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Abstract

In this study, the Carathéodory’s Inequality, which is a highly popular topic of complex analysis theory, has been applied to electrical
engineering to obtain novel driving point impedance functions. In electrical engineering, driving point impedance functions correspond
to positive real functions and they are used for representation of the spectral characteristics of a particular circuit. Accordingly, boundary
version of the Carathéodory’s inequality has been considered here assuming that the driving point empedance function, Z(s) has a
fractional function structure with 0 < RZ(s) < A for Rs > 0 and it is analytic in the right half plane. At the end of the analyses, new
driving point impedance functions have been obtained and they have been presented with their spectral characteristics. According to
simulation results, it is possible to say that the frequency responses of the obtained generic driving point impedance functions have
spiky filter structures where the number of the spikes in the frequency response of these filters depend on a pre- defined parameter, n.

Keywords: Driving point impedance function, Carathéodory’s Inequality, Circuit, Filter.

Siiren Nokta Empedans Fonksiyonlari icin Carathéodory
Esitsizligi’nin Uygulamalan

Oz

Bu calismada, kompleks analiz teorisinde oldukga popular bir konu olan Carathéodory esitsizligi, yeni siiren nokta empedans
fonksiyonlar1 elde etmek i¢in elektrik mithendisligine uygulanmstir. Elektrik miithendisliginde siiren nokta empedans fonksiyonlari,
pozitif reel fonksiyonlara karsilik gelmekte ve belli bir devrenin spektral 6zelliklerini temsil etmek i¢in kullanilmaktadirlar. Buna gore,
burada Carathéodory esitsizliginin bir sinir versiyonu, kesirli fonksiyon yapidaki siiren nokta empedans fonksiyonu Z(s) i¢in, Z(s)’nin
0 <RZ(s) <A, Rs =0 olmak lizere sag yar1 diizlemde analitik oldugu varsayilarak degerlendirilmistir. Analizler sonucunda, yeni
sliren nokta empedans fonksiyonlar1 elde edilmis ve bu fonksiyonlar spektral 6zellikleriyle birlikte sunulmugtur. Simiilasyon sonuglarma
gore, elde edilen genel siiren nokta empedans fonksiyonlarinin frekans cevaplarinin, sivri gegisli siizge¢ yapisina sahip olduklar1 ve
frekans cevabindaki bu sivri gegislerin sayisinin daha 6nce tanimlanmis olan bir n parametresine baglh oldugunu séylemek miimkiindiir.

Anahtar Kelimeler: Siiren nokta empedans fonksiyonu, Carathéodory esitsizligi, Devre, Siizgeg.
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1. Introduction

Investigation of the characteristics of driving point
impedance functions (DPIFs) is a hot topic in the electrical
engineering literature [1]-[6]. It is well known that DPIFs are
actually positive real functions (PRFs) depending on a complex
frequency parameter s, and they satisfy the conditions of PRFs
which are listed as below [7, 8]:

1-) Z(s) is analytic and single valued in Rs > 0 except
possibly for poles on the axis of imaginaries,

29 Z() = Z(s)
3-)RZ(s) = 0,inRs > 0

In addition to their use in electric circuits, it is possible to
encounter with PRFs in signal processing, in control systems and
even in microwave engineering.

Here, we aim to perform boundary analysis of DPIFs.
Carathéodory’s Inequality is considered here to obtain boundary
inequalities for the derivative of DPIFs. Assuming that Z(s) =
§+ ci(s — 1) + (s — 1)*+
presented. In these lemma and theorem, two inequalities have
been obtained for |Z'(1)| and |Z'(0)|, respectively. For each
obtained inequality, sharpness analyses have been performed and
two extremal functions, which are actually corresponding to two
distinct DPIFs, have been obtained. The obtained DPIFs have
been considered by investigating their frequency characteristics.

., a lemma and a theorem are

We aim to investigate the potential results of application of
Carathéodory’s inequality to derivative of DPIFs and the analyses
presented here are arisen as the natural results of the problem.

The rest of the manuscript is organised as follows:
Preliminary considerations are presented in Section 2 and in
Section 3, main results are discussed. Finally, in Section 4,
conclusions are given.

2. Preliminary Considerations

The behaviour of a bounded and analytic function which
maps the origin to the origin in the unit disc U = {z:|z| < 1} is
examined in the traditional form of the Schwarz Lemma. Schwarz
lemma is highly effective such that it is possible to encounter with
this lemma in proofs of many important theorems. Schwarz
Lemma is given in the most basic form as follows ([9], p.329):

Suppose that f(z) is analytic in U and |f(z)| < 1 for |z] <
1. If £(0) = 0, then |f(2)| < |z| for all z € U and |f'(0)] < 1.
If|f'(0)] = 1 or|f(2)| = |z| some z, then f(z) = bz, |b| = 1.

Now, Carathéodory’s inequality [10,11,12] at right half plane
for PRFs will be presented.

Let Z(s) = % +¢;(s — 1) + ¢, (s — 1)2+. .be a positive real
function with 0 < RZ(s) < A for Rs = 0.
Consider the function
oo el — 4
z in Z Z =
ezl )1 41

s—1
s+1
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Here, f(z) is an analytic function in U, f(0) =0 and
If(z)] <1 for|z| < 1.

Consider the product

B _ Z — Zy
(Z) - 1-— Zz'
k=1
Let
f(@) -1
¢(z) = 7 2k = +1 Jk=1.2,...,n
k=11_7zz k

Here, s4,55,...,8, are points in right half plan and
24,23, ..., Zy are zeros of f(z). Also, ¢(z) is an analytic function

inU, ¢(0) =0 and |¢p(2)| <1 for |z| < 1. So, by the Schwarz
lemma, we obtain

)]

T[22 1+z
T[ZZ i2)-1]
(p(Z) = £ n ZZ—Zk-'—1
k=1 1-Zz

i—”(c—1£+zﬂ(2—z)2+...)+...
_ 2 \A1l-z A \1-z
2 )
C_li 2cy ( 2z n zZ—Zk
(2+ <A1 —+ =2 (1_2) +)+) k=1 1
cp 4 ] 8z
o(z) 2 (A [ (1-2)2 +"')+"'

z _<2+ (”—14—Z+22(2—Z)2+...>+...> n_ Ik
Al-z 1-z 1-zZgz

and
lo"(0)| = & <L
Allg=1 |kl
Since |¢;| = 1Z'(1)| and z;, = k—_l, we take
Sp+1

e
) _T[k_l s+ 11

This result is sharp with the function

s—1_Sk— 1

SH1 s+l

1__1‘[ —k
s+1 _Sk— Sk—1s-1

A

2 5
_ KH1s+1
Z(S)—— 1+Ell’l 51 _sE-1
1 +s—1 n S+1 s+l
s+1 k=1 5151
Sp+1s+1
where s, S5, ..., S, are positive real numbers.

Therefore, we obtain the following lemma.

Lemma 1. Let Z(s) = 2 +o(s—1)+c(s—1)%+..be a
positive real function with 0 < RZ(s) < A for Rs > 0. Suppose

that s4,5,,...,S, are points in the right half of the s-plane with
Z(s,) = g, k =1,2,...,n. In this case, we have the inequality
SE—1
12/ (D] < Tz 25 (M

The inequality (1) is sharp, with equality for the function
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s71_Sg~1
1 S—1 S+1 Sp+1
- s+1 k=1 Sg—1s—1
1_—
_ A | 2 1 Spt+1s+1 |
Z(S)—El 1+E nl 51 Sp—1 |
s—1 SH1 s+l
) | A
s+1 k=1 1_Sk=1s—1
Spt+1s+1

A significant result of the Schwarz lemma is given by
Osserman as follows [13]:

Let f: U — U be analytic. Suppose that f(0) = 0. Further
suppose that there is a z, € dU so that f extends continuously to
Zo, |f(29)| = 1 and f'(z,) exists. Then

If' (@) 2 1575 )

Inequality (2) is sharp, with equality possible for each value
of |f'(0)].

Inequality (2) and its generalizations have important
applications in geometric theory of functions and they are still hot
topics in the mathematics literature [14]-[22].

It is clear that the generic extremal function obtained in
Lemma 1 takes different forms for different values of n parameter.
As an exemplary application, the DPIFs forn = 1, 2, 3, and 4 are
given as follows:

Znes(s) = g‘[l +Zin (g)]

s2+s;

A 2 (s; + 5, + 1)s% + 515,
Zn=(s) == [1+—=In|

2 it \s®+(s; +5;,+5.5,)s
(sl+sz+53+1)s3+(5152+5153+5253+515253)s)
s%+(s1+Sp+53+5152+5153+5253)52+515,53

Zn=4(s) = 2[1 + %m (M)]

s5+aus3+ags

Zp=3(s) = g +%ln(

where
a =81 +S,+s3+s,+1,
oy = S1Sy + S1S3 + 5S4 + S53 + 5,84 + 538,
4515253 + 515254 + 515354 + 5,535,
Q3 = S1525354,
0y =S, +5S; +53+S5,+515, +5,S3+ 515, + 5,53+
SpS4 + S35,
s = S1S3S3 + 515,54 + 515354 + S2535, + 515,53,

The corresponding frequency response graphics for the
obtained DPIFs are presented in Figs. 1 through 4, respectively.
According to figures, it can be seen that the number of the notches
changes depending on the n parameter in the generic DPIF. In all
figures, the filters exhibit a spiky structure for low frequency
values and highpass filter structure for higher values of w.
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3.Main Results

In this section, the modulus of the derivative of the Z(s)
function at the zero point will be examined.

Theorem 1 Let Z(s) = g +c¢ (s —1)+ c,(s —1)?*+...be aPRF

with 0 < RZ(s) < A for Rs = 0 that is also analytic at the point
s =0 of the imaginary axis with Z(0) = A. Suppose that
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S1,S2,--., Sy, are points in the right half of the s-plane with Z(s;) The auxiliary function
A
=2 k=12,...,n. Then o(2) (2) — $(0)
Z) = ——
2A = Rsy 1-¢(0)¢(2)
120l = T 1+ Z |5k |2 ®) is an analytic function in the unit disc U, |0(z)| < 1 for z € U,
= 0(0) =0 and |0(zy)| =1 for zy = —1 € dU. From inequality
sk 2 (2), we obtain
+ ( (nk 1 sk_+1‘) 7T|61|) 2 1— |¢(0)|2
2(1n Sk—1 2_ 2 2 ARs - @ 1 I _1
A (Hk=1 Sk+1|) m2|c1|2+An [hey sk+1‘ Zcz+c1(1+2k 17|Sk|2+2i‘35k-1) 1+ |® (0)| | ( )l |1 —W(I_’)(—l)lz |¢ ( )l

The inequality (3) is sharp with the extremal function

@I 'Y fEDBIED

ST-16OI[BD ~ B(-1
/ : {1_1(5 1)2 7]1=1 S+1 sk+1\‘\| ( )

s+1 S is-1 _1+18(0) Af" =Dl = Bi(=DD.

Spt+1s+1

. 11 | | T 1—¢(0
ey, e || | 4O
\ s+1 k=1 Sk=Ts-1 / Since
Sptis+l
. ) 1-lp@F
where S, S5, ..., S, are positive real numbers. 0'(2) = — z¢'(2),
(1-90)¢()
n 1-|z z
Proof. Let z;,7,,...,2z, be zeros of the function f(z) in U n‘202+cl<1+2k=1_|zkk| )‘
different from z = 0. The Blaschke product | | ¢’ (0)] a T, 1zl
0'(0)] = = =
-z, 1—1¢(0)|? 1_( mley| )2
By(2) = Zl_[ -7z AllR=q |2k
. . . . = 2c2+c1<1+2n_ ﬂ)
is analytic function in U and |By(z)| < 1 for z € U. By the AT, 2] k=1""2z)
maximum principle implies that for each z € U we have the k=1 1%k A2(Mme_, |zk|)2—n:2|C1|2
inequality |f (z)| < |By(2)|. Therefore, the absolute value of the d
function an
f(2) 1-|z/?
2 = Bi(-1)] =1 +Z ,
¢) By (2) ! 11+ z?
is analytic in U is bounded by 1 in U. Namely, |¢(z)| < 1 for we obtain
lz] < 1. )
In particular, we have 1l
" 262+cl<1+22=1z—k}‘>
ez[ ( )1]—1 1 1+A7THZ:1 |Zk| 7
— A2 ([g=q |2]) =72 |cq)|?
¢(Z) T im[2,(1+z Z-Zk
ez[ 77 )1]-|—1ZHR 1122 7lcq|
| 2 AT Sz -1 L Izl
Tty (ZY ) = _lal © T+ 2,7
_ 2 \A1-z A 21—2 Al—m:llzkl =1
im (e 4z | 263 (27 Z-Zk
(2+2<A1 2t (l—z) +e ) )an11 —Zxz _ Alli= |zl + wley | 51— |z, )2
k=1 1%k 1 —|Z ) -1- k
im(c1 4 8z ATTRo 2] = 7leyl 11+ 2[%)
_ 2(A1_2+ " (1_2)2+...)+... 2 =1
(2 +E(C_14_Z+Zﬂ(2_z)2 _|_>+> n_ Z_ﬁ" 2(4(ITj=1 I2k]) _7T2|C1|2)
2 \A1-z 1-z 1-Zkz 1 |z |
e A2([TPy |zk)) 2 —m2 ey |2+ AT TR zicl|[2co+eq | 1420, Zkk
(O] = e
Allk=1 12l

s _ 24Tl |2l + 7ley| -1 O 1= |zl
an = 2410, 1zl -l SATEPAL

|2¢:2+¢:1 (1+Z %)

¢ ()] = .
¢ ( ) =1 |Zk| and
In addition, it can be seen that 2(a(T, |Zk|)—7T|C1|)2
Zof (20) ZOBO(ZO) 2 < 1-|z,)? )’
> |B —1=2z, €9U. A2(TIRoq 1zkl) " =2 |cq |2+ A [Ty |2kl |2c2+ca | 14X 72 Z
f(z) |f( )| |o(o)| B() Zy k=11%k 1 k=11%2kl|eC2%C1 k1<k>
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fis 1-|zk|?
< Ty 4 _yn
= 1Z'(0)] -1 k=1 iz

Thus, for z, = , we obtain inequality (3).

To prove the of the inequality (3), let

Z—Zk
1+z A 2 1-iz [T 11-zpz 2z
1-z 2 in 1+iz2 [[feg

1-zpz

sharpness

Then we obtain

2 Z’1+Z
1-2)2 "1-z

|zl

—Zk Z-Zk
(ZLan 11-Zpz Ttz S 1(1- zkz)(z—zk)nk 11 zkz>c
Z-27)

o z—2z
i (1+LZ Hk=11—ﬁz)(1 Lzzl'[k 175 z:z)

Z—Zk n 1—|zg |2 )
k=1 (1-zx2)(z—zp)

(le]_[k . ZZZ" +iz? [[},

1-Zkz

_E 2 z-2z) ) ( 2 z— zk)
(1+LZ Hk11 1 ZHk11zkz
where
n
zZ—2z
C=[1+iz? X
1—2zz
k=1
and
n
zZ—2z
D=|(1-iz? £ ).
1—-2z
k=1
For z = —1 and since z;, ..., Z,, are positive real numbers, we
take

24 11—z,
12/ ===( 2+ .
A e} 1+Zk

S
Also, since z; = , we obtain
Skt

24 L AN 51
12/ (0)] = == 2+Z% =—<2+Z—>.
T 1 4 2k T Sk

k=1 Skl k=1
Moreover, since |c;| =0 and |c,| = %Hzﬂ |z | =
H | inequality (3) holds.

A similar analysis to the one made for Lemma 1 can also
considered for the generic DPIF obtained in Theorem 1. Again,
forn = 1 and n = 2, the DPIFs are given as

A
Zp=q(s) = 2

+A 1-D(3+s+2ss)+ (1 +i)(25%+s5+5%s; +57)
A+D)(s3+s+2ss)+ (1 —1)(2s%+ s+ 5%s; +51)

and

Zo,(s) = g[l (a(l —-D+pA+ i))]

o \a@+ D)+ BA -0
where
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a = (s* + (515, + 25, + 25, + 1)s? + 5;5,)
B = ((s1+ 55+ 1) + (51 + 55 + 2545,)5)

Since the DPIFs for n = 3 and n = 4 are highly complex and
do not make a significant contribution at this point, they are not
included in this section. However, their frequency characteristics
are presented in Fig. 7 and 8, respectively. As in Lemma 1, multi-
notch filter structures are observed for Theorem 1. However, all
the DPIFs obtained in Theorem 1 show low-pass filter
characteristics in contrary to Lemma 1. The results are shown in
Figs. 5 through 8 for n = 1, 2, 3 and 4, respectively.
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Figure 8.n = 4

4. Conclusions

In this paper, boundary version of the Carathéodory’s
inequality has been evaluated for driving point impedance
functions. Accordingly, a lemma and a theorem have been
presented by assuming that the DPIF, Z(s), has the structure of
Z(s) = g + ¢c1(s — 1) + (s — 1)?+.... Two inequalities have
been obtained for |Z'(1)| and |Z'(0)| in the presented lemma and
theorem, respectively, and two corresponding extremal functions
have been derived by performing sharpness analysis. According
to frequency analysis results of the obtained extremal functions,
it can be said that design of multi-notch filters with different
number of spikes is possible by performing the presented analysis
in this study.
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