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Abstract

The stability of standard &-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity.
However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for
non-surjective £-isometry.
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Gercel Banach Uzaylarindaki e-izometrinin Zayif Kararhhgi

Oz
Gergel Banach uzaylarindaki standart g-izometrinin kararliligi, 6rtenligi varsayimi kullanilmadan belirlenemez. Bununla birlikte, bu

doniisiim, zayif topoloji altinda zayif bir sekilde kararli kalir. Bu zayif kararliligi kullanarak, érten olmayan e-izometrisi igin sinirl bir
lineer sol-ters vardir.
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* Corresponding Author: minanurrohmanali@gmail.com

http://dergipark.cov.tr/ejosat 110



http://dergipark.gov.tr/ejosat
mailto:minanurrohmanali@gmail
mailto:rylmz@omu.edu.tr
mailto:minanurrohmanali@gmail

European Journal of Science and Technology

1. Introduction

Research related to e-isometry mappings emerged after
Mazur and Ulam [14] showed that all isometry mappings are
affine. Recall that a function is said to be affine if the function is
a translation of a linear mapping. In other words, an isometry
mapping U : X —Y is linear if and only if U (0) =0 . Therefore,

the concept of an e-isometry mapping f : X — Y emerged which
is defined as

lIt60- -l yll <2 o)

for € =2 0. If € = 0, then f'is nothing but an isometry mapping. f
is said to be standard if /(0) = 0. Assuming y = 0 in (1.1), then the
above condition raises the question, "Is there any isometry
mapping U:X —»Y for each given e&-isometry mapping
f:X =Y such that

[f()-UX)|<re 0.2)

for some y > 0?

On the other hand, Figiel [9] shows that for any isometry
mapping U, there exists a bounded linear operator
T:SpanU(X) —» X such that FoU =1Id,. With Figiel's
findings, the second question arises, "If given an e-isometry
mapping f : X — Y, does there exist bounded linear operators

F :spanf (X) — X such that

[Ff (x)—x| < pe (0.3)

for some S >07?

The two issues in (1.1) and (1.2) are mainstream research
topics related to e-isometry mapping.

For the first problem, Hyers and Ulam [12] first showed that for
any € -isometry mapping f : X —Y with f(0) = 0, there is an
isometry mapping U : X —Y satisfied (1.2) with y =10 for all

X e X , where X and Y are Euclidean spaces. Later Bourgin [2]
showed that y =12 where X =Y =L,(0,1), 1< p <oo. Gruber

[11] first generalized to any real Banach spaces and Gevirtz [10]
found y =5 that which is reduced by Omladi¢ and Semrl [17] to

y =2 . In this first case, the surjectivity assumption cannot be

removed.

There are two branches of research for non-surjective &-
isometry cases, namely using the near (almost) surjective concept
and Figiel's theorem.

Let Y, cY is a closed subspace. A mapping f:X —Yis
said to be near surjective if Vy €Y, there exists X € X such that
|| f(x)— y|| <6 and Vue X there exists veY, such that
[f(u)-v|<&S [22]. Dilworth [6] showed that for every &-
surjective e-isometry mapping f : X — Y with (0) =0, where X
and Y are Banach spaces, there exists an isometric mapping
U: X —Y such that || f(x)-U (X)" <12¢+56 . Then Tabor [23]

changed this value to 2¢+356 and reduced by Semrl and Viisili
[22] to 2&£+26. Note that by the definition, a mapping
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f : X =Y is said to be near surjective if supdist(y, f (X)) <.
yeY

Vestfrid [24] showed that the result remains true if the condition
of near-surjectivity is relaxed to be

sup | m‘inf dist(ty, f (X)) |t]< %

i
yey |t| >0

Furthermore, Qian [19] used Figiel theorem to found out the
value of £ in (1.3). With a counterexample, he showed that the
Figiel theorem does not apply in general to e-isometric mapping.
However if X =Y =L where 1< p<oo, then for every e-

isometry mapping f:X —Y there exists a bounded linear
operator F :spanf (X) —» X with ||F|| =1 that
|[Ff (x) - x| < 6¢ . Furthermore, Semrl and Viiséld [22] showed

that if X is a Banach space and Y is a Hilbert space, then the value
of B can be reduced to 2.

such

From the brief explanation above, it can be seen that research
related to e-isometry is still wide open for non-surjective cases.
Recall that the non-surjective condition fails in norm topology.
Therefore, we will discuss &-isometry mapping using a weak
topology concept.

2. Material and Method

With the description in the introduction, it can be seen that
this research is qualitative with grounded theory method. Books
[15] and [8] provide advanced concepts of weak (weak*)
topology, Gateaux, and Frechet derivatives while [16] and [21]
provide a basic overview of the last two concepts.

If not specifically stated, then X and Y are real Banach spaces.
B, (S, )isusedto denote the unit ball (sphere, resp.) of X, exp(4)
(Co(A) ) is aset of all exposed points (a closed convex hull, resp.)

of Ac X . The authors use the concepts of weak and weak*
topology along with symbols that are commonly used.

3. Results and Discussion

As mentioned earlier, non-surjective &-isometry mapping
does not generally apply to any Banach spaces. Therefore, this
section will discuss the weaker stability version of an e-isometry

mapping.

Theorem 3.1. Suppose f : X —Y is a standard e-isometry, then
for any X e X", there exists ¢ €Y that satisfies ||go|| = "X*” =r
such that

|<go, f (x)>—<x*, x>| < ker,Vx e X (3.1)

Using the Hanh-Banach Theorem, do not eliminate generality
by assuming r = 1. Cheng, et. al. [5] showed that k=4 in (3.1)
and further can be reduced to be 3(see. [3]). Rohman, et. al [2]
showed that the weak stability version remains true under Vestfrid
condition [24]. The two following lemmas are crucial for the
proof of Theorem 3.1.
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Lemma 3.2 ([4], Lemma 2.1.) Let Y be the Banach space,
g: R = Y be the standard e-isometric and U be the free ultrafilter

onN. Forany Nell | let ¢, S, satisfies

(2., 9(M)—g(-n)) =|lg(n)—g(-n)|

If o = w* — limy @, then
|<¢),g(t)>—t| <3e.

Lemma 3.3. ([4], Lemma 2.2) Let f: X —>Y be a standard ¢-

isometry, 7€S, be the Gateaux differentiable point of X and
recall that its Gateaux derivative is d ||Z|| =X, then there exists

@ €S, such that

|<go, f(x)>—<x*,x>| <3¢, WxeX

Proof of Theorem 3.1 for x =3.

Let f:X —Y be a standard e-isometry. We denote & be a

family of all finite-dimensional subspaces of X. Then for any F €
&, fr :F =Y (f is restricted to F) is still a standard e-isometry.

Since F is a Gateaux differentiability space ([18], Proposition
6.5), according to ([18], Proposition 6.9. and Theorem 6.2), the
unit ball Bg+ of F* = X*/F+ is w*-closed convex hull of its w*-
exposed point, that is by the definition of GDS, the convex hull of
w*- exposed point of Bp+ (W*-exp(Bp+)) is w*-dense in Bp+ (since
F is a finite-dimensional space, it is dense in the sense of norm
topology). For any xp € w*-exp(Bg+), from ([18], Proposition
6.9.), we know that there is z € Sp such that d||Z||F = X; . By

Lemma 3.3, we know that there is ¢ =@ € S . such that
|<¢F, f(x))-(x‘;,x>|ssg, vxeF (3.2)

For any z* € Sp+, from ([18], Theorem 6.2.), there is a
family of subsets {F,:a € I} (where F, € N is a finite subset),

(X;,n )neF cw —EXP(BFx) ) (ﬂa'n)neF cC? satisfies
> A, =1 such that
w —lim,z, =7, o5
z, = ZnEFH Ay nXoms fOrael 33)
From (3.2) we get
|<¢)a, f(x)>—<Z;,X>|S3£, VxeF ael 3.4)
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where ¢, = anpa Ay oPun > and @, satisfies

@, ., T(X))—(X ., x)[<3e, VxeF (3.5)
(@ £00) = (x0ox)

For (3.3) both ends of the w*- limit are respectively taken to
obtain ¢ € By+ such that

o, f(x))-(z",x)| <3¢, VxeF (3.6)
(o 100)~(z".x)

Take u € S such that (z*,u) = 1, substitute x = nu into the
above inequality and divide by n, and then set n = oo we have

(e G}z )=

This shows that || ¢ [[= 1. Furthermore, || ¢ l|= 1. In this way,
we have proved that for any z* € Sp+, there exists ¢ € Sy~ such
that (3.1) is true. By the absolute homogeneity of this inequality,
it is obtained that for any z* € F*, there exists ¢ € Y* that

satisfies ||¢J|| = "X*" =r, such that

|<(p, f(x)>—<z*, x>| <3er, VxeF (3.7)

The following proves that for any norm attaining functional
X" € X", there exists ¢ € Y that satisfies || = "x*" =r, such that

|<go, f(x)>—<x*,x>| <3er, VxeX (3.8)

Let X, € S, such that <X*, XO> = "X*" =r. We denote the set of all

finite-dimensional subspaces containing X, as &, then for any

F €&, there is ¢ erS,. such that

|<goF, f(x)>—<x*, x>| <3er, VxeF (3.9)

We denote the set of all g satisfying (3.9) and |¢; | = "X*" =r as

K5 for the above x*. It is not difficult to verify, VF € §,, Kr is a
non-empty ws*-compact convex subset in 7Sy:. Let & =
{Kp: F € &}, then this is a collection of closed wx-compact
convex subset. VE, F € &,,

D% Kg =K nK,
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where G = span(E U F).

This shows that & has a finite intersection property, and then

Ke=[){Kr :FeF,} =D

If ¢ € K, is chosen, it is easy to show that ¢ € rSy~ and gives
|<(p, f(x)>—<x*,x>| <3er, vxeX

Finally, we will prove that for any x* € X", there exists ¢ €
Y* that satisfies || = "X*" =r, such that

@, £ 00)—(X',x)| <Ber, VxeX

In fact, according to the Bishop-Phelps theorem that every Banach
space is subreflexive [26], according to ([15], Theorem 2.11.13
and [8], Theorem 7.41) there exists a sequence of norm-attaining
functional (x;,) € rSx+ such that x;; = x*, x* € rSy+. Let¢, €
rSy+ such that

(0. F00)=(x;.x)| <367, WxeX

then for any (¢,,) there exists w*-convergence point ¢ such that
g lI<7,and

|<§0, f(x)>—<x*,x>| <3er, Vxe X

by the above inequality, we get || ¢ [|= r. Therefore, the theorem
is proved. m

By using Theorem 3.1. for x = 4, Cheng, et. al. [5] gave the
generalization of Figiel's Theorem from isometry to e-isometry
for specific spaces.

Theorem 3.4. Let f:X —>Y be a standard e-isometry and

E Y be the annihilator of F Y~ consisting of all bounded
functional on 0 (f(x),—f(X)). If E is & -complemented in Y,

then there is a bounded linear operator with ||T || <a such that

[Tf ()= x| < e, xe X (3.10)
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If X and Y are Banach spaces with Y reflexive, then =4 in
(3.10). If Y =co ( f (x),—f (X)) or Yis reflexive, Gateaux smooth

and strictly convex Banach space with Kadec-Klee property, then

p=2.

4. Conclusions and Recommendations

When we cannot know the stability of non-surjective &-
isometry mappings on real Banach spaces under norm topology,
such mappings remain stable under weak topology. Besides the
result still supports Figiel theorem for such mapping.
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