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Abstract 

The stability of standard 𝜀-isometry mapping in real Banach spaces cannot be determined without using the assumption of surjectivity. 

However, this mapping remains weakly stable under weak topology. Using this weak stability, there is a bounded linear left-inverse for 

non-surjective 𝜀-isometry.  
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Gerçel Banach Uzaylarındaki ε-izometrinin Zayıf Kararlılığı 

Öz 

Gerçel Banach uzaylarındaki standart ε-izometrinin kararlılığı, örtenliği varsayımı kullanılmadan belirlenemez. Bununla birlikte, bu 

dönüşüm, zayıf topoloji altında zayıf bir şekilde kararlı kalır. Bu zayıf kararlılığı kullanarak, örten olmayan ε-izometrisi için sınırlı bir 

lineer sol-ters vardır.  

 

 

Anahtar Kelimeler: 𝜀-isometry, Banach uzayı, kararlılık, zayıf topoloji, sınırlı bir lineer sol-ters.   
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1. Introduction 

Research related to 𝜀-isometry mappings emerged after 

Mazur and Ulam [14] showed that all isometry mappings are 

affine. Recall that a function is said to be affine if the function is 

a translation of a linear mapping. In other words, an isometry 

mapping :U X Y→ is linear if and only if (0) 0U = . Therefore, 

the concept of an 𝜀-isometry mapping :f X Y→ emerged which 

is defined as 

                        ( ) ( )f x f y x y − − −                (0.1) 

for 𝜀 ≥ 0. If 𝜀 = 0, then f is nothing but an isometry mapping. f 

is said to be standard if f (0) = 0. Assuming y = 0 in (1.1), then the 

above condition raises the question, "Is there any isometry 

mapping :U X Y→  for each given 𝜀-isometry mapping 

:f X Y→  such that 

                            ( ) ( )f x U x −              (0.2) 

for some 0?   

On the other hand, Figiel [9] shows that for any isometry 

mapping U, there exists a bounded linear operator 

: ( )T spanU X X→ such that XF U Id= . With Figiel's 

findings, the second question arises, "If given an 𝜀-isometry 

mapping :f X Y→ , does there exist bounded linear operators 

: ( )F spanf X X→ such that 

                       ( )Ff x x −               (0.3) 

for some 0?   

The two issues in (1.1) and (1.2) are mainstream research 

topics related to 𝜀-isometry mapping. 

For the first problem, Hyers and Ulam [12] first showed that for 

any 𝜀 -isometry mapping :f X Y→  with f (0) = 0, there is an 

isometry mapping :U X Y→  satisfied (1.2) with 10 = for all 

x X , where X and Y are Euclidean spaces. Later Bourgin [2] 

showed that 12 =  where (0,1)pX Y L= = , 1 .p    Gruber 

[11] first generalized to any real Banach spaces and Gevirtz [10] 

found 5 =  that which is reduced by Omladič and Šemrl [17] to 

2 = . In this first case, the surjectivity assumption cannot be 

removed. 

There are two branches of research for non-surjective 𝜀-

isometry cases, namely using the near (almost) surjective concept 

and Figiel's theorem. 

Let 1Y Y  is a closed subspace. A mapping :f X Y→ is 

said to be near surjective if 1y Y   there exists x X  such that 

( )f x y −   and u X   there exists 1v Y  such that 

( )f u v −   [22]. Dilworth [6] showed that for every 𝛿-

surjective 𝜀-isometry mapping :f X Y→  with f (0) = 0, where X 

and Y are Banach spaces, there exists an isometric mapping 

:U X Y→ such that ( ) ( ) 12 5f x U x  −  + . Then Tabor [23] 

changed this value to 2 35 +  and reduced by Šemrl and Väisälä 

[22] to 2 2 + . Note that by the definition, a mapping 

:f X Y→ is said to be near surjective if sup ( , ( ))
y Y

dist y f X


  . 

Vestfrid [24] showed that the result remains true if the condition 

of near-surjectivity is relaxed to be 

| |

1
sup lim inf ( , ( ))/ | |

2ty Y

dist ty f X t
→

 . 

Furthermore, Qian [19] used Figiel theorem to found out the 

value of 𝛽 in (1.3). With a counterexample, he showed that the 

Figiel theorem does not apply in general to 𝜀-isometric mapping. 

However if pX Y L= = where 1 p   , then for every 𝜀-

isometry mapping :f X Y→  there exists a bounded linear 

operator : ( )F spanf X X→ with 1F =  such that 

( ) 6Ff x x −  . Furthermore, Šemrl and Väisälä [22] showed 

that if X is a Banach space and Y is a Hilbert space, then the value 

of 𝛽 can be reduced to 2. 

From the brief explanation above, it can be seen that research 

related to 𝜀-isometry is still wide open for non-surjective cases. 

Recall that the non-surjective condition fails in norm topology. 

Therefore, we will discuss 𝜀-isometry mapping using a weak 

topology concept. 

2. Material and Method 

With the description in the introduction, it can be seen that 

this research is qualitative with grounded theory method. Books 

[15] and [8] provide advanced concepts of weak (weak*) 

topology, Gateaux, and Frechet derivatives while [16] and [21] 

provide a basic overview of the last two concepts. 

If not specifically stated, then X and Y are real Banach spaces. 

XB  ( XS ) is used to denote the unit ball (sphere, resp.) of X, exp(A) 

( ( )co A ) is a set of all exposed points (a closed convex hull, resp.) 

of A X . The authors use the concepts of weak and weak* 

topology along with symbols that are commonly used. 

3. Results and Discussion  

As mentioned earlier, non-surjective 𝜀-isometry mapping 

does not generally apply to any Banach spaces. Therefore, this 

section will discuss the weaker stability version of an e-isometry 

mapping. 

 

Theorem 3.1.  Suppose :f X Y→ is a standard ε-isometry, then 

for any * *x X , there exists *Y  that satisfies *x r = =  

such that 

 

                     
*, ( ) , ,f x x x r x X −                          (3.1) 

 

Using the Hanh-Banach Theorem, do not eliminate generality 

by assuming r = 1. Cheng, et. al. [5] showed that  = 4 in (3.1) 

and further can be reduced to be 3(see. [3]). Rohman, et. al [2] 

showed that the weak stability version remains true under Vestfrid 

condition [24]. The two following lemmas are crucial for the 

proof of Theorem 3.1. 
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Lemma 3.2 ([4], Lemma 2.1.)     Let 𝑌 be the Banach space, 

𝑔: ℝ →  𝑌 be the standard ε-isometric and 𝔘 be the free ultrafilter 

on ℕ. For any n , let *n Y
S   satisfies 

                , ( ) ( ) ( ) ( )n g n g n g n g n − − = − −  

If 𝜑 = 𝑤∗ − 𝑙𝑖𝑚𝔘 𝜑𝑛, then 

 

                               , ( ) 3 .g t t −   

 

Lemma 3.3. ([4], Lemma 2.2)     Let :f X Y→  be a standard ε-

isometry, Xz S  be the Gateaux differentiable point of X and 

recall that its Gateaux derivative is 
*d z x= , then there exists 

*Y
S   such that 

                      *, ( ) , 3 ,    f x x x x X −     

 

Proof of Theorem 3.1 for 3 = . 

Let :f X Y→  be a standard ε-isometry. We denote 𝔉 be a 

family of all finite-dimensional subspaces of 𝑋. Then for any 𝐹 ∈
𝔉, :Ff F Y→  (𝑓 is restricted to 𝐹) is still a standard ε-isometry. 

Since 𝐹 is a Gateaux differentiability space ([18], Proposition 

6.5), according to ([18], Proposition 6.9. and Theorem 6.2), the 

unit ball 𝐵𝐹∗ of 𝐹∗ = 𝑋∗/𝐹⊥ is 𝑤∗-closed convex hull of its 𝑤∗- 

exposed point, that is by the definition of GDS, the convex hull of 

𝑤∗- exposed point of 𝐵𝐹∗ (𝑤∗-exp(𝐵𝐹∗)) is 𝑤∗-dense in 𝐵𝐹∗  (since 

𝐹 is a finite-dimensional space, it is dense in the sense of norm 

topology). For any 𝑥𝐹
∗ ∈  𝑤∗-exp(𝐵𝐹∗), from ([18], Proposition 

6.9.), we know that there is 𝑧 ∈ 𝑆𝐹 such that 
*

FF
d z x= . By 

Lemma 3.3, we know that there is *F Y
S =   such that 

 

                   
*, ( ) , 3 ,   F Ff x x x x F −                         (3.2) 

 

For any 𝑧∗  ∈  𝑆𝐹∗, from ([18], Theorem 6.2.), there is a 

family of subsets {𝐹α:𝛼 ∈ 𝐼} (where 𝐹α ⊂ ℕ is a finite subset),

( ) ( )*

* *

, expn Fn F
x w B


 

 − , ( ),n n F


+


  satisfies 

, 1nn F


=  such that 

 

                     

* * *

* *

, ,

lim ,

,  for In nn F

w z z

z x


 

   


− =

 
                            (3.3) 

 

From (3.2) we get 

 

              
*, ( ) , 3 ,     f x z x x F I   −                     (3.4) 

 

where 
, ,n nn F

    


= , and ,n  satisfies 

 

            *

, ,, ( ) , 3 ,   n nf x x x x F  −                            (3.5) 

 

For (3.3) both ends of the 𝑤∗- limit are respectively taken to 

obtain φ ∈ 𝐵𝑌∗ such that 

 

               *, ( ) , 3 ,   f x z x x F −                               (3.6) 

Take 𝑢 ∈ 𝑆𝐹  such that ⟨𝑧∗, 𝑢⟩ = 1, substitute 𝑥 = 𝑛𝑢 into the 

above inequality and divide by n, and then set 𝑛 →  ∞ we have 

 

                             *( )
lim , , 1
n

f nu
z u

n


→
= =  

This shows that ∥ 𝜑 ∥≥ 1. Furthermore, ∥ 𝜑 ∥= 1. In this way, 

we have proved that for any 𝑧∗ ∈ 𝑆𝐹∗, there exists φ ∈ 𝑆𝑌∗ such 

that (3.1) is true. By the absolute homogeneity of this inequality, 

it is obtained that for any 𝑧∗ ∈ 𝐹∗, there exists φ ∈ 𝑌∗ that 

satisfies *x r = = , such that 

 

                         *, ( ) , 3 ,   f x z x r x F −                          (3.7) 

 

The following proves that for any norm attaining functional 
* *x X , there exists φ ∈ 𝑌∗ that satisfies *x r = = , such that 

 

                        *, ( ) , 3 ,   f x x x r x X −                         (3.8) 

 

Let 0 Xx S  such that * *

0,x x x r= = . We denote the set of all 

finite-dimensional subspaces containing 0x  as 𝔉0, then for any 

F𝔉0 there is *F Y
rS   such that 

 

                 *, ( ) , 3 ,   F f x x x r x F −                             (3.9) 

   

We denote the set of all φF satisfying (3.9) and *

F x r = =  as 

𝐾𝐹 for the above 𝑥∗. It is not difficult to verify, ∀𝐹 ∈ 𝔉0, 𝐾𝐹 is a 

non-empty w∗-compact convex subset in 𝑟𝑆𝑌∗. Let 𝔎 =
{𝐾𝐹 : 𝐹 ∈ 𝔉0}, then this is a collection of closed w∗-compact 

convex subset. ∀𝐸, 𝐹 ∈ 𝔉0,  

 

                                G E FK K K     
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where 𝐺 = 𝑠𝑝𝑎𝑛(𝐸 ∪ 𝐹).  

This shows that 𝔎 has a finite intersection property, and then 

 

                           0 0:FK K F F     

If 𝜑 ∈ 𝐾0 is chosen, it is easy to show that 𝜑 ∈ 𝑟𝑆𝑌∗  and gives 

 

                      *, ( ) , 3 ,   f x x x r x X −     

 

Finally, we will prove that for any 𝑥∗ ∈ 𝑋∗, there exists φ ∈

𝑌∗ that satisfies *x r = = , such that 

 

                *, ( ) , 3 ,   f x x x r x X −     

 

In fact, according to the Bishop-Phelps theorem that every Banach 

space is subreflexive [26], according to ([15], Theorem 2.11.13 

and [8], Theorem 7.41) there exists a sequence of norm-attaining 

functional (𝑥𝑛
∗ ) ⊂ r𝑆𝑋∗ such that 𝑥𝑛

∗ → 𝑥∗, 𝑥∗ ∈ r𝑆𝑋∗.  Let 𝜑𝑛 ∈
r𝑆𝑌∗ such that 

 

                     *, ( ) , 3 ,   n nf x x x r x X −     

 

then for any (𝜑𝑛) there exists 𝑤∗-convergence point 𝜑 such that 

∥ 𝜑 ∥≤ 𝑟, and 

 

                          *, ( ) , 3 ,   f x x x r x X −     

 

by the above inequality, we get ∥ 𝜑 ∥≥ 𝑟. Therefore, the theorem 

is proved. ∎ 

 

By using Theorem 3.1. for  = 4, Cheng, et. al. [5] gave the 

generalization of Figiel's Theorem from isometry to ε-isometry 

for specific spaces. 

 

Theorem 3.4.  Let :f X Y→  be a standard ε-isometry and 

E Y be the annihilator of  *F Y  consisting of all bounded 

functional on ( )( ), ( )co f x f x− . If E is  -complemented in Y, 

then there is a bounded linear operator with T   such that 

 

                             ( ) ,   Tf x x x X−                            (3.10) 

 

If X and Y are Banach spaces with Y reflexive, then 4 =  in 

(3.10). If ( )( ), ( )Y co f x f x= −  or Y is reflexive, Gateaux smooth 

and strictly convex Banach space with Kadec-Klee property, then 

2 = . 

4. Conclusions and Recommendations 

When we cannot know the stability of non-surjective  𝜀-

isometry mappings on real Banach spaces under norm topology, 

such mappings remain stable under weak topology. Besides the 

result still supports Figiel theorem for such mapping. 
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