of the integer sequence studied in detail in [6]. We
got the closed form formula of the polynomial sequence
(@, (X)) ns0 using the generating function method. Then we obtain
some basic properties of the polynomial sequence.
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