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Abstract

Nowadays, the demand for producing and using autonomous vehicle is increasing. Due to the latest developments in technology, the
capabilities of these vehicles in accident prevention are increasing. As a result of the accuracy of these capabilities, it is very important
because it is human life. In today’s technology, the collision time calculation called TTC (Time to Collision) can be done in two
different ways. The first of these methods is lidar-based calculation. In this paper TTC will be calculated using the camera-based
method with different combinations of detectors and descriptors. Pros and cons of these methods will be discussed. The aim of this
paper is to expose an exacting performance for related methods, especially its diverse combinations are used matching. In these
experiments images are used for 10 images taken from real time traffic scenario of preceding vehicle. This paper includes seven
methods for detectors and 6 methods for descriptors. These detectors and descriptors are used in 42 different combinations. The
analysis includes four parameters such as total keypoint detection, total matches, total time in ms and performance ratio which is total
matches divided by total time.

Keywords: Autonomous Vehicles, Image Processing, Lidar, Detector, Descriptor.

Farkh Dedektorler ve Tanimlayicilar ile Kamera Tabanh Carpisma
Siiresinin Hesaplanmasinin Performans Degerlendirmesi

Oz

Giliniimiiz otonom arag tiretme ve kullanma talebi giderek artmaktadir. Teknolojideki gelismeler nedeniyle bu araglarin kaza 6nleme
konusundaki yetenekleri de ayni1 oranda artmaktadir. Bu yeteneklerin dogrulugunun sonucu olarak insan hayati s6z konusu oldugunda
olduk¢a Onemlidir. Giliniimiiz teknolojisinde TTC adi verilen ¢arpigsma siiresi hesabi iki farkli sekilde yapilabilmektedir. Bu
yontemden ilki lidar tabanli hesaplamadir. Bu yazida TTC, farkli dedektdr ve tanimlayici kombinasyonlar ile kamera tabanli yontem
kullanilarak hesaplanacaktir. Bu bildirinin amaci, 6zellikle ¢esitli kombinasyonlarin eslestirilmesi igin kullanilan yontemler i¢in hizl.
Bu deneylerde, 6ndeki aracin ger¢ek zamanl trafik senaryosundan alman 10 goriintii kullanilmistir. Bu bildiri, dedektorler i¢in yedi
yontem ve tanmimliyicilar i¢in 6 yontem igermektedir. Bu dedektorler ve tanimlayicilar 42 farkli kombinasyonda kullanilmaktadir.
Analiz toplam anahtar nokta tespiti, toplam eslesmeler, mili-saniye cinsinden toplam siire ve toplam eslesmelerin toplam siireye
béliinmesiyle elde edilen performans orani gibi dort parametreyi igerir.

Anahtar Kelimeler: Otonom Araglar, imge Isleme, Lidar, Dedektor, Tamimlayict.
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1. Introduction

Currently, nearly 50 known companies are working on
autonomous vehicles. Among these companies are the leading
companies of the automotive world such as Tesla, BMW and
Mercedes. In addition, spare parts supply companies that support
these companies have directed their production on autonomous
vehicles.

In addition to autonomous vehicles, changing lanes,
reminding the speed signs, warning the driver against various
road warning sign and providing awareness, placing cameras in
various parts of the vehicle so that the driver can see the angles
that the driver cannot see, increasing the driver’s awareness of
environmental effects with sensors such as radar and lidar,
parking assist systems and blind spot detection systems are
available to improve the driver’s driving experience. Such
systems are called Advanced Driver Assistance Systems
(ADAS), and these systems are the precursors of autonomous
vehicles as well as features that autonomous vehicles should
acquire. In addition to the systems in the market with vehicles
that offer autopilot, there are also vehicles that only offer ADAS.

In this paper, prototypes of autonomous vehicles, sensors
and the concept of autonomous will also be discussed. For this
reason, not all vehicles are fully autonomous. A standard has
been established by a community known as the Society of
Automotive Engineers (SAE International), called the
autonomous level. According to this standard [1], a table was
created according to the autonomy levels of autonomous
vehicles. These levels of autonomy are shown in the Table 1
below.

Acquire useful datas from sensors for autonomous vehicles
are important. Sensors and algorithms developed over the years
are used to obtain these real-world data with the least possible
loss. These algorithms work in the form of obtaining objects
structurally. Image processing has a lot of example in real world.
Image matching is a very important process to obtain meaningful
information. However, due to the size of the data to be
processed, this application is a very difficult situation due to the
time in real-time applications. For this reason, in this study time
is one of the benchmark parameters and one of the two
parameters in performance measurement. To elicit and test these
result an image database is taken from UDACITY Sensor Fusion
Nanodegree Program. It includes 10 images that taken from real
time traffic scenario. This paper consist of the following
heading, previous studies about detector-descriptor algorithms
are given in section two, in third section engineering logic is
explained, fourth and fifth section explained time to collision
logic with camera and lidar sensors. Sixth section includes the
performance results and seventh section includes results will be
discussed. Table 1 shows automation level of autonomous
driving.
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Table 1. Automation Level of Autonomous Driving

Driving Level and Name Driving Information

0 — No Automation There are systems on the
vehicles to assist the driver,
the drivers still perform the

driving task.

Level 1 is the lowest level of
automation in vehicles. There
are automatic systems such as
acceleration or steering
system. Adaptive cruise
control is a good example of
this level.

1 — Driver Assistance

There must be a driver in the
driver's seat and be able to
interfere with driving in the
event of a mishap.

2 — Partial Automation

Vehicles at this level have
environmental sensing
capabilities. The driver must
be on the alert.

3 — Conditional Automation

Vehicles can intervene in case
of unwanted traffic or system
failure. There is not much
need for human interaction.

4 — High Automation

Vehicles of this level do not
require human intervention.
The driver's driving duty is
eliminated.

5 — Full Automation

The sensor set of an example autonomous vehicle is as
follows:

- 360 degree Lidar scanner on top of vehicle
- 360 degree coverage radar

- Camera in the upper front of the vehicle

- Camera to the sides and back

- GPS antenna on vehicle roof

- Processing and storage unit

Cameras: Roof cameras can focus at far and near distances.
It can monitor braking vehicles, pedestrians, traffic lights and
traffic signs. The cameras transmit their image outputs to a
central processing computer where the data of other sensors can
be processed together. Just like the human eye, the night
performance of cameras also decreases. This make cameras less
reliable in terms of detection levels and locating accuracy.

Radars: Radars emit radio waves that have the ability to
reflect back from objects. The returning waves can be analyzed
with their return time and shifted frequency. Another feature is
that radars are the only sensors that can measure the speed of
objects directly, making the radar distinguishable from camera
and lidar in this regard. In addition, the radar is very resistant to
adverse weather conditions such as snowfall and fog. Radar,
which has been used for many years, gives the best results when
identifying large objects with good reflectivity. The performance
of the radar is degraded when identifying objects with low
reflectivity. Even if the camera and radar work well together,
there are cases where both sensors do not work optimally. For
these reasons, autonomous vehicle manufacturers add a third
sensor in addition to these two sensors.
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Lidar: Lidar works similarly to radar. However, unlike radar,
it uses infrared light instead of radio waves. The ceiling mounted
lidar sensor rotates at high speed. Creates a detailed laser beams
3D model of its surroundings. 128-layer sensors a total of 128
laser beams are used to detect distances up to 300 meters.
During a 360-degree rotation, approximately 4 million dots
occur per second. Like a camera, a lidar is an optical sensor.
Cameras are dependent on ambient light while lidar does not
have these dependencies. However, the performance of lidar
decreases in adverse weather conditions such as heavy snowfall
and fog. In such an environment, the spots formed by the lidar
may not be sufficient for detection. For this, it should be
supported with sensors besides lidar.

2. Material and Method
2.1. Proposed Studies

In literature, there are too many works related to keypoint
detectors and descriptors combinations for comparing their
performances. Which combination is more successful is related
to which performance measurement parameter the results of
these processes are related to. Distinctive features in the images
are defined by concepts called detector and descriptor. One of
these concepts, the detector finds the important points in the
image. The descriptor is a definition that can be matched with
each other in common features among different images and is
obtained by calculating these features. Image recognition
methods are described in the referenced studies below. In the one
of the proposed study numbered [2-5], the results revealed the
results of BRISK, FREAK, SURF, SIFT descriptors. The best
performance seeks the best match between the targeted detection
accuracy, speed and the objects it detects in the targeted study.
This method is too sensitive to deterioration and robustness
cannot be fully ensured. Addition, the linear forward and
backward movements of the camera system of the study are too
limited. In [6], it is a study investigating detector and descriptor
methods for studies on photogrammetrics. It compares five
keypoint detector in terms of correctly detected corners, their
positions, the density of detected points. But the five methods
are few for comparison and the performance analysis does not
give a very accurate result. Reference study [7] aims to find the
best combination in parallel with our study. For this purpose, it
analyzes different combinations with 7 detector and 2
descriptors. A dataset contains 60 images was used. In previous
references, in this reference also and in our study, different
criteria were used to evaluate performance results. Finally,
another study [8] is a study on occlusions and was carried out
using a moving camera. Four descriptors were used in the study.
These are the SIFT, FREAK, SURF and BRISK descriptors.

The difference of our study from these proposed papers is
the difference in the number of detector and and descriptors used
and their combinations. The performance measurement
parameter used later is a less complex formula. However, this
formula is quite sufficient as the area of use is rear image of the
preceding vehicle. The above-mentioned studies have inspired
our work on different subjects.

2.1. Engineering a Collision Detection System

Collision avoidance system (CAS) is a safety feature that
alert drivers and triggers the brake in case of a sudden collision
while driving. If there is a vehicle ahead (preceding vehicle),
CAS estimates the sustained collision time [9-10] (TTC). When
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the TTC drops below a predetermined threshold, the CAS may
decide to apply the vehicle brakes autonomously. Fig.1 shows
the real time traffic scenario

preceeding vehicle

CAS vehicle

=0

Figure 1 — Real time traffic scenario.

In the traffic scenario shown in the figure above, the green
vehicle starts to decrease its speed at the moment t0 when the
yellow vehicle equipped with the collision sensor receives the
distance measurement do. After a time t (t1) the green vehicle
comes very close and a second measurement of d1 is made. The
purpose here is to calculate the TTC. Thus, the TTC can be
calculated and the driver of the yellow vehicle can be warned.
Even the brakes can be triggered autonomously. However,
before this process can be done, a way to describe the movement
of vehicles with a mathematical model must be found. The
parameters used in the equations below are the relative speeds of
the vehicle speeds, the vehicle carrying the sensor, and the
vehicle scanned by the sensor. To calculate TTC, the physical
behavior of the preceding vehicle must be modeled. One
assumption in this regard may be that the relative velocity
between the yellow and green vehicle in the above figure is
constant. This will result in the constant velocity model (CVM)
[11] represented by Equation (1) in the formula below. V
represents the velocity and d the distance and should not be
confused with the derivative operator.

Constant Velocity
d(t+At) = d(t) —vy. At (1)

Constant Acceleration 2

d(t + At) = d(t) — vo. At — ~ag. At?

v(t+ At) =v(t) — ay. At

The distance to the vehicle at time instant t + At is smaller
than at time t because it subtract the product of a constant
relative velocity vo and time Az, From an engineering
perspective, a sensor is needed because of the capable of
measuring the distance to the preceding vehicle on a precise
times basis with a constant At between measurements. This one
achievable quite well with a lidar sensor. Especially in dynamic
traffic situations where a vehicle is braking hard, the CVM is not
accurate enough, however, as the relative velocity between both
vehicles changes between measurements. In the following
figure, the approaching vehicle is shown at three-time instants
with increasing velocity. Fig. 2 shows the preceding vehicle
increasing velocity.
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ing velocity)
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Figure 2 — Preceding vehicle increasing velocity.

Thus CVM can be expand by assuming velocity to be a
function of time and subtract the second term in Equation (2)
which is the product constant acceleration and the squared time
At between both measurements. Equation (2) displays velocity as
a function of time, which is also dependent on the constant
acceleration model (CAM) and it is commonly used in
commercially available collision detection systems. On a side
note, if a radar sensor used instead of a lidar, a direct
measurement on velocity could be taken by exploiting a
frequency shift in the returning electromagnetic wave due to the
Doppler effect [12]. This is a significant advantage over sensors
such as Lidar, where velocity can only be computed based on
(noisy) distance measurements. In this paper CVM will be used
instead of the CAM as it is much simpler to handle with regard
to the math involved and with regard to the complexity of the
programming task. For small instances of At will assumed that
the CVM model is accurate enough and that it will give a decent
estimate of the TTC. As a conclusion, there are the following
types of models possible.

1. Constant Velocity Model (CVM): In this paper, that
will consider being working on.

2. Constant Acceleration Model (CAM): An ideal case,
but still complex as compared to the CVM model.

3. Changing Acceleration: Real-life scenarios, most often
too complex to handle in practice

2.3. Estimating TTC with Lidar

In the following assuming that CAS equipped vehicle using
a LIDAR sensor to take distance measurements on preceding
vehicles. The sensor in this scenario will be given the distance to
the closest 3D point in the path of driving. In the figure below,
the closest point is indicated by a red line emanating from a lidar
sensor on top of the CAS vehicle. Fig. 3 shows the math behind
TTC.

t0

=

Lidar sensor u

_Q:\
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Figure 3 — The math behind TTC.

Based on the model of a constant velocity it is discussed, the
velocity vo can be computed from two successive lidar
measurements as follows:

d(t + At) = d(t) — v,. At ?3)
_d®-d(t+AD) _ do—d,
0~ At T oAt (4)
_ di _ djat
TTC = b= 350 (5)

Once the relative velocity vo is known, the time to collision
can easily be computed by dividing the remaining distance
between both vehicles by v0. So given a lidar sensor which is
able to take precise distance measurements, a system for TTC
estimation [13-14] can be developed based on a CVM and on the
set of equations shown above. Note however that a radar sensor
would be the superior solution for TTC computation as it can
directly measure the relative speed, whereas with the lidar sensor
needs to be computed vO from two (noisy) distance
measurement. The following image shows a lidar point cloud as
an overlay a camera image taken in a highway scenario with a
preceding vehicle directly in the path of driving. Distance to the
sensor is color-coded (green is far away, red is close). On the left
side, a bird-eyed view perspective of the lidar points is shown as
well. Fig. 4 shows the highway scenario with a preceding
vehicle.

Figure 4 — Highway scenario with a preceding vehicle.

The lidar sensor provides measurements on the vehicle as
well as on the road surface. Also, some 3D points in the camera
image do not seem accurate when compared to their surrounding
neighbors. Especially the points near the roof of the preceding
vehicle differ in color from the points on the tailgate. As
measurement accuracy is correlated to the amount of light
reflected from an object, it makes sense to consider the
reflectiveness r of each lidar point which can be accessed. In
addition to the x, y and z coordinates. The image below
highlights high reflectiveness with green, whereas regions with
low reflectiveness are shown as red. An analysis of the
associated reflectivity of the point cloud shows that such
deviations often occur in regions with reduced reflectiveness.
Fig. 5 shows the reflectiveness with preceding vehicle.
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Figure 5 — Reflectiveness with preceding vehicle.

In order to derive a stable TTC measurement from the given
point cloud, two main steps have to be performed :

1- Remove measurements on the road surface
2- Remove measurements with low reflectivity

In the figure below, Lidar points are shown in a top-view
perspective and as an image overlay after applying the filtering.
After removing lidar points in this manner, it is now much easier
to derive the distance d(t) to the preceding vehicle. Fig. 6 shows
the Lidar points perspective.

Figure 6 — Lidar points perspective.
2.3. Estimating TTC with Camera

Monocular cameras are not able to measure metric
distances. They are passive sensors that rely on the ambient light
which reflects off of objects into the camera lens. It is thus not
possible to measure the runtime of light as with lidar technology.
To measure distance, a second camera would be needed. Given
two images taken by two carefully aligned cameras (also called a
stereo setup) at the same time instant, one would have to locate
common points of interest in both images (e.g. the tail lights of
the preceding vehicle) and then triangulate their distance using
camera geometry and perspective projection. For many years,
automotive researchers have developed stereo cameras for the
use in ADAS products and some of those have made it to
market. With more advanced ADAS products and with
autonomous vehicles however, stereo cameras have started to
disappear from the market due to their package size, the high
price and the high computational load for finding corresponding
features. Despite those limitations of the mono camera, there is a
way to compute TTC without the need to measure distance.
Consider the constant velocity motion model that introduced and
think about a way to replace the metric distance d with
something the camera can measure reliably, such as pixel
distances directly on the image plane. In the following figure, it
can be seen how the height H of the preceding vehicle can be
mapped onto the image plane using perspective projection.

It can be seen that the same height H maps to different
heights ho and h; in the image plane, depending on the distance
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#.. ¥ doand d; of the vehicle. It is obvious that there is a geometric

relation between h, H, d and focal length f of the pinhole camera
and this is what needed to exploit in the following. Fig. 7 shows
the height of the preceding vehicle effect distance.

image plane
/ t1 0

pinhole

camera /
h1 hg' 7 | g
HSS : H -

>~
\ do

Figure 7 — Height of the preceding vehicle effect distance.

A\ 1

Looking at the following set of equations:

Project object into camera (6)
f.H f.H
hy = —; hy =—
0 dO 1 d1
Relate projection and distance (7)
h = d h
1 dq 0 1
—=—=—>dy= d.—
hy TH g~ %oT Gy
do
Substitute in constant velocity model (8)
h1 —170. At
d1= do_vo.AtZ dl'__UO'At_) dlzih
ho ( __1)
ho
Compute time to contact / collision 9

d, —At
TTC = — = —h
o (1-3)
ho

In Equation (6) the focal length of the camera used and a
distance measurement do performed at time to to project the
height H of the vehicle onto the image plane and thus to a height
ho in pixels. The same is done at time t;, leading to a projected
height hl. In Equation (7) the ratio of the relative heights hy and
h; are computed. As both H and f are canceled out, a direct
relation can be observed between relative height h and absolute
metric distance d. The distance to the vehicle do can be
expressed as the product of d; and the ratio of relative heights on
the image plane. In Equation (9), do in the equation for constant
velocity substituted and solve for d1 which is now dependent on
the constant relative velocity v1, on the time between measuring
do and d; and on the ratio of relative heights on the image plane.
Also in Equation (9) the TTC is computed as the ratio of
remaining distance to impact, which is d: and the constant
velocity vo. As it can easily seen, the TTC now only consists of
At, ho and hs. Thus it is possible to measure the time to collision
by observing relative height change on the image sensor.
Distance measurements are not neeeded and it can thus use a
mono camera to estimate the time to collision bu observing
changes in relative height (also called chang) directly in the
image. In the figure below, a neural network has been used to
locate vehicles in successive image of a monocular camera.
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For each vehicle, the network returns a bounding box,
whose width and/or height could in principle be used to compute
the height ratio in the TTC equation derived in the last section.
When observed closely however, it can be seen that the
bounding boxes do not always reflect the true vehicle
dimensions and the aspect ratio differs between images. Using
bounding box height or width for TTC computation would thus
lead to significant errors.

Figure 8 — Locate vehicle in successive images of a monocular
camera.

In most engineering tasks, relying on a single measurement
or property is not reliable enough. This holds especially true for
safety related products. Therefore, it needs to be consider
whether there are further properties of vehicles and objects it can
be observed in an image. Instead of relying on the detection of
the vehicle as a whole now needs to be analyze its structure on a
smaller scale. If it were possible to locate uniquely identifiable
keypoints that could be tracked from one frame to the next, it
could use the distance between all keypoints on the vehicle
relative to each other to compute a robust estimate of the height
ratio in our TTC equation. The following figure illustrates the
concept. Fig. 9 shows the keypoints of a car perspective.

Figure 9 — Keypoints of a car perspective a) relative
distances between keypoints in an image b) selected keypoint
distances between successive frames.

In (a), a set of keypoints has been detected and the relative
distances between keypoints 1-7 have been computed. In (b),
four keypoints have been matched between successive images
(with keypoint three being a mismatch) using a higher-
dimensional similarity measure called descriptor. The ratio of all
relative distances between each other can be used to compute a
reliable TTC estimate by replacing the height ratio h1/h0 with
the mean or median of all distance ratios dk / d’k. Studies on
keypoint detectors have increased recently and many algorithms
have been developed in recent years for these reasons. Keypoint
detection applications include object recognition in image
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processing, robotic mapping, 3D modeling etc. These detectors
are comparable in terms of performance and speed. In recent
years, a number of faster detector have been developed which
aim at real-time applications on smartphones and other portable
devices. Fig. 10 shows the relative distance between keypoints.

In the literature, a large variety of similarity measures
(called descriptors) have been proposed and in many cases,
authors have published both a new method for keypoint
detection as well as a similarity measure which has been
optimized for their type of keypoints. A keypoint detector is an
algorithm that selects points from an image based on the local
maximum of a function. A descriptor is a vector describing the
image patch around a keypoint. It has many describing the image
patch around a keypoint. It has many techniques and these
include from simple to complex techniques such as comparing
raw pixel values, histograms of gradient orientations.
Descriptors help to assign similar keypoints in different images
to each other. As shown in the figure below, a set of keypoints in
one frame is assigned keypoints in another frame such that the
similarity of their respective descriptors is maximized and the
keypoints represent the same object in the image. In addition to
maximizing similarity, a good descriptor should also be able to
minimize the number of mismatches, i.e. avoid assigning
keypoints to each other that do not correspond to the same
object.

Most common methods are ORB, BRISK, SURF, SIFT,
SHITOMASI, HARRIS. These methods generally using for this
type of study. This study may refer to these steps; keypoint
descriptor as given in [3], orientation assignment, keypoint
localization and scale-space representation. To put it another
way, the last three of the above steps are the detector, while the
first is expressed as the descriptor. However, among these
methods, there are those that can be used both as detectors and
descriptors. Some are just detectors or only descriptor ones. In
[15-16], FAST is a detector method. In [17], the BRIEF method
is a descriptive method. If we talk about SIFT method, the SIFT
method applies a set of DoG filters for multiscale. With this
filter, we can obtain a filtered and downsampled version of the
original image. The way the SIFT descriptor is created is from a
histogram with a gradient size of 4x4. As another example, the
basis for the formation of SURF is the sum of two-dimensional
Haar wavelets using integral images and approximating the
Gaussian derivatives in [3]. The SURF detector approximates
the determinant of the Hessian matrix, which gives a local
maximum as a result. Unlike the detector, the SURF descriptor
consists of a 64 dimensional vector, which is calculated as a
result of the sum of the Haar wavelet coefficients over a 4x4
pixel. As described in [15] and [16] the application area of FAST
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is to detect the corners. It uses a 16 pixel circle around the corner
pixels to understand that the point of interest is the corner. It then
classifies these 16 pixels by comparing their brightness, and
together with a threshold, it is understood whether the relevant
pixel is a corner or not. As for BRIEF, BRIEF is a binary
descriptor and based on density comparison. The detector side of
BRISK, as summarized in reference [4], calculates the pixel
maximum. This maximum is also called FAST score calculation.
The BRISK descriptor is combined with a binary array and
includes a gloss results test. Fig. 11 shows the keypoint-
descriptor relation.

Figure 11 — Keypoint-descriptor relation.

3. Results and Discussion

The experiments to be tested in this paper are the success of
the methods used to calculate the keypoints of the approaching
vehicle, thus its distance and TTC time. For this, the 10 images
below contain the preceding of a vehicle that slows down during
traffic to the vehicle in use. The distance between this vehicle
and the vehicle used in gradually decreasing, and therefore the
TTC is getting closer and closer.

Table 2 contains different detectors and descriptors used in
10 images. It contains all the possible combination of detector
and descriptor pairs. Then the total number of keypoints found
by these combinations is indicated, the number of keypoints that
match with the detected keypoints was found thanks to the
descriptors. Since the number of match keypoints are not the
only parameter, how long it takes for the relevant combination to
find this match number is in another column. In the last column,
the relevant value was obtained as a result of the ratio of the
number of match keypoints, which is considered as a
performance parameter called ratio can be found. Table 3
contains the 3 methods with the highest ratior were selected
from the results in the Table 2. The distance calculation result
with the camera was the recommended for obtaining TTC.
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Figure 12 — Preceding vehicle test images.
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No | Combinations KP’s | Match | Time(ms) | Ratio No | Comb. KP’s | Match | Time(ms) | Ratio

1 SHI+BRISK 11875 | 1994 124,54 16,01 22 | BRISK 26144 | 4828 | 2117,78 2,28
+FREAK

2 SHI+BRIEF 11875 | 2861 83,66 34,20 23 | BRISK - - - -
+AKAZE

3 SHI+ORB 11875 | 2526 100,74 25,07 24 | BRISK 26144 | 6685 | 2150,10 3,11
+SIFT

4 SHI+FREAK 11875 | 2299 318,98 7,21 25 | ORB 4895 | 1349 144,82 9,32
+BRISK

5 SHI+AKAZE - - - - 26 | ORB+ 4895 | 1373 | 120,78 11,37
BRIEF

6 SHI+SIFT 11875 | 2842 143,58 19,79 27 | ORB 4895 | 1435 | 151,04 9,48
+ORB

7 HARRIS+BRISK | 756 227 87,86 2,58 28 | ORB 4895 | 613 353,70 1,73
+FREAK

8 HARRIS+BRIEF 756 266 91,27 2,91 29 ORB 4895 - - -
+AKAZE

9 HARRIS+ORB 756 261 84,90 3,07 30 | ORB 4895 | 1544 | 334,48 4,62
+SIFT

10 | HARRIS+FREAK | 756 217 303,40 0,72 31 | AKAZE | 13330 | 3216 | 395,30 8,14
+BRISK

11 HARRIS+AKAZE | - 32 | AKAZE | 13330 | 4011 370,55 10,82
+BRIEF

12 | HARRIS+SIFT 756 265 138,35 1,92 33 | AKAZE | 13330 | 3315 | 376,98 8,79
+ORB

13 | FAST+BRISK 17330 | 3073 65,95 46,59 34 | AKAZE | 13330 | 3204 | 575,26 5,57
+FREAK

14 | FAST+BRIEF 17330 | 4754 28,25 100,27 | 35 | AKAZE | 13330 | 3437 | 645,25 5,33
+AKAZE

15 | FAST+ORB 17330 | 4124 20,85 197,76 | 36 | AKAZE | 13330 | 3606 | 477,36 7,55
+SIFT

16 | FAST+FREAK 17330 | 3067 273,28 11,22 37 | SIFT 13540 | 2401 | 433,88 5,53
+BRISK

17 FAST+AKAZE - - - - 38 SIFT 13540 | 3168 427,95 7,40
+BRIEF

18 | FAST+SIFT 17330 | 5559 145,08 38,32 39 | SIFT - - - -
+ORB

19 | BRISK+BRISK 26144 | 4891 1927,9 2,54 40 | SIFT 13540 | 2371 | 667,16 3,55
+FREAK

20 | BRISK+BRIEF 26144 | 7206 1868,13 3,86 41 | SIFT - - - -
+AKAZE

21 | BRISK+ORB 26144 | 4912 1880,68 2,61 42 | SIFT 13540 | 2497 | 749,04 3,33
+SIFT

Table 3. Top three Detector + Descriptor Pair

No | Combinations | KP’s | Matches | Time Ratio
1 FAST+ ORB 17330 | 4124 20.8537 | 197.76
2 FAST+ BRIEF | 17330 | 4754 28.2515 | 168.27
3 FAST+ BRISK | 17330 | 3073 65.9564 | 46.59

When the given images are used as input data, Table 2
shows the keypoints found, the points that match the points and
how long it takes for this match to be made. When these matches
and the duration are divided, the ratio called ratior emerges.

e-ISSN: 2148-2683

When these ratio data are examined, the most performing
(matches / time) combinations are given in Table 3. When Table
3 is examined, the FAST method appears to be most
performance detector. In addition to fast as descriptor, ORB,
BRIEF and BRISK methods are seen as the most performance
combinations when used.

4. Conclusions and Recommendations

In this study, while doing some software load in autonomous
vehicles, in our study, this task was to calculate the imapct time
of the vehicle in front. While calculating the TTC, we used the
detector and descriptor pairs to detect the distinctive features of
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the preceding vehicle. As can be seen from the results, the most
efficient detector and descriptor pairs were obtained.
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