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Abstract 

Nowadays, the demand for producing and using autonomous vehicle is increasing. Due to the latest developments in technology, the 

capabilities of these vehicles in accident prevention are increasing. As a result of the accuracy of these capabilities, it is very important 

because it is human life. In today’s technology, the collision time calculation called TTC (Time to Collision) can be done in two 

different ways. The first of these methods is lidar-based calculation. In this paper TTC will be calculated using the camera-based 

method with different combinations of detectors and descriptors. Pros and cons of these methods will be discussed. The aim of this 

paper is to expose an exacting performance for related methods, especially its diverse combinations are used matching. In these 

experiments images are used for 10 images taken from real time traffic scenario of preceding vehicle. This paper includes seven 

methods for detectors and 6 methods for descriptors. These detectors and descriptors are used in 42 different combinations. The 

analysis includes four parameters such as total keypoint detection, total matches, total time in ms and performance ratio which is total 

matches divided by total time.  
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Farklı Dedektörler ve Tanımlayıcılar ile Kamera Tabanlı Çarpışma 

Süresinin Hesaplanmasının Performans Değerlendirmesi 

Öz 

Günümüz otonom araç üretme ve kullanma talebi giderek artmaktadır. Teknolojideki gelişmeler nedeniyle bu araçların kaza önleme 

konusundaki yetenekleri de aynı oranda artmaktadır. Bu yeteneklerin doğruluğunun sonucu olarak insan hayatı söz konusu olduğunda 

oldukça önemlidir. Günümüz teknolojisinde TTC adı verilen çarpışma süresi hesabı iki farklı şekilde yapılabilmektedir. Bu 

yöntemden ilki lidar tabanlı hesaplamadır. Bu yazıda TTC, farklı dedektör ve tanımlayıcı kombinasyonları ile kamera tabanlı yöntem 

kullanılarak hesaplanacaktır. Bu bildirinin amacı, özellikle çeşitli kombinasyonların eşleştirilmesi  için kullanılan yöntemler için hızlı. 

Bu deneylerde, öndeki aracın gerçek zamanlı trafik senaryosundan alınan 10 görüntü kullanılmıştır. Bu bildiri, dedektörler için yedi 

yöntem ve tanımlıyıcılar için 6 yöntem içermektedir. Bu dedektörler ve tanımlayıcılar 42 farklı kombinasyonda kullanılmaktadır. 

Analiz toplam anahtar nokta tespiti, toplam eşleşmeler, mili-saniye cinsinden toplam süre ve toplam eşleşmelerin toplam süreye 

bölünmesiyle elde edilen performans oranı gibi dört parametreyi içerir.  

 

Anahtar Kelimeler: Otonom Araçlar, İmge İşleme, Lidar, Dedektör, Tanımlayıcı. 
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1. Introduction 

Currently, nearly 50 known companies are working on 

autonomous vehicles. Among these companies are the leading 

companies of the automotive world such as Tesla, BMW and 

Mercedes. In addition, spare parts supply companies that support 

these companies have directed their production on autonomous 

vehicles. 

In addition to autonomous vehicles, changing lanes, 

reminding the speed signs, warning the driver against various 

road warning sign and providing awareness, placing cameras in 

various parts of the vehicle so that the driver can see the angles 

that the driver cannot see, increasing the driver’s awareness of 

environmental effects with sensors such as radar and lidar, 

parking assist systems and blind spot detection systems are 

available to improve the driver’s driving experience. Such 

systems are called Advanced Driver Assistance Systems 

(ADAS), and these systems are the precursors of autonomous 

vehicles as well as features that autonomous vehicles should 

acquire. In addition to the systems in the market with vehicles 

that offer autopilot, there are also vehicles that only offer ADAS. 

In this paper, prototypes of autonomous vehicles, sensors 

and the concept of autonomous will also be discussed. For this 

reason, not all vehicles are fully autonomous. A standard has 

been established by a community known as the Society of 

Automotive Engineers (SAE International), called the 

autonomous level. According to this standard [1], a table was 

created according to the autonomy levels of autonomous 

vehicles. These levels of autonomy are shown in the Table 1 

below. 

Acquire useful datas from sensors for autonomous vehicles 

are important. Sensors and algorithms developed over the years 

are used to obtain these real-world data with the least possible 

loss. These algorithms work in the form of obtaining objects 

structurally. Image processing has a lot of example in real world. 

Image matching is a very important process to obtain meaningful 

information. However, due to the size of the data to be 

processed, this application is a very difficult situation due to the 

time in real-time applications. For this reason, in this study time 

is one of the benchmark parameters and one of the two 

parameters in performance measurement. To elicit and test these 

result an image database is taken from UDACITY Sensor Fusion 

Nanodegree Program. It includes 10 images that taken from real 

time traffic scenario. This paper consist of the following 

heading, previous studies about detector-descriptor algorithms 

are given in section two, in third section engineering logic is 

explained, fourth and fifth section explained time to collision 

logic with camera and lidar sensors. Sixth section includes the 

performance results and seventh section includes results will be 

discussed. Table 1 shows automation level of autonomous 

driving. 

 

 

 

 

 

 

Table 1. Automation Level of Autonomous Driving 

Driving Level and Name Driving Information 

0 – No Automation There are systems on the 

vehicles to assist the driver, 

the drivers still perform the 

driving task. 

1 – Driver Assistance Level 1 is the lowest level of 

automation in vehicles. There 

are automatic systems such as 

acceleration or steering 

system. Adaptive cruise 

control is a good example of 

this level. 

2 – Partial Automation There must be a driver in the 

driver's seat and be able to 

interfere with driving in the 

event of a mishap. 

3 – Conditional Automation Vehicles at this level have 

environmental sensing 

capabilities. The driver must 

be on the alert. 

4 – High Automation Vehicles can intervene in case 

of unwanted traffic or system 

failure. There is not much 

need for human interaction. 

5 – Full Automation Vehicles of this level do not 

require human intervention. 

The driver's driving duty is 

eliminated. 

The sensor set of an example autonomous vehicle is as 

follows: 

- 360 degree Lidar scanner on top of vehicle 

- 360 degree coverage radar 

- Camera in the upper front of the vehicle 

- Camera to the sides and back 

- GPS antenna on vehicle roof 

- Processing and storage unit 

Cameras: Roof cameras can focus at far and near distances. 

It can monitor braking vehicles, pedestrians, traffic lights and 

traffic signs. The cameras transmit their image outputs to a 

central processing computer where the data of other sensors can 

be processed together. Just like the human eye, the night 

performance of cameras also decreases. This make cameras less 

reliable in terms of detection levels and locating accuracy. 

Radars: Radars emit radio waves that have the ability to 

reflect back from objects. The returning waves can be analyzed 

with their return time and shifted frequency. Another feature is 

that radars are the only sensors that can measure the speed of 

objects directly, making the radar distinguishable from camera 

and lidar in this regard. In addition, the radar is very resistant to 

adverse weather conditions such as snowfall and fog. Radar, 

which has been used for many years, gives the best results when 

identifying large objects with good reflectivity. The performance 

of the radar is degraded when identifying objects with low 

reflectivity. Even if the camera and radar work well together, 

there are cases where both sensors do not work optimally. For 

these reasons, autonomous vehicle manufacturers add a third 

sensor in addition to these two sensors. 
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Lidar: Lidar works similarly to radar. However, unlike radar, 

it uses infrared light instead of radio waves. The ceiling mounted 

lidar sensor rotates at high speed. Creates a detailed laser beams 

3D model of its surroundings. 128-layer sensors a total of 128 

laser beams are used to detect distances up to 300 meters. 

During a 360-degree rotation, approximately 4 million dots 

occur per second. Like a camera, a lidar is an optical sensor. 

Cameras are dependent on ambient light while lidar does not 

have these dependencies. However, the performance of lidar 

decreases in adverse weather conditions such as heavy snowfall 

and fog. In such an environment, the spots formed by the lidar 

may not be sufficient for detection. For this, it should be 

supported with sensors besides lidar. 

2. Material and Method 

2.1. Proposed Studies 

In literature, there are too many works related to keypoint 

detectors and descriptors combinations for comparing their 

performances. Which combination is more successful is related 

to which performance measurement parameter the results of 

these processes are related to. Distinctive features in the images 

are defined by concepts called detector and descriptor. One of 

these concepts, the detector finds the important points in the 

image. The descriptor is a definition that can be matched with 

each other in common features among different images and is 

obtained by calculating these features. Image recognition 

methods are described in the referenced studies below. In the one 

of the proposed study numbered [2-5], the results revealed the 

results of BRISK, FREAK, SURF, SIFT descriptors. The best 

performance seeks the best match between the targeted detection 

accuracy, speed and the objects it detects in the targeted study. 

This method is too sensitive to deterioration and robustness 

cannot be fully ensured. Addition, the linear forward and 

backward movements of the camera system of the study are too 

limited. In [6], it is a study investigating detector and descriptor 

methods for studies on photogrammetrics. It compares five 

keypoint detector in terms of correctly detected corners, their 

positions, the density of detected points. But the five methods 

are few for comparison and the performance analysis does not 

give a very accurate result. Reference study [7] aims to find the 

best combination in parallel with our study. For this purpose, it 

analyzes different combinations with 7 detector and 2 

descriptors. A dataset contains 60 images was used. In previous 

references, in this reference also and in our study, different 

criteria were used to evaluate performance results. Finally, 

another study [8] is a study on occlusions and was carried out 

using a moving camera. Four descriptors were used in the study. 

These are the SIFT, FREAK, SURF and BRISK descriptors. 

The difference of our study from these proposed papers is 

the difference in the number of detector and and descriptors used 

and their combinations. The performance measurement 

parameter used later is a less complex formula. However, this 

formula is quite sufficient as the area of use is rear image of the 

preceding vehicle. The above-mentioned studies have inspired 

our work on different subjects. 

2.1. Engineering a Collision Detection System 

Collision avoidance system (CAS) is a safety feature that 

alert drivers and triggers the brake in case of a sudden collision 

while driving. If there is a vehicle ahead (preceding vehicle), 

CAS estimates the sustained collision time [9-10] (TTC). When 

the TTC drops below a predetermined threshold, the CAS may 

decide to apply the vehicle brakes autonomously. Fig.1 shows 

the real time traffic scenario 

 

Figure 1 – Real time traffic scenario. 

 

In the traffic scenario shown in the figure above, the green 

vehicle starts to decrease its speed at the moment t0 when the 

yellow vehicle equipped with the collision sensor receives the 

distance measurement d0. After a time t (t1) the green vehicle 

comes very close and a second measurement of d1 is made. The 

purpose here is to calculate the TTC. Thus, the TTC can be 

calculated and the driver of the yellow vehicle can be warned. 

Even the brakes  can be triggered autonomously. However, 

before this process can be done, a way to describe the movement 

of vehicles with a mathematical model must be found. The 

parameters used in the equations below are the relative speeds of 

the vehicle speeds, the vehicle carrying the sensor, and the 

vehicle scanned by the sensor. To calculate TTC, the physical 

behavior of the preceding vehicle must be modeled. One 

assumption in this regard may be that the relative velocity 

between the yellow and green vehicle in the above figure is 

constant. This will result in the constant velocity model (CVM) 

[11] represented by Equation (1) in the formula below. V 

represents the velocity and d the distance and should not be 

confused with the derivative operator. 

Constant Velocity 

𝑑(𝑡 + ∆𝑡) = 𝑑(𝑡) − 𝑣0. ∆𝑡            (1) 

Constant Acceleration             (2) 

𝑑(𝑡 + ∆𝑡) = 𝑑(𝑡) − 𝑣0. ∆𝑡 − 
1

2
𝑎0. ∆𝑡2  

𝑣(𝑡 +  ∆𝑡) = 𝑣(𝑡) −  𝑎0. ∆𝑡  

The distance to the vehicle at time instant t + Δt is smaller 

than at time t because it subtract the product of a constant 

relative velocity v0 and time Δt. From an engineering 

perspective, a sensor is needed because of the capable of 

measuring the distance to the preceding vehicle on a precise 

times basis with a constant Δt between measurements. This one 

achievable quite well with a lidar sensor. Especially in dynamic 

traffic situations where a vehicle is braking hard, the CVM is not 

accurate enough, however, as the relative velocity between both 

vehicles changes between measurements. In the following 

figure, the approaching vehicle is shown at three-time instants 

with increasing velocity. Fig. 2 shows the preceding vehicle 

increasing velocity. 
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Figure 2 – Preceding vehicle increasing velocity. 

 

Thus CVM can be expand by assuming velocity to be a 

function of time and subtract the second term in Equation (2) 

which is the product constant acceleration and the squared time 

Δt between both measurements. Equation (2) displays velocity as 

a function of time, which is also dependent on the constant 

acceleration model (CAM) and it is commonly used in 

commercially available collision detection systems. On a side 

note, if a radar sensor used instead of a lidar, a direct 

measurement on velocity could be taken by exploiting a 

frequency shift in the returning electromagnetic wave due to the 

Doppler effect [12]. This is a significant advantage over sensors 

such as Lidar, where velocity can only be computed based on 

(noisy) distance measurements. In this paper CVM will be used 

instead of the CAM as it is much simpler to handle with regard 

to the math involved and with regard to the complexity of the 

programming task. For small instances of Δt will assumed that 

the CVM model is accurate enough and that it will give a decent 

estimate of the TTC. As a conclusion, there are the following 

types of models possible. 

1. Constant Velocity Model (CVM): In this paper, that 

will consider being working on. 

2. Constant Acceleration Model (CAM): An ideal case, 

but still complex as compared to the CVM model. 

3. Changing Acceleration: Real-life scenarios, most often 

too complex to handle in practice 

 

2.3. Estimating TTC with Lidar 

In the following assuming that CAS equipped vehicle using 

a LIDAR sensor to take distance measurements on preceding 

vehicles. The sensor in this scenario will be given the distance to 

the closest 3D point in the path of driving.  In the figure below, 

the closest point is indicated by a red line emanating from a lidar 

sensor on top of the CAS vehicle. Fig. 3 shows the math behind 

TTC. 

 

 

 

 

Figure 3 – The math behind TTC. 

 

Based on the model of a constant velocity it is discussed, the 

velocity v0 can be computed from two successive lidar 

measurements as follows: 

 d(t + ∆t) = d(t) − v0. ∆t                         (3) 

v0 =  
d(t)−d(t+ ∆t)

∆t
=  

d0−d1

∆t
                                         (4) 

TTC =  
d1

v0
=  

d1.∆t

d0− d1
                                                 (5) 

Once the relative velocity v0 is known, the time to collision 

can easily be computed by dividing the remaining distance 

between both vehicles by v0. So given a lidar sensor which is 

able to take precise distance measurements, a system for TTC 

estimation [13-14] can be developed based on a CVM and on the 

set of equations shown above. Note however that a radar sensor 

would be the superior solution for TTC computation as it can 

directly measure the relative speed, whereas with the lidar sensor 

needs to be computed v0 from two (noisy) distance 

measurement. The following image shows a lidar point cloud as 

an overlay a camera image taken in a highway scenario with a 

preceding vehicle directly in the path of driving. Distance to the 

sensor is color-coded (green is far away, red is close). On the left 

side, a bird-eyed view perspective of the lidar points is shown as 

well. Fig. 4 shows the highway scenario with a preceding 

vehicle. 

 

Figure 4 – Highway scenario with a preceding vehicle. 

 

The lidar sensor provides measurements on the vehicle as 

well as on the road surface. Also, some 3D points in the camera 

image do not seem accurate when compared to their surrounding 

neighbors. Especially the points near the roof of the preceding 

vehicle differ in color from the points on the tailgate. As 

measurement accuracy is correlated to the amount of light 

reflected from an object, it makes sense to consider the 

reflectiveness r of each lidar point which can be accessed. In 

addition to the x, y and z coordinates. The image below 

highlights high reflectiveness with green, whereas regions with 

low reflectiveness are shown as red. An analysis of the 

associated reflectivity of the point cloud shows that such 

deviations often occur in regions with reduced reflectiveness. 

Fig. 5 shows the reflectiveness with preceding vehicle. 
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Figure 5 – Reflectiveness with preceding vehicle. 

In order to derive a stable TTC measurement from the given 

point cloud, two main steps have to be performed : 

1- Remove measurements on the road surface 

2- Remove measurements with low reflectivity 

In the figure below, Lidar points are shown in a top-view 

perspective and as an image overlay after applying the filtering. 

After removing lidar points in this manner, it is now much easier 

to derive the distance d(t) to the preceding vehicle. Fig. 6 shows 

the Lidar points perspective. 

 

Figure 6 – Lidar points perspective. 

2.3. Estimating TTC with Camera 

Monocular cameras are not able to measure metric 

distances. They are passive sensors that rely on the ambient light 

which reflects off of objects into the camera lens. It is thus not 

possible to measure the runtime of light as with lidar technology. 

To measure distance, a second camera would be needed. Given 

two images taken by two carefully aligned cameras (also called a 

stereo setup) at the same time instant, one would have to locate 

common points of interest in both images (e.g. the tail lights of 

the preceding vehicle) and then triangulate their distance using 

camera geometry and perspective projection. For many years, 

automotive researchers have developed stereo cameras for the 

use in ADAS products and some of those have made it to 

market. With more advanced ADAS products and with 

autonomous vehicles however, stereo cameras have started to 

disappear from the market due to their package size, the high 

price and the high computational load for finding corresponding 

features. Despite those limitations of the mono camera, there is a 

way to compute TTC without the need to measure distance. 

Consider the constant velocity motion model that introduced and 

think about a way to replace the metric distance d with 

something the camera can measure reliably, such as pixel 

distances directly on the image plane. In the following figure, it 

can be seen how the height H of the preceding vehicle can be 

mapped onto the image plane using perspective projection. 

It can be seen that the same height H maps to different 

heights h0 and h1 in the image plane, depending on the distance 

d0 and d1 of the vehicle. It is obvious that there is a geometric 

relation between h, H, d and focal length f of the pinhole camera 

and this is what needed to exploit in the following. Fig. 7 shows 

the height of the preceding vehicle effect distance. 

 

Figure 7 – Height of the preceding vehicle effect distance. 

Looking at the following set of equations: 

Project object into camera                   (6) 

ℎ0 =  
𝑓. 𝐻

𝑑0

;  ℎ1 =
𝑓. 𝐻

𝑑1

 

 

Relate projection and distance                            (7) 

ℎ1

ℎ0

=  

𝑓.𝐻

𝑑1

𝑓.𝐻

𝑑0

=
𝑑0

𝑑1

→  𝑑0 =  𝑑1.
ℎ1

ℎ0

 

 

Substitute in constant velocity model          (8) 

𝑑1 =  𝑑0 − 𝑣0. ∆𝑡 =  𝑑1.
ℎ1

ℎ0

−  𝑣0. ∆𝑡 →  𝑑1 =  
−𝑣0. ∆𝑡

(1 −
ℎ1

ℎ0
)

 

Compute time to contact / collision                                           (9) 

𝑇𝑇𝐶 =  
𝑑1

𝑣0
=  

−∆𝑡

(1 − 
ℎ1

ℎ0
)

 

In Equation (6) the focal length of the camera used and a 

distance measurement d0 performed at time t0 to project the 

height H of the vehicle onto the image plane and thus to a height 

h0 in pixels. The same is done at time t1, leading to a projected 

height h1. In Equation (7) the ratio of the relative heights h0 and 

h1 are computed. As both H and f are canceled out, a direct 

relation can be observed between relative height h and absolute 

metric distance d. The distance to the vehicle d0 can be 

expressed as the product of d1 and the ratio of relative heights on 

the image plane. In Equation (9), d0 in the equation for constant 

velocity substituted and solve for d1 which is now dependent on 

the constant relative velocity v1, on the time between measuring 

d0 and d1 and on the ratio of relative heights on the image plane. 

Also in Equation (9) the TTC is computed as the ratio of 

remaining distance to impact, which is d1 and the constant 

velocity v0. As it can easily seen, the TTC now only consists of 

Δt, h0 and h1. Thus it is possible to measure the time to collision 

by observing relative height change on the image sensor. 

Distance measurements are not neeeded and it can thus use a 

mono camera to estimate the time to collision bu observing 

changes in relative height (also called chang) directly in the 

image. In the figure below, a neural network has been used to 

locate vehicles in successive image of a monocular camera. 
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For each vehicle, the network returns a bounding box, 

whose width and/or height could in principle be used to compute 

the height ratio in the TTC equation derived in the last section. 

When observed closely however, it can be seen that the 

bounding boxes do not always reflect the true vehicle 

dimensions and the aspect ratio differs between images. Using 

bounding box height or width for TTC computation would thus 

lead to significant errors. 

 

Figure 8 – Locate vehicle in successive images of a monocular 

camera. 

In most engineering tasks, relying on a single measurement 

or property is not reliable enough. This holds especially true for 

safety related products. Therefore, it needs to be consider 

whether there are further properties of vehicles and objects it can 

be observed in an image. Instead of relying on the detection of 

the vehicle as a whole now needs to be analyze its structure on a 

smaller scale. If it were possible to locate uniquely identifiable 

keypoints that could be tracked from one frame to the next, it 

could use the distance between all keypoints on the vehicle 

relative to each other to compute a robust estimate of the height 

ratio in our TTC equation. The following figure illustrates the 

concept. Fig. 9 shows the keypoints of a car perspective. 

 

Figure 9 – Keypoints of a car perspective a) relative 

distances between keypoints in an image b) selected keypoint 

distances between successive frames. 

In (a), a set of keypoints has been detected and the relative 

distances between keypoints 1-7 have been computed. In (b), 

four keypoints have been matched between successive images 

(with keypoint three being a mismatch) using a higher-

dimensional similarity measure called descriptor. The ratio of all 

relative distances between each other can be used to compute a 

reliable TTC estimate by replacing the height ratio h1/h0 with 

the mean or median of all distance ratios dk / d’k. Studies on 

keypoint detectors have increased recently and many algorithms 

have been developed in recent years for these reasons. Keypoint 

detection applications include object recognition in image 

processing, robotic mapping, 3D modeling etc. These detectors 

are comparable in terms of performance and speed. In recent 

years, a number of faster detector have been developed which 

aim at real-time applications on smartphones and other portable 

devices. Fig. 10 shows the relative distance between keypoints. 

 

Figure 10 – Relative distance between keypoints. 

In the literature, a large variety of similarity measures 

(called descriptors) have been proposed and in many cases, 

authors have published both a new method for keypoint 

detection as well as a similarity measure which has been 

optimized for their type of keypoints. A keypoint detector is an 

algorithm that selects points from an image based on the local 

maximum of a function. A descriptor is a vector describing the 

image patch around a keypoint. It has many describing the image 

patch around a keypoint. It has many techniques and these 

include from simple to complex techniques such as comparing 

raw pixel values, histograms of gradient orientations. 

Descriptors help to assign similar keypoints in different images 

to each other. As shown in the figure below, a set of keypoints in 

one frame is assigned keypoints in another frame such that the 

similarity of their respective descriptors is maximized and the 

keypoints represent the same object in the image. In addition to 

maximizing similarity, a  good descriptor should also be able to 

minimize the number of mismatches, i.e. avoid assigning 

keypoints to each other that do not correspond to the same 

object. 

Most common methods are ORB, BRISK, SURF, SIFT, 

SHITOMASI, HARRIS. These methods generally using for this 

type of study. This study may refer to these steps; keypoint 

descriptor as given in [3], orientation assignment, keypoint 

localization and scale-space representation. To put it another 

way, the last three of the above steps are the detector, while the 

first is expressed as the descriptor. However, among these 

methods, there are those that can be used both as detectors and 

descriptors. Some are just detectors or only descriptor ones. In 

[15-16], FAST is a detector method. In [17], the BRIEF method 

is a descriptive method. If we talk about SIFT method, the SIFT 

method applies a set of DoG filters for multiscale. With this 

filter, we can obtain a filtered and downsampled version of the 

original image. The way the SIFT descriptor is created is from a 

histogram with a gradient size of 4x4. As another example, the 

basis for the formation of SURF is the sum of two-dimensional 

Haar wavelets using integral images and approximating the 

Gaussian derivatives in [3]. The SURF detector approximates 

the determinant of the Hessian matrix, which gives a local 

maximum as a result. Unlike the detector, the SURF descriptor 

consists of a 64 dimensional vector, which is calculated as a 

result of the sum of the Haar wavelet coefficients over a 4x4 

pixel. As described in [15] and [16] the application area of FAST 
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is to detect the corners. It uses a 16 pixel circle around the corner 

pixels to understand that the point of interest is the corner. It then 

classifies these 16 pixels by comparing their brightness, and 

together with a threshold, it is understood whether the relevant 

pixel is a corner or not. As for BRIEF, BRIEF is a binary 

descriptor and based on density comparison. The detector side of 

BRISK, as summarized in reference [4], calculates the pixel 

maximum. This maximum is also called FAST score calculation. 

The BRISK descriptor is combined with a binary array and 

includes a gloss results test. Fig. 11 shows the keypoint-

descriptor relation. 

 

Figure 11 – Keypoint-descriptor relation. 

3. Results and Discussion 

 

The experiments to be tested in this paper are the success of 

the methods used to calculate the keypoints of the approaching 

vehicle, thus its distance and TTC time. For this, the 10 images 

below contain the preceding of a vehicle that slows down during 

traffic to the vehicle in use. The distance between this vehicle 

and the vehicle used in gradually decreasing, and therefore the 

TTC is getting closer and closer. 

Table 2 contains different detectors and descriptors used in 

10 images. It contains all the possible combination of detector 

and descriptor pairs. Then the total number of keypoints found 

by these combinations is indicated, the number of keypoints that 

match with the detected keypoints was found thanks to the 

descriptors. Since the number of match keypoints are not the 

only parameter, how long it takes for the relevant combination to 

find this match number is in another column. In the last column, 

the  relevant value was obtained as a result of the ratio of the 

number of match keypoints, which is considered as a 

performance parameter called ratio can be found. Table 3 

contains the 3 methods with the highest ratior were selected 

from the results in the Table 2. The distance calculation result 

with the camera was the recommended for obtaining TTC. 

 

 

 

Figure 12 – Preceding vehicle test images. 
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Table 2. Benchmark of Detector + Descriptor Combinations with the Related Parameters 

No Combinations KP’s Match Time(ms) Ratio No Comb. KP’s Match Time(ms) Ratio 

1 SHI+BRISK 11875 1994 124,54 16,01 22 BRISK 

+FREAK 

26144 4828 2117,78 2,28 

2 SHI+BRIEF 11875 2861 83,66 34,20 23 BRISK 

+AKAZE 

- - - - 

3 SHI+ORB 11875 2526 100,74 25,07 24 BRISK  

+SIFT 

26144 6685 2150,10 3,11 

4 SHI+FREAK 11875 2299 318,98 7,21 25 ORB 

+BRISK 

4895 1349 144,82 9,32 

5 SHI+AKAZE - - - - 26 ORB+ 

BRIEF 

4895 1373 120,78 11,37 

6 SHI+SIFT 11875 2842 143,58 19,79 27 ORB 

+ORB 

4895 1435 151,04 9,48 

7 HARRIS+BRISK 756 227 87,86 2,58 28 ORB 

+FREAK 

4895 613 353,70 1,73 

8 HARRIS+BRIEF 756 266 91,27 2,91 29 ORB 

+AKAZE 

4895 - - - 

9 HARRIS+ORB 756 261 84,90 3,07 30 ORB 

+SIFT 

4895 1544 334,48 4,62 

10 HARRIS+FREAK 756 217 303,40 0,72 31 AKAZE 

+BRISK 

13330 3216 395,30 8,14 

11 HARRIS+AKAZE -    32 AKAZE 

+BRIEF 

13330 4011 370,55 10,82 

12 HARRIS+SIFT 756 265 138,35 1,92 33 AKAZE 

+ORB 

13330 3315 376,98 8,79 

13 FAST+BRISK 17330 3073 65,95 46,59 34 AKAZE 

+FREAK 

13330 3204 575,26 5,57 

14 FAST+BRIEF 17330 4754 28,25 100,27 35 AKAZE 

+AKAZE 

13330 3437 645,25 5,33 

15 FAST+ORB 17330 4124 20,85 197,76 36 AKAZE 

+SIFT 

13330 3606 477,36 7,55 

16 FAST+FREAK 17330 3067 273,28 11,22 37 SIFT 

+BRISK 

13540 2401 433,88 5,53 

17 FAST+AKAZE - - - - 38 SIFT 

+BRIEF 

13540 3168 427,95 7,40 

18 FAST+SIFT 17330 5559 145,08 38,32 39 SIFT 

+ORB 

- - - - 

19 BRISK+BRISK 26144 4891 1927,9 2,54 40 SIFT 

+FREAK 

13540 2371 667,16 3,55 

20 BRISK+BRIEF 26144 7206 1868,13 3,86 41 SIFT 

+AKAZE 

- - - - 

21 BRISK+ORB 26144 4912 1880,68 2,61 42 SIFT 

+SIFT 

13540 2497 749,04 3,33 

 
Table 3. Top three Detector + Descriptor Pair 

No Combinations KP’s Matches Time Ratio 

1 FAST+ ORB 17330 4124 20.8537 197.76 

2 FAST+ BRIEF 17330 4754 28.2515 168.27 

3 FAST+ BRISK 17330 3073 65.9564 46.59 

When the given images are used as input data, Table 2 

shows the keypoints found, the points that match the points and 

how long it takes for this match to be made. When these matches 

and the duration are divided, the ratio called ratior emerges. 

When these ratio data are examined, the most performing 

(matches / time) combinations are given in Table 3. When Table 

3 is examined, the FAST method appears to be most 

performance detector. In addition to fast as descriptor, ORB, 

BRIEF and BRISK methods are seen as the most performance 

combinations when used. 

4. Conclusions and Recommendations 

 In this study, while doing some software load in autonomous 

vehicles, in our study, this task was to calculate the imapct time 

of the vehicle in front. While calculating the TTC, we used the 

detector and descriptor pairs to detect the distinctive features of 
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the preceding vehicle. As can be seen from the results, the most 

efficient detector and descriptor pairs were obtained. 
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