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Abstract 

In this study, the Carathéodory’s Inequality, which is a highly popular topic of complex analysis theory, has been applied to electrical 

engineering to obtain novel driving point impedance functions. In electrical engineering, driving point impedance functions correspond 

to positive real functions and they are used for representation of the spectral characteristics of a particular circuit. Accordingly, boundary 

version of the Carathéodory’s inequality has been considered here assuming that the driving point empedance function, 𝑍(𝑠) has a 

fractional function structure with 0 < ℜ𝑍(𝑠) ≤ 𝐴 for ℜ𝑠 ≥ 0 and it is analytic in the right half plane. At the end of the analyses, new 

driving point impedance functions have been obtained and they have been presented with their spectral characteristics. According to 

simulation results, it is possible to say that the frequency responses of the obtained generic driving point impedance functions have 

spiky filter structures where the number of the spikes in the frequency response of these filters depend on a pre- defined parameter, 𝑛.   

 

Keywords: Driving point impedance function, Carathéodory’s Inequality, Circuit, Filter.   

Süren Nokta Empedans Fonksiyonları için Carathéodory 

Eşitsizliği’nin Uygulamaları 

Öz 

Bu çalışmada, kompleks analiz teorisinde oldukça popular bir konu olan Carathéodory eşitsizliği, yeni süren nokta empedans 

fonksiyonları elde etmek için elektrik mühendisliğine uygulanmıştır. Elektrik mühendisliğinde süren nokta empedans fonksiyonları, 

pozitif reel fonksiyonlara karşılık gelmekte ve belli bir devrenin spektral özelliklerini temsil etmek için kullanılmaktadırlar. Buna göre,  

burada Carathéodory eşitsizliğinin bir sınır versiyonu, kesirli fonksiyon yapıdaki süren nokta empedans fonksiyonu 𝑍(𝑠) için,  𝑍(𝑠)’nin 

0 < ℜ𝑍(𝑠) ≤ 𝐴,  ℜ𝑠 ≥ 0 olmak üzere sağ yarı düzlemde analitik olduğu varsayılarak değerlendirilmiştir. Analizler sonucunda, yeni 

süren nokta empedans fonksiyonları elde edilmiş ve bu fonksiyonlar spektral özellikleriyle birlikte sunulmuştur. Simülasyon sonuçlarına 

göre, elde edilen genel süren nokta empedans fonksiyonlarının frekans cevaplarının, sivri geçişli süzgeç yapısına sahip oldukları ve 

frekans cevabındaki bu sivri geçişlerin sayısının daha önce tanımlanmış olan bir 𝑛 parametresine bağlı olduğunu söylemek mümkündür. 

 

Anahtar Kelimeler: Süren nokta empedans fonksiyonu, Carathéodory eşitsizliği, Devre, Süzgeç. 

                                                           
* Corresponding Author: timur.duzenli@amasya.edu.tr 

http://dergipark.gov.tr/ejosat
mailto:timur.duzenli@amasya.edu.tr
mailto:nafiornek@gmail.com
mailto:nafi.ornek@amasya.edu.tr


European Journal of Science and Technology 

 

e-ISSN: 2148-2683  327 

 

 

1. Introduction 

Investigation of the characteristics of driving point 

impedance functions (DPIFs) is a hot topic in the electrical 

engineering literature [1]-[6]. It is well known that DPIFs are 

actually positive real functions (PRFs) depending on a complex 

frequency parameter 𝑠, and they satisfy the conditions of PRFs 

which are listed as below [7, 8]: 

1-) 𝑍(𝑠) is analytic and single valued in ℜ𝑠 ≥ 0 except 

possibly for poles on the axis of imaginaries, 

2-) 𝑍(𝑠) = 𝑍(𝑠) 

3-) ℜ𝑍(𝑠) ≥ 0, in ℜ𝑠 ≥ 0 

In addition to their use in electric circuits, it is possible to 

encounter with PRFs in signal processing, in control systems and 

even in microwave engineering. 

Here, we aim to perform boundary analysis of DPIFs. 

Carathéodory’s Inequality is considered here to obtain boundary 

inequalities for the derivative of DPIFs. Assuming that 𝑍(𝑠) =
𝐴

2
+ 𝑐1(𝑠 − 1) + 𝑐2(𝑠 − 1)

2+. .., a lemma and a theorem are 

presented. In these lemma and theorem, two inequalities have 

been obtained for |𝑍′(1)| and |𝑍′(0)|, respectively. For each 

obtained inequality, sharpness analyses have been performed and 

two extremal functions, which are actually corresponding to two 

distinct DPIFs, have been obtained. The obtained DPIFs have 

been considered by investigating their frequency characteristics. 

We aim to investigate the potential results of application of 

Carathéodory’s inequality to derivative of DPIFs and the analyses 

presented here are arisen as the natural results of the problem.  

The rest of the manuscript is organised as follows: 

Preliminary considerations are presented in Section 2 and in 

Section 3, main results are discussed. Finally, in Section 4, 

conclusions are given. 

2. Preliminary Considerations 

The behaviour of a bounded and analytic function which 

maps the origin to the origin in the unit disc 𝑈 = {𝑧: |𝑧| < 1} is 

examined in the traditional form of the Schwarz Lemma. Schwarz 

lemma is highly effective such that it is possible to encounter with 

this lemma in proofs of many important theorems. Schwarz 

Lemma is given in the most basic form as follows ([9], p.329): 

Suppose that 𝑓(𝑧) is analytic in 𝑈 and |𝑓(𝑧)| < 1 for |𝑧| <
1. If 𝑓(0) = 0, then |𝑓(𝑧)| ≤ |𝑧| for all 𝑧 ∈ 𝑈 and |𝑓′(0)| ≤ 1. 

If |𝑓′(0)| = 1 or |𝑓(𝑧)| = |𝑧| some 𝑧, then 𝑓(𝑧) = 𝑏𝑧, |𝑏| = 1. 

Now, Carathéodory’s inequality [10,11,12] at right half plane 

for PRFs will be presented. 

Let 𝑍(𝑠) =
𝐴

2
+ 𝑐1(𝑠 − 1) + 𝑐2(𝑠 − 1)

2+. ..be a positive real 

function with 0 < ℜ𝑍(𝑠) ≤ 𝐴 for ℜ𝑠 ≥ 0. 

Consider the function 

𝑓(𝑧) =
𝑒
𝑖𝜋

2
[
2

𝐴
𝑍(
1+𝑧

1−𝑧
)−1] − 1

𝑒
𝑖𝜋

2
[
2

𝐴
𝑍(
1+𝑧

1−𝑧
)−1] + 1

, 𝑧 =
𝑠 − 1

𝑠 + 1
. 

 

Here, 𝑓(𝑧) is an analytic function in 𝑈, 𝑓(0) = 0 and 
|𝑓(𝑧)| < 1 for |𝑧| < 1. 

Consider the product 

𝐵(𝑧) =∏

𝑛

𝑘=1

𝑧 − 𝑧𝑘
1 − 𝑧𝑘𝑧

. 

Let 

𝜑(𝑧) =
𝑓(𝑧)

∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

, 𝑧𝑘 =
𝑠𝑘 − 1

𝑠𝑘 + 1
, 𝑘 = 1,2, . . . , 𝑛. 

Here, 𝑠1, 𝑠2, . . . , 𝑠𝑛 are points in right half plan and 

𝑧1, 𝑧2, . . . , 𝑧𝑛 are zeros of 𝑓(𝑧). Also, 𝜑(𝑧) is an analytic function 

in 𝑈, 𝜑(0) = 0 and |𝜑(𝑧)| < 1 for |𝑧| < 1. So, by the Schwarz 

lemma, we obtain 

𝜑(𝑧) =

𝑒
𝑖𝜋
2
[
2
𝐴𝑍(

1+𝑧
1−𝑧)−1

]
−1

𝑒
𝑖𝜋
2
[
2
𝐴𝑍(

1+𝑧
1−𝑧)−1

]
+1

∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

 

=

𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . .

(2 +
𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . . )∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

, 

𝜑(𝑧)

𝑧
=

𝑖𝜋

2
(
𝑐1

𝐴

4

1−𝑧
+
𝑐2

𝐴

8𝑧

(1−𝑧)2
+. . . ) +. . .

(2 +
𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . . )∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

 

 

and 

|𝜑′(0)| =
𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘|
≤ 1. 

Since |𝑐1| = |𝑍
′(1)| and 𝑧𝑘 =

𝑠𝑘−1

𝑠𝑘+1
, we take 

|𝑍′(1)| ≤
𝐴

𝜋
∏

𝑛

𝑘=1

|
𝑠𝑘 − 1

𝑠𝑘 + 1
|. 

This result is sharp with the function 

𝑍(𝑠) =
𝐴

2

(

 
 
 
 

1 +
2

𝑖𝜋
ln

(

 
 
 
1 −

𝑠−1

𝑠+1
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1

1 +
𝑠−1

𝑠+1
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1)

 
 
 

)

 
 
 
 

, 

where 𝑠1, 𝑠2, . . . , 𝑠𝑛 are positive real numbers. 

Therefore, we obtain the following lemma. 

 

Lemma 1. Let 𝑍(𝑠) =
𝐴

2
+ 𝑐1(𝑠 − 1) + 𝑐2(𝑠 − 1)

2+. ..be a 

positive real function with 0 < ℜ𝑍(𝑠) ≤ 𝐴 for ℜ𝑠 ≥ 0. Suppose 

that 𝑠1, 𝑠2, . . . , 𝑠𝑛  are points in the right half of the s-plane with 

𝑍(𝑠𝑘) = 
𝐴

2
, 𝑘 = 1,2, . . . , 𝑛. In this case, we have the inequality 

                            |𝑍′(1)| ≤
𝐴

𝜋
∏𝑛𝑘=1 |

𝑠𝑘−1

𝑠𝑘+1
|.                    (1) 

The inequality (1) is sharp, with equality for the function 
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𝑍(𝑠) =
𝐴

2

(

 
 
 
 

1 +
2

𝑖𝜋
ln

(

 
 
 
1 −

𝑠−1

𝑠+1
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1

1 +
𝑠−1

𝑠+1
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1)

 
 
 

)

 
 
 
 

. 

A significant result of the Schwarz lemma is given by 

Osserman as follows [13]: 

Let 𝑓: 𝑈 → 𝑈 be analytic. Suppose that 𝑓(0) = 0. Further 

suppose that there is a 𝑧0 ∈ 𝜕𝑈 so that 𝑓 extends continuously to 

𝑧0, |𝑓(𝑧0)| = 1 and 𝑓′(𝑧0) exists. Then 

                             |𝑓′(𝑧0)| ≥
2

1+|𝑓′(0)|
.                          (2) 

Inequality (2) is sharp, with equality possible for each value 

of |𝑓′(0)|. 

Inequality (2) and its generalizations have important 

applications in geometric theory of functions and they are still hot 

topics in the mathematics literature [14]-[22]. 

It is clear that the generic extremal function obtained in 

Lemma 1 takes different forms for different values of 𝑛 parameter. 

As an exemplary application, the DPIFs for 𝑛 = 1, 2, 3, and 4 are 

given as follows: 

 

𝑍𝑛=1(𝑠) =
𝐴

2
[1 +

2

𝑖𝜋
ln (

𝑠(𝑠1 + 1)

𝑠2 + 𝑠1
)] 

𝑍𝑛=2(𝑠) =
𝐴

2
[1 +

2

𝑖𝜋
ln (

(𝑠1 + 𝑠2 + 1)𝑠
2 + 𝑠1𝑠2

𝑠3 + (𝑠1 + 𝑠2 + 𝑠1𝑠2)𝑠
)] 

𝑍𝑛=3(𝑠) =
𝐴

2
+

𝐴

𝑖𝜋
ln (

(𝑠1+𝑠2+𝑠3+1)𝑠
3+(𝑠1𝑠2+𝑠1𝑠3+𝑠2𝑠3+𝑠1𝑠2𝑠3)𝑠

𝑠4+(𝑠1+𝑠2+𝑠3+𝑠1𝑠2+𝑠1𝑠3+𝑠2𝑠3)𝑠
2+𝑠1𝑠2𝑠3

)  

𝑍𝑛=4(𝑠) =
𝐴

2
[1 +

1

𝑖𝜋
ln (

𝛼1𝑠
4+𝛼2𝑠

2+𝛼3

𝑠5+𝛼4𝑠
3+𝛼5𝑠

)], 

  where 

𝛼1 = 𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 + 1, 

𝛼2 = 𝑠1𝑠2 + 𝑠1𝑠3 + 𝑠1𝑠4 + 𝑠2𝑠3 + 𝑠2𝑠4 + 𝑠3𝑠4 

+𝑠1𝑠2𝑠3 + 𝑠1𝑠2𝑠4 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 

𝛼3 = 𝑠1𝑠2𝑠3𝑠4, 

  𝛼4 = 𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 + 𝑠1𝑠2 + 𝑠1𝑠3 + 𝑠1𝑠4 + 𝑠2𝑠3 + 

 𝑠2𝑠4 + 𝑠3𝑠4 

  𝛼5 = 𝑠1𝑠2𝑠3 + 𝑠1𝑠2𝑠4 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠3𝑠4 

The corresponding frequency response graphics for the 

obtained DPIFs are presented in Figs. 1 through 4, respectively. 

According to figures, it can be seen that the number of the notches 

changes depending on the 𝑛 parameter in the generic DPIF. In all 

figures, the filters exhibit a spiky structure for low frequency 

values and highpass filter structure for higher values of 𝑤. 

 

Figure 1. 𝑛 = 1 

 

Figure 2. 𝑛 = 2 

 

 

Figure 3. 𝑛 = 3 

 

Figure 4. 𝑛 = 4 

3.Main Results 

In this section, the modulus of the derivative of the 𝑍(𝑠) 
function at the zero point will be examined.  

Theorem 1 Let 𝑍(𝑠) =
𝐴

2
+ 𝑐1(𝑠 − 1) + 𝑐2(𝑠 − 1)

2+. .. be a PRF 

with 0 < ℜ𝑍(𝑠) ≤ 𝐴 for ℜ𝑠 ≥ 0 that is also analytic at the point 

𝑠 = 0 of the imaginary axis with 𝑍(0) = 𝐴. Suppose that 
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𝑠1, 𝑠2, . . . , 𝑠𝑛  are points in the right half of the s-plane with 𝑍(𝑠𝑘) 

= 
𝐴

2
, 𝑘 = 1,2, . . . , 𝑛. Then 

|𝑍′(0)| ≥
2𝐴

𝜋
(1 +∑

𝑛

𝑘=1

ℜ𝑠𝑘
|𝑠𝑘|

2
                                                (3) 

+
2(𝐴(∏𝑛𝑘=1 |

𝑠𝑘−1

𝑠𝑘+1
|)−𝜋|𝑐1|)

2

𝐴2(∏𝑛𝑘=1 |
𝑠𝑘−1

𝑠𝑘+1
|)
2
−𝜋2|𝑐1|

2+𝐴𝜋∏𝑛𝑘=1 |
𝑠𝑘−1

𝑠𝑘+1
||2𝑐2+𝑐1(1+∑

𝑛
𝑘=1

4ℜ𝑠𝑘

|𝑠𝑘|
2
+2𝑖ℑ𝑠𝑘−1

)|

).  

The inequality (3) is sharp with the extremal function 

𝑍(𝑠) =
𝐴

2

(

 
 
 
 

1 +
2

𝑖𝜋
ln

(

 
 
 
1 − 𝑖 (

𝑠−1

𝑠+1
)
2
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1

1 + 𝑖 (
𝑠−1

𝑠+1
)
2
∏𝑛𝑘=1

𝑠−1

𝑠+1
−
𝑠𝑘−1

𝑠𝑘+1

1−
𝑠𝑘−1

𝑠𝑘+1

𝑠−1

𝑠+1)

 
 
 

)

 
 
 
 

, 

where 𝑠1, 𝑠2, . . . , 𝑠𝑛 are positive real numbers.  

 

Proof. Let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be zeros of the function 𝑓(𝑧) in 𝑈 

different from 𝑧 = 0. The Blaschke product 

𝐵0(𝑧) = 𝑧∏

𝑛

𝑘=1

𝑧 − 𝑧𝑘
1 − 𝑧𝑘𝑧

 

is analytic function in 𝑈 and |𝐵0(𝑧)| < 1 for 𝑧 ∈ 𝑈. By the 

maximum principle implies that for each 𝑧 ∈ 𝑈 we have the 

inequality |𝑓(𝑧)| ≤ |𝐵0(𝑧)|. Therefore, the absolute value of the 

function 

𝜙(𝑧) =
𝑓(𝑧)

𝐵0(𝑧)
 

is analytic in 𝑈 is bounded by 1 in 𝑈. Namely, |𝜙(𝑧)| ≤ 1 for 

|𝑧| < 1. 

In particular, we have 

𝜙(𝑧) =
𝑒
𝑖𝜋

2
[
2

𝐴
𝑍(
1+𝑧

1−𝑧
)−1] − 1

𝑒
𝑖𝜋

2
[
2

𝐴
𝑍(
1+𝑧

1−𝑧
)−1] + 1

1

𝑧∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

 

=

𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . .

(2 +
𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . . ) 𝑧 ∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

 

=

𝑖𝜋

2
(
𝑐1

𝐴

4

1−𝑧
+
8𝑐2

𝐴

𝑧

(1−𝑧)2
+. . . ) +. . .

(2 +
𝑖𝜋

2
(
𝑐1

𝐴

4𝑧

1−𝑧
+
2𝑐2

𝐴
(
2𝑧

1−𝑧
)
2

+. . . )+. . . )∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧

, 

|𝜙(0)| =
𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘|
 

and 

|𝜙′(0)| =
𝜋

𝐴

|2𝑐2 + 𝑐1 (1 + ∑
𝑛
𝑘=1

1−|𝑧𝑘|
2

𝑧𝑘
)|

∏𝑛𝑘=1 |𝑧𝑘|
. 

In addition, it can be seen that  

𝑧0𝑓
′(𝑧0)

𝑓(𝑧0)
= |𝑓′(𝑧0)| ≥ |𝐵0

′ (𝑧0)| =
𝑧0𝐵0

′ (𝑧0)

𝐵0(𝑧0)
, −1 = 𝑧0 ∈ 𝜕𝑈. 

The auxiliary function 

Θ(𝑧) =
𝜙(𝑧) − 𝜙(0)

1 − 𝜙(0)𝜙(𝑧)
 

is an analytic function in the unit disc 𝑈, |Θ(𝑧)| < 1 for 𝑧 ∈ 𝑈, 

Θ(0) = 0 and |Θ(𝑧0)| = 1 for 𝑧0 = −1 ∈ 𝜕𝑈. From inequality 

(2), we obtain 

2

1 + |Θ′(0)|
≤ |Θ′(−1)| =

1 − |𝜙(0)|2

|1 − 𝜙(0)𝜙(−1)|
2
|𝜙′(−1)| 

≤
1 + |𝜙(0)|

1 − |𝜙(0)|
|
𝑓′(−1)

𝐵1(−1)
−
𝑓(−1)𝐵1

′(−1)

𝐵1
2(−1)

| 

=
1 + |𝜙(0)|

1 − |𝜙(0)|
(|𝑓′(−1)| − |𝐵1

′ (−1)|). 

Since 

Θ′(𝑧) =
1 − |𝜙(0)|2

(1 − 𝜙(0)𝜙(𝑧))
2 𝜙

′(𝑧), 

|Θ′(0)| =
|𝜙′(0)|

1 − |𝜙(0)|2
=

𝜋

𝐴

|2𝑐2+𝑐1(1+∑
𝑛
𝑘=1

1−|𝑧𝑘|
2

𝑧𝑘
)|

∏𝑛𝑘=1 |𝑧𝑘|

1 − (
𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘|
)
2  

=𝐴𝜋∏𝑛𝑘=1 |𝑧𝑘|
|2𝑐2+𝑐1(1+∑

𝑛
𝑘=1

1−|𝑧𝑘|
2

𝑧𝑘
)|

𝐴2(∏𝑛𝑘=1 |𝑧𝑘|)
2
−𝜋2|𝑐1|

2
 

  and 

|𝐵1
′(−1)| = 1 +∑

𝑛

𝑘=1

1 − |𝑧𝑘|
2

|1 + 𝑧𝑘|
2
, 

we obtain 

2

1 + 𝐴𝜋∏𝑛𝑘=1 |𝑧𝑘|
|2𝑐2+𝑐1(1+∑

𝑛
𝑘=1

1−|𝑧𝑘|
2

𝑧𝑘
)|

𝐴2(∏𝑛𝑘=1 |𝑧𝑘|)
2
−𝜋2|𝑐1|

2

 

≤
1 +

𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘|

1 −
𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘|

(
𝜋

2𝐴
|𝑍′(0)| − 1 −∑

𝑛

𝑘=1

1 − |𝑧𝑘|
2

|1 + 𝑧𝑘|
2
) 

=
𝐴∏𝑛𝑘=1 |𝑧𝑘| + 𝜋|𝑐1|

𝐴∏𝑛𝑘=1 |𝑧𝑘| − 𝜋|𝑐1|
(
𝜋

2𝐴
|𝑍′(0)| − 1 −∑

𝑛

𝑘=1

1 − |𝑧𝑘|
2

|1 + 𝑧𝑘|
2
), 

2(𝐴2(∏𝑛𝑘=1 |𝑧𝑘|)
2
−𝜋2|𝑐1|

2)

𝐴2(∏𝑛𝑘=1 |𝑧𝑘|)
2
−𝜋2|𝑐1|

2+𝐴𝜋∏𝑛𝑘=1 |𝑧𝑘||2𝑐2+𝑐1(1+∑
𝑛
𝑘=1 (

1−|𝑧𝑘|
2

𝑧𝑘
))|

  

≤
2𝐴∏𝑛𝑘=1 |𝑧𝑘| + 𝜋|𝑐1|

2𝐴∏𝑛𝑘=1 |𝑧𝑘| − 𝜋|𝑐1|
(
𝜋

2𝐴
|𝑍′(0)| − 1 −∑

𝑛

𝑘=1

1 − |𝑧𝑘|
2

|1 + 𝑧𝑘|
2
) 

  

 and 

2(𝐴(∏𝑛𝑘=1 |𝑧𝑘|)−𝜋|𝑐1|)
2

𝐴2(∏𝑛𝑘=1 |𝑧𝑘|)
2
−𝜋2|𝑐1|

2+𝐴𝜋∏𝑛𝑘=1 |𝑧𝑘||2𝑐2+𝑐1(1+∑
𝑛
𝑘=1 (

1−|𝑧𝑘|
2

𝑧𝑘
))|
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 ≤
𝜋

2𝐴
|𝑍′(0)| − 1 − ∑𝑛𝑘=1

1−|𝑧𝑘|
2

|1+𝑧𝑘|
2.  

  

 Thus, for 𝑧𝑘 =
𝑠𝑘−1

𝑠𝑘+1
, we obtain inequality (3). 

To prove the sharpness of the inequality (3), let

 𝑍 (
1+𝑧

1−𝑧
) =

𝐴

2
(1 +

2

𝑖𝜋
ln (

1−𝑖𝑧2∏𝑛𝑘=1
𝑧−𝑧𝑘
1−𝑧𝑘𝑧

1+𝑖𝑧2∏𝑛𝑘=1
𝑧−𝑧𝑘
1−𝑧𝑘𝑧

)). 

Then we obtain 

  
2

(1 − 𝑧)2
𝑍′(
1 + 𝑧

1 − 𝑧
) 

 =
𝐴

𝑖𝜋

−(2𝑖𝑧 ∏𝑛𝑘=1
𝑧−𝑧𝑘
1−𝑧𝑘𝑧

+𝑖𝑧2∑𝑛𝑘=1
1−|𝑧𝑘|

2

(1−𝑧𝑘𝑧)(𝑧−𝑧𝑘)
∏𝑛𝑘=1

𝑧−𝑧𝑘
1−𝑧𝑘𝑧

)𝐶

(1+𝑖𝑧2∏𝑛𝑘=1
𝑧−𝑧𝑘
1−𝑧𝑘𝑧

)(1−𝑖𝑧2∏𝑛𝑘=1
𝑧−𝑧𝑘
1−𝑧𝑘𝑧

)
 

−
𝐴

𝑖𝜋

(2𝑖𝑧 ∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧
+ 𝑖𝑧2∏𝑛𝑘=1

𝑧−𝑧𝑘

1−𝑧𝑘𝑧
∑𝑛𝑘=1

1−|𝑧𝑘|
2

(1−𝑧𝑘𝑧)(𝑧−𝑧𝑘)
)𝐷

(1 + 𝑖𝑧2∏𝑛𝑘=1
𝑧−𝑧𝑘

1−𝑧𝑘𝑧
) (1 − 𝑖𝑧2∏𝑛𝑘=1

𝑧−𝑧𝑘

1−𝑧𝑘𝑧
)

, 

where 

𝐶 = (1 + 𝑖𝑧2∏

𝑛

𝑘=1

𝑧 − 𝑧𝑘
1 − 𝑧𝑘𝑧

) 

and 

𝐷 = (1 − 𝑖𝑧2∏

𝑛

𝑘=1

𝑧 − 𝑧𝑘
1 − 𝑧𝑘𝑧

). 

For 𝑧 = −1 and since 𝑧1, . . . , 𝑧𝑛 are positive real numbers, we 

take 

|𝑍′(0)| =
2𝐴

𝜋
(2 +∑

𝑛

𝑘=1

1 − 𝑧𝑘
1 + 𝑧𝑘

). 

Also, since 𝑧𝑘 =
𝑠𝑘−1

𝑠𝑘+1
, we obtain 

|𝑍′(0)| =
2𝐴

𝜋
(2 +∑

𝑛

𝑘=1

1 −
𝑠𝑘−1

𝑠𝑘+1

1 +
𝑠𝑘−1

𝑠𝑘+1

) =
2𝐴

𝜋
(2 +∑

𝑛

𝑘=1

1

𝑠𝑘
). 

Moreover, since |𝑐1| = 0 and |𝑐2| =
𝐴

2𝜋
∏𝑛𝑘=1 |𝑧𝑘| =

𝐴

2𝜋
∏𝑛𝑘=1 |

𝑠𝑘−1

𝑠𝑘+1
|, inequality (3) holds.  

A similar analysis to the one made for Lemma 1 can also 

considered for the generic DPIF obtained in Theorem 1. Again, 

for 𝑛 = 1 and 𝑛 = 2, the DPIFs are given as  

𝑍𝑛=1(𝑠) =
𝐴

2
 

+
𝐴

𝑖𝜋
ln (

(1 − 𝑖)(𝑠3 + 𝑠 + 2𝑠𝑠1) + (1 + 𝑖)(2𝑠
2 + 𝑠 + 𝑠2𝑠1 + 𝑠1)

(1 + 𝑖)(𝑠3 + 𝑠 + 2𝑠𝑠1) + (1 − 𝑖)(2𝑠
2 + 𝑠 + 𝑠2𝑠1 + 𝑠1)

) 

and 

𝑍𝑛=2(𝑠) =
𝐴

2
[1 +

2

𝑖𝜋
ln (

𝛼(1 − 𝑖) + 𝛽(1 + 𝑖)

𝛼(1 + 𝑖) + 𝛽(1 − 𝑖)
)] 

 where 

𝛼 = (𝑠4 + (𝑠1𝑠2 + 2𝑠1 + 2𝑠2 + 1)𝑠
2 + 𝑠1𝑠2) 

𝛽 = ((𝑠1 + 𝑠2 + 1)𝑠
3 + (𝑠1 + 𝑠2 + 2𝑠1𝑠2)𝑠) 

Since the DPIFs for 𝑛 = 3 and 𝑛 = 4 are highly complex and 

do not make a significant contribution at this point, they are not 

included in this section. However, their frequency characteristics 

are presented in Fig. 7 and 8, respectively. As in Lemma 1, multi-

notch filter structures are observed for Theorem 1. However, all 

the DPIFs obtained in Theorem 1 show low-pass filter 

characteristics in contrary to Lemma 1. The results are shown in 

Figs. 5 through 8 for 𝑛 = 1, 2, 3 and 4, respectively. 

 

 

Figure 5. 𝑛 = 1 

 

Figure 6. 𝑛 = 2 

 

Figure 7. 𝑛 = 3 
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Figure 8. 𝑛 = 4 

4. Conclusions 

In this paper, boundary version of the Carathéodory’s 

inequality has been evaluated for driving point impedance 

functions. Accordingly, a lemma and a theorem have been 

presented by assuming that the DPIF, 𝑍(𝑠), has the structure of 

𝑍(𝑠) =
𝐴

2
+ 𝑐1(𝑠 − 1) + 𝑐2(𝑠 − 1)

2+. ... Two inequalities have 

been obtained for |𝑍′(1)| and |𝑍′(0)| in the presented lemma and 

theorem, respectively, and two corresponding extremal functions 

have been derived by performing sharpness analysis. According 

to frequency analysis results of the obtained extremal functions, 

it can be said that design of multi-notch filters with different 

number of spikes is possible by performing the presented analysis 

in this study. 
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