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Abstract

In recent years, renewable energy sources such as solar energy have been increasing their importance in energy production day by day.
Various studies have been carried out in the literature for the effective performance and control of solar cells that generate energy from
the sun. Various solar cell models, such as single diode and double diode models, have been developed to improve performance and
control. However, the main problem in these studies is the estimation of characteristic parameters accurately and efficiently. In the last
decade, this problem has been tried to be solved by using metaheuristic algorithms in the literature. In this study, for the first time, the
Mayfly algorithm (MA) is used for characteristic parameter estimation of photovoltaic models. In order to analyze the estimation
performance of the proposed approach, frequently used solar cells and diode models are examined. The results were compared with
literature studies. Current-voltage and Power-voltage graphs used to find the maximum point were created using the estimated
parameters. The results obtained and the graphs drawn show that the proposed approach is correct and effective in parameter
estimation of photovoltaic cells.

Keywords: Mayfly Algorithm, Photovoltaic, Parameter Estimation, Optimization.

Fotovoltaik Hiicrelerin Karakteristik Parametrelerinin Mayis Sinegi
Algoritmasi ile Kestirimi ve Incelemesi

Oz

Son yillarda Giines enerjisi gibi yenilenebilir enerji kaynaklar: enerji iiretimindeki énemini giin gegtikge artirmaktadir. Literatiirde
glinesten enerji tireten giines pillerinin etkin performansi ve kontrolii igin gesitli ¢aligmalar yapilmaktadir. Tek diyot ve ¢ift diyot
modelleri gibi ¢esitli glines pili modelleri performansi ve kontrolii artirmak icin gelistirilmistir. Ancak bu ¢aligmalarda asil problem
dogru ve verimli bir sekilde karakteristik parametrelerin kestirimidir. Son on yilda literatiirde metasezgisel algoritmalar kullanilarak
bu problem ¢oziilmeye galigilmistir. Bu ¢alismada, ilk kez, Mayis sinegi algoritmasi (MA) fotovoltaik modellerin karakteristik
parametre kestirimi i¢in kullanilmistir. Onerilen yaklagimin kestirim performansini analiz etmek amactyla sik kullanilan giines pilleri
ve diyot modelleri incelenmistir. Sonuglar literatlir ¢aligmalari ile karsilastirilmistir. Maksimum noktanin bulunmasinda kullanilan
akim-gerilim ve giig-gerilim grafikleri kestirilen parametreler kullanilarak olusturulmustur. Elde edilen sonuglar ve ¢izilen grafikler,
fotovoltaik hiicrelerin parametre kestiriminde onerilen yaklasimin dogru ve etkili oldugunu gostermektedir.

Anahtar Kelimeler: Mayis Sinegi Algoritmasi, Parametre Kestirimi, Fotovoltaik, Optimizasyon.
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1. Introduction

In recent years, the usage of carbon-based resources in
vehicles and energy production has caused global warming
problems and caused climate changes in many places around the
world, especially in the poles. For this reason, the idea of using
renewable and clean energy sources in daily life, vehicles and
energy production has been adopted by many researchers and
practitioners. So, the interest in renewable resources such as
solar, wind, wave and geothermal is increasing day by day. In
particular, the ability of solar energy to be used as an energy
source both in the world and in space increases its importance
(Ayala et al., 2015).

The main systems that provide energy production from the
sun are photovoltaic (PV) systems (Olivia et al., 2014). Because,
they can be directly convert solar energy into electric energy, PV
systems have been setup and applied worldwide and in space,
such as Mars explorer systems, satellites and energy harvesting
fields. Although PV systems provided great advantages in
energy generation, they had some weaknesses that had to be
overcome (Brano & Ciulla, 2013). While PV systems provided
great advantages in energy generation, they had some
weaknesses to overcome, such as temperature, irradiance, micro
defects, and partial shading. Therefore, to solve the problems
mentioned above, it is necessary to develop an accurate and
effective model of the PV system. The current-voltage (I-V)
characteristic of solar (PV) system is nonlinear because of its
parameters and it is important to recommend an accurate model
using measured current-voltage data (Parida et al., 2011, Nassar-
Eddine et al., 2016). In literature, to optimize and simulate PV
system, single (SD) and double (DD) diode models has been
proposed (Askarzadeh & Rezazadeh, 2012). In these models,
there are five and seven unknown parameters, respectively. The
accurate and effective estimation of unknown parameters from
measured -V data is an important for modelling, simulating and
evaluating of the PV systems.

In literature, analytical, deterministic and meta-heuristic
methods have been employed for characteristic parameter
estimation of PV models from measured I-V data.

In the beginning, analytical methods including simple and
fast solutions using mathematical equations were tried to be
developed. However, the assumptions made in the initial state
negatively affected the accuracy of the model (Chan & Phang,
1987; Ortiz-Conde et al., 2006; Saleem & Karmalkar, 2009).

Deterministic methods have been proposed to solve the
problems encountered by analytical methods, but nonlinearity
and multimodality have hampered the solution effectiveness of
deterministic approaches (Easwarakhanthan et al., 1986; Tong et
al., 2015).

Meta-heuristic algorithms provided sufficiently good
solution for multimodal, multidimensional, constrained and
constrained, linear and nonlinear optimization problems and
inspired by natural phenomenon such as swarm behaviors,
evolutionary stages and natural events. Recently, to overcome
the disadvantages mentioned above, meta-heuristic methods
have been applied for parameter extraction of PV model.

Genetic algorithm (GA) was applied to parameter extraction
of fuel cells and three types PVs simulated with
MATLAB/Simulink (Balasubramanian et al., 2015; Ismail et al.,
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2013). Particle swarm optimization (PSO) algorithm, and its
variant  (enhanced leader PSO, chaotic heterogeneous
comprehensive learning PSO) were employed for parameter
determining of static and dynamic PV models. (Jordehi, 2018;
Nunes et al., 2018; Yousri et al., 2019). Penalty based
differential evolution (DE), repaired adaptive DE and memetic
adaptive DE algorithms were proposed for different PV models
such as thin film, mono- and multi crystalline (Ishaque et al.,
2012; Gong & Zzhihua, 2013; Li et al., 2019). Cuckoo search
(CS) algorithm was hybridized with biogeography-based
optimization for different PV models (Chen et al., 2019).
Artificial bee colony (ABC) algorithm and its teaching—
learning—based version were compared with other suggested
methods for PV parameters estimation (Olivia et al., 2014; Chen
et al., 2018). Bacterial foraging optimization (BFO) algorithm
and its modified approaches were proposed for parameter
estimator design from nameplate data of solar cells (Rajasekar et
al., 2013; Subudhi & Pradhan, 2018; Awadallah, 2016).
Biogeography-based optimization (BBO) algorithm was
improved with mutation strategies and hybridization for
estimating solar and fuel cells parameters at different models
(Chen & Yu, 2019; Niu et al., 2014). Flower pollination
algorithm (FPA) and its hybrids were used for different types PV
modules at different irradiance (Alam et al., 2015; Xu & Wang,
2017; Olivia et al.,2019). The improved and basic versions of
Jaya optimization (JAYA) algorithms were successively applied
for estimation and a comprehensive comparison has been made.
(Yu et al., 2017; Yu et al., 2019). The parameter estimations of
salp swarm (SSA) algorithm and bird mating (BMO)
optimization algorithm were realized at different operating
(Abbassi et al., 2019; Askarzadeh & Coelho, 2015). Teaching-
leaning-based optimization (TLBO) and its improved and
hybridized versions were employed and compared for parameter
identification (Chen et al., 2018; Li et al., 2019; Patel et al.,
2014; Yu et al., 2017; Chen et al.,2016]. Also, Backtracking
search algorithm (BSA) was improved with multiple learning
strategy and suggested for determining parameters of single
diode (SD), double diode (DD) and PV module (Yu et al., 2018).
Improved chaotic whale optimization algorithm was performed
for comparisons of experimental results (WOA) (Olivia et al.,
2017). Sine cosine algorithm (SCA) was developed with
opposition-based learning strategy and tested PV parameter
identification (Chen et al., 2019). Imperialist competitive
algorithm was applied to estimation for mono-, poly- and
amorphous modules (ICA) (Fathy & Rezk, 2017). Multi-verse
optimizer (MVO) algorithm was analyzed for estimation at
varying sun irradiance and temperature cases (Ali et al., 2016),
Improved ant lion (ALO) optimizer algorithm and cat swarm
(CSO) optimization algorithm were employed parameter
estimation of PV modules (Wu et al., 2017; Guo et al., 2016).

Also, parameters extraction of different structure PV models
have been analyzed using grouping-based global, innovative
global and basic harmony search algorithm (HS) (Askarzadeh &
Rezazadeh, 2012), hybrid firefly (FA) algorithm and pattern
search algorithm (Beigi & Maroosi, 2018), modified simplified
swarm optimization algorithm (SSO) (Lin et al., 2017), moth-
flame (MFO) optimization (Allam et al., 2016), eagle (ES)
strategy (Chen eet al., (2016), water cycle (WCA) algorithm
(Kler et al., 2017; Rezk & Fathy, 2017), shuffled frog leaping
algorithm (SFL) (Hasanien, 2015), hybrid grew wolf (GWO)
algorithm (Long et al., 2020) at varying irradiance and room
temperature.
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According to the literature review mentioned above,
parameter extraction of PV models from the 1-V data is an
important real world problem for researcher and practitioners in
energy area. Especially, to realize accurate and fast estimation,
we need optimization algorithms with high exploration and
exploitation capabilities. Of course, with these capabilities, the
optimization algorithm should be easy and simple to use for real
time application.

In 2020, unlike many well-known meta-heuristic
algorithms, Mayfly algorithm (MA) that has a fast and
robustness convergence behavior in both the local and the global
search space was proposed as a swarm based algorithm
(Zervoudakis & Tsafarakis, 2020). MA is inspired by flight and
mating behavior of male and female mayflies. It is analyzed for
single- and multi-objective optimization tasks and benchmarked
in well-known literature test problems such as CEC2017 and
flow-shop scheduling. Also, MA is tested for continuous and
discrete real engineering problems. The results show that MA
has a good solution performance compared with the other
algorithms such as PSO, FA, DE, HS, invasive weed
optimization (IWO) and bees (BA) algorithms. The successful
rise of the MA algorithm in the literature has attracted the
attention of researchers and practitioners and this algorithm has
been applied in the solutions of new developed and old
optimization problems.

For the aforementioned purpose, in this paper, Mayfly
algorithm (MA) was applied to extract the characteristic
parameter of single diode, double diode and PV modules. To the
best of our knowledge, there is no paper in literature about
parameter determination of PV models using MA. The
motivations and contributions of this paper are given as follows:

» For characteristic parameter estimation of PV cells, MA
algorithm was firstly applied in literature.

e The current-voltage data of Photowatt-PWP-201 and
R.T.C France PV cells were used to connect the study to the real
world problem.

e The estimation performance of MA algorithm was
extensively compared with those of the state-of-algorithms in
literature. Also, using estimated parameters, P-V and I-V curves
were obtained and compared with those of the measured data
curves of PV cells.

» The results demonstrate that MA algorithm has a
significant performance for parameter determination of PV
models and it can be used an alternative method.

This paper is explained in 5 sections. In section 2, the
problem of parameter estimation of PV models is explained. MA
algorithm is proposed in Section 3. Results and analysis are
represented in detail and the comparisons with other algorithms
are made in Section 4. Lastly, Section 5 includes conclusions.

2. Mathematical Modelling of PV Cell

In literature, SD and DD models are the most preferred
reference designs for PV cell parameter estimation. Also, using
reference designs, several parallel or series connected diodes are
used to model the PV panel modules. The simplified circuit
designs of SD, DD and PV panel models are shown in Figure 1.

In this section, firstly, single diode and double diode models
are explained in detail with basic diode parameters definitions.
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Secondly, it was explained how PV panel modules are modeled
using diode models. Finally, it is discussed how aforementioned
models are embedded in the objective functions to be used for
parameter estimation in optimization algorithms.

2.1. Mathematical Model of Single Diode

The SD model is mathematically expressed as:

=1, -1q {exp(%j—l}\% 1)

where I, 1, and I, are cell output, photo and reverse saturation

currents. Also, V is output voltage, R, represents series

resistance, R, shows shunt resistance, n is ideality factor, k
denotes Boltzmann constant, T shows cell temperature (Kelvin)
and electron charge is q. I,,1,, R, R, and n are main
characteristic parameter of SD model and they are estimated
using optimization algorithms.

Sun Light Sun Light

Double Diode Model

Single Diode Model

A

Sun Light ?_._
AF I ¥ i )
(/]\ : ¥¥ ¥
I
t Yy g4 3
PV Panel Model

Figure 1. Simplified circuit designs of SD, DD and PV panel
models

2.2. Mathematical Model of Double Diode

Using SD model, mathematical model of DD is given as:

=t o LR .

(2
L {exp{—q(\/ i 'RS)]—l}—V—Jr IR,

n,-k-T R,

where 1, and I, are reverse saturation currents of first
and second diodes while n, and n, are the ideality factors. 1,

lgi» 1y, R, Ry, n and n,are the main characteristic

parameter of double diode model and they are estimated using
optimization algorithms.

2.3. Mathematical Model of PV Panel

The output current of PV panel is represented as

/N, =151 {exp(q(v/Ns i3 I/Np)]—1:|...

n-k-T
V/N,+R,-1/N,
Rsh

@)
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where N, and N, show the number of series or parallel

connected solar cells in PV panel. The aforementioned model is
constructed using single diode model and the unknown
parameters (I, , Iy, R, Ry, n) are the same as in that

model. Generally in practice, the solar cells in PV panel are
connected in series, hence N, is determined as 1.

s 1

2.4. Objective Functions of Parameter Estimation
Problem

In this paper, to optimize the characteristic parameters
estimation of SDM, DDM and PV panel models, three objective
function were applied using aforementioned models. The
objective functions of SD, DD and PV panel model are
formulated in Equation 4, respectively.

fv. =1 _[lph_lsd {exp[%)—l}_\/}' 'Rs]

x={1 14, R, Ry}

n-k-T

VI R)) } “

q(V+| R) }

fv, Lx)=1- Isd{exp[
R,

V+I
Ry,

X:{Iph’lsdl' Ist’Rs'Rsh’nllnz}

I {exp[Wj—l}.

_V/NS+RS~I/ND
R

FV, L) =(I/N,)-

sh

Xz{lthlsd’Rs'Rsh'n}

For all three objective functions given above, the root mean
square error (RMSE) as suggested in literature is the error
function. RMSE is calculated between measured and calculated
data and it is suggested as follow:

RMSE(x) = \/%ZK: f Vi 14, %)? ©)

where K is the number of real-time measured data. The
optimization algorithm tries to converge the RMSE value to zero
as much as possible, thus the error between measured and
simulated data is reduced and the accuracy of the estimated
characteristic parameters is increased.

3. Mayfly Algorithm

Mayfly Algorithm (MA) is a swarm based optimization
algorithm and proposed by Zervoudakis and Tsafarakis in 2020
(Zervoudakis & Tsafarakis, 2020). Mayflies are a type of insect
that lives in nature. The mating and flight behaviours of mayflies
are simulated by this algorithm. MA is developed for the
solutions of continuos and discrete problems and performs well
compared to other well-known algorithms. Especially,
exploration and explotation process are improved and balanced
with nuptial dance and random flight mechanisms. The pseudo-
code structure of the MA algorithm is given in Algorithm 1:

Algorithm 1: Pseudo-code of Mayfly Algorithm
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1: Setup control parameter, problem dimensions and bounds
2: Generate the male mayflies population y;(i=12,..M)
and their velocities v,

3: Generate the female mayflies population x.(i=12,...N)

and their velocities v

4: Evaluate solutions applying predefined objective
functions.

5: Calculate global best (gbest) and personal best (pbest)
6: while (stopping criteria)

7. Update velocities and position of males and females
mayflies according to velocity and position limits

8: Evaluate solutions

functions

applying predefined objective

9: Rank mayflies population

10: Mate mayflies population

11: Evaluate offspring

12: Separate randomly the offspring to male and female
13: Replace worst solutions with the best new solutions
14: Update pbest and gbest

15: end while

16: Save best solution population

In Mayfly Algorithm, important optimization phases are
movements of male and female mayflies, crossover and
mutation. Especially, crossover and mutation form the mating
phase of mayflies. The position of male mayflies is formulated
as

Xt+l — X +Vt+1 (6)

xjand x™

where are current and new position,

t+1

respectively. v;™ shows the velocity. The velocity is given as

Vit =vij+a, xe R x (pbest; —x;)+a, xe~ & x (gbest; — ) (7)

where a; and a, are positive social and cognitive constant.
i shows the position of particle i in dimension j when v;
shows the velocity. Also, pbest and gbest demonstrate the
personal and global best solution. pbest; is given as

X

t+1 - t+1
obest ={xi . if £(x*") < f(pbest,) ©

issaved same, otherwise

gbest is the best solution of pbest. r, (between X and
pbest;) and r, ( between X and gbest) are the Cartesian
distance and g is the fixed visibility coefficient. The nuptial
dance is an important scene for best mayfly and change the
velocity that is given as

Vit =V +dxr 9

where d and r are the coefficient of nuptial dance and
random value between -1 and 1.
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The position of female mayflies is formulated as

yit+l — ylt +Vt+1 (10)

yrand y*t

respectively. vi** is the velocity. The velocity is demonstrated as

where are current and new position,

P R G AL (AR [CO R
! v+ flxrif f£(y;) < f(x)

where vi‘j is the velocity of female particle i in dimension j.
a2, g, rmf and fl are positive attraction value, fixed visibility
constant, Cartesian distance and random walk value respectively.

The mating phase is realized using crossover and mutation
mechanism. They are formulated as

offspringl = Lxmale + (L— L) x female
Crossover )
offspring2 = L x female+(1-L)xmale  (12)

Mutation {offspring'n = offspring, + rand value

where L is specified random value.

3.1. Proposed Approach based MA

Characteristic parameter estimation of SD, DD and PV panel
models was realized using Mayfly Algorithm. MA minimized
aforementioned objective functions of three models using RMSE
function and obtained the best parameter of the desired model
from the measured I-V data. In Figure 2, the flowchart of the
proposed method based MA is shown.

E g: W :
H e .
Setup Mayfly Parameter

— Initialization male and

Algorithm

female population
R 2
Evaluation using
Objective Functions

Update Velocities and
Positions

Offspring
_

X Plot 1-V and P-V Estimate characteristic
§ Curves parameter

Figure 2. Flowchart of the method based MA for
characteristic parameter determination of PV
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4. Analysis and Results

In this paper, to analyze performance comparison of the
proposed method based MA, the measured 1-V data of silicon
R.T.C. France solar cell (irradiance: 1000 W/m2, temperature:
33 Celsius), poly-crystalline Photowatt-PWP-201 (36 poly-
crystalline, irradiance: 1000 W/m2, temperature: 45 Celsius) are
used for characteristic parameter estimation of aforementioned
models (Easwarakhanthan et al., 1986; Long et al., 2020).

For a fairly comparison, the search space of the
characteristic parameters is selected as in the estimation studies
suggested in literature. In Table 1, the lower (LB) and upper
(UB) bounds are shown. Also, maximum number of function
evaluations (Max_FES) of competitor algorithms is chosen as
50000. But, for MA, Max_FES is set 10000 unlike other
competitor algorithms. In this paper, to demonstrate the accurate
and robust prediction performance of the MA, several well-
known algorithms and their improved versions are compared in
the same optimization conditions. For the proposed method by
MA, 30 runs with a different initial point are realized and the
achieved results are tabulated.

Table 1. Search space of the characteristic parameters

Parameters/ Single and double Photowatt-

Models diode models PWP-201
LB uB LB uB

Iph (A) 0 1 0 2
|sd, |sd1, lsa2 0 1 0 50

(nA)

Rs () 0 0.5 0 2
Rsh (2) 0 100 2000

n, Ny, N2 1 2 1 50

4.1. Analysis of Single Diode Model

For SD model, the performance of MA is compared with
those of the HISA (Kler et al., 2019), MADE (Li et al., 2019),
CS (Chen & Yu, 2019), CS-BBO (Chen & Yu, 2019), ABC
(Olivia et al., 2014), TLBO-ABC (Chen et al., 2018), BBO-M
(Niu et al., 2014), BLPSO (Yu et al., 2019), CLPSO (Yu et al.,
2019), BMO (Askarzadeh & Coelho, 2015), GOTLBO (Chen et
al., 2016), IBSA (Yu et al., 2018), LBSA (Yu et al., 2018),
DE/BBO (Yu et al., 2018),CWOA (Olivia et al., 2017),ISCA
(Chen et al., 2019), IGHS (Askarzadeh & Rezazadeh, 2012),
GGHS (Askarzadeh & Rezazadeh, 2012), PSO-WOA (Xiong et
al., 2018), SA (El-Naggar et al., 2012), GWO (Long et al.,
2020), mGWO (Long et al., 2020), EGWO (Long et al., 2020),
AgGWO (Long et al., 2020), SCA (Long et al., 2020), WOA
(Long et al., 2020) and GWOCS (Long et al., 2020) algorithms.

In Table 2, the best obtained diode parameters and the
minimum values of RMSE of competitor algorithms for single
diode model are shown. As seen Table 2, MADE, CS-BBO,
TLO-ABC, BMO, CWOA, ISCA and MA algorithms converge
to 9.8602E-04 and it is the best value of RMSE.
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Table 2. The best obtained diode parameters and RMSE values of competitor algorithms for single diode model.

Algorithm RMSE Iph Isd Rs Rsh n

ABC (Olivia et al., 2014) 9.8620E—04 | 0.7608 | 0.3251 | 0.0364 | 53.6433 1.4817

AgGWO (Long et al., 2020) 6.7762E—03 | 0.769897| 0.42945 | 0.03306 | 16.8530 1.51294

BBO-M (Niu et al., 2014) 9.8634E—04 | 0.76078 | 0.31874 | 0.03642 | 53.36277 1.47984

BLPSO (Yu et al., 2019) 1.0272E—03 | 0.7607 | 0.36620 | 0.0359 | 60.2845 1.4939

BMO (Askarzadeh & Coelho, 2015) 9.8602E—04 | 0.76077 | 0.32479 | 0.03636 | 53.8716 1.48173

CLPSO (Yuetal., 2019) 9.9633E—04 | 0.7608 | 0.34302 | 0.0361 | 54.1965 1.4873

CS (Chen & Yu, 2019) 2.0119E—03 | 0.76048 | 0.36015 | 0.03492 | 43.84232 1.4929

CS-BBO (Chen & Yu, 2019) 9.8602E—04 | 0.76078 | 0.32302 | 0.03638 | 53.71852 1.48118

CWOA (Olivia et al., 2017) 9.8602E—04 | 0.76077 | 0.3239 | 0.03636 | 53.7987 1.4812

DE/BBO (Yu et al., 2018) 9.9922E—04 | 0.7605 | 0.32477 | 0.0364 | 55.2627 1.4817

EGWO (Long et al., 2020) 2.1121E—03 | 0.763117| 0.42126 |0.034838| 36.1165 1.5091

GGHS (Askarzadeh & Rezazadeh, 2012) 9.9097E—04 | 0.76092 | 0.32620 | 0.03631 | 53.0647 1.48217

GOTLBO (Chen et al., 2016) 9.8744E—04 | 0.76078 |0.331552|0.036265| 54.115426| 1.48382

GWO (Long et al., 2020) 7.5011E—03 |0.769969| 0.91215 | 0.02928 | 18.1030 | 1.596658

GWOCS (Long et al., 2020) 9.8607E—04 |0.760773| 0.32192 | 0.03639 | 53.6320 1.4808

HISA (Kler et al., 2019) 2.0166E—03 |1.032368| 2.67736 | 1.23178 | 748.4507 | 47.6575

IBSA (Yu et al., 2018) 1.0092E—03 | 0.7607 | 0.35502 | 0.0361 | 58.2012 1.4907

IGHS (Askarzadeh & Rezazadeh, 2012) 9.9306E—04 | 0.76077 | 0.34351 | 0.03613 | 53.2845 1.48740

IGWO (Long et al., 2020) 2.3038E—03 | 0.762763| 0.23878 |0.036472| 30.5388 | 1.452148

ISCA (Chen et al., 2019) 9.8602E—04 |0.760778|0.323017| 0.03638 | 53.7182 1.4812

LBSA (Yuetal.,, 2018) 1.0143E—03 | 0.7606 | 0.34618 | 0.0362 | 59.0978 1.4881

MADE (Li et al., 2019) 9.8602E—04 | 0.7608 | 0.3230 | 0.0364 | 53.7185 1.4812

mGWO (Long et al., 2020) 1.1278E—03 | 0.760595| 0.38534 |0.035654 | 64.6624 1.49911

Proposed 9.8602E-04 | 0.7608 | 0.32302 | 0.0364 | 53.7185 1.4812

PSO-WOA (Xiong et al., 2018) 1.0710E—03 | 0.760563|0.340158 | 0.036124 | 59.323133 | 1.486399

SA (El-Naggar et al., 2012) 1.7000E—03 | 0.7620 | 0.4798 | 0.0345 | 43.1034 1.5172

SCA (Long et al., 2020) 4.1410E—02 | 0.7852 | 1.00000 0 6.25833 1.61597

TLBO-ABC (Chen et al., 2018) 9.8602E—04 | 0.76078 | 0.32302 | 0.03638 | 53.71636 1.48118

WOA (Long et al., 2020) 3.2001E—03 | 0.7598 |0.073481| 0.0421 | 42.77218 1.3453

Table 3. The calculated current, power and IAEs values achieved with MA for the SD model

V (V) 1 (A) Calculated 1 (A) IAE (I) P (W) Calculated P (W) 1AE (P)
—0.2057 | 0.7640 0.764087704897160 0.000087704897160 | —0.1571548 | -0.157172840897346 | 0.000018040897346
—0.1291| 0.7620 0.762663087090251 0.000663087090251 | —0.0983742 | -0.098459804543351 | 0.000085604543351
—0.0588 | 0.7605 0.761355307921703 0.000855307921703 | —0.0447174 | -0.044767692105796 | 0.000050292105796
0.0057 | 0.7605 0.760153991638703 0.000346008361297 | 0.00433485 | 0.004332877752341 | 0.000001972247659
0.0646 | 0.7600 0.759055209383934 0.000944790616066 | 0.04909600 | 0.049034966526202 | 0.000061033473798
0.1185 | 0.7590 0.758042345619050 0.000957654380950 | 0.08994150 | 0.089828017955857 | 0.000113482044143
0.1678 | 0.7570 0.757091654254763 0.000091654254763 | 0.12702460 | 0.127039979583949 | 0.000015379583949
0.2132 | 0.7570 0.756141365011120 0.000858634988880 | 0.16139240 | 0.161209339020371 | 0.000183060979629
0.2545 | 0.7555 0.755086872878871 0.000413127121129 | 0.19227475 | 0.192169609147673 | 0.000105140852327
0.2924 | 0.7540 0.753663878335808 0.000336121664192 | 0.22046960 | 0.220371318025390 | 0.000098281974610
0.3269 | 0.7505 0.751390966587659 0.000890966587659 | 0.24533845 | 0.245629706977506 | 0.000291256977506
0.3585 | 0.7465 0.747353851448388 0.000853851448388 | 0.26762025 | 0.267926355744247 | 0.000306105744247
0.3873 | 0.7385 0.740117221955217 0.001617221955217 | 0.28602105 | 0.286647400063256 | 0.000626350063256
0.4137 | 0.7280 0.727382224955978 0.000617775044022 | 0.30117360 | 0.300918026464288 | 0.000255573535712
0.4373 | 0.7065 0.706972651226130 0.000472651226130 | 0.30895245 | 0.309159140381187 | 0.000206690381187
0.4590 | 0.6755 0.675280151186212 0.000219848813788 | 0.31005450 | 0.309953589394471 | 0.000100910605529
0.4784 | 0.6320 0.630758271967074 0.001241728032926 | 0.30234880 | 0.301754757309048 | 0.000594042690952
0.4960 | 0.5730 0.571928357736496 0.001071642263504 | 0.28420800 | 0.283676465437302 | 0.000531534562698
0.5119 | 0.4990 0.499607017977832 0.000607017977832 | 0.25543810 | 0.255748832502852 | 0.000310732502852
0.5365 | 0.4130 0.413648791425570 0.000648791425570 | 0.21744450 | 0.217786088685563 | 0.000341588685563
0.5398 | 0.3165 0.317510108816846 0.001010108816846 | 0.17084670 | 0.171391956739333 | 0.000545256739333
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0.5521 | 0.2120 0.212154938458203 0.000154938458203 | 0.11704520 | 0.117130741522774 0.000085541522774
0.5633 | 0.1035 0.102251311341269 0.001248688658731 | 0.05830155 | 0.057598163678537 | 0.000703386321463
0.5736 |—0.0100| -0.00871754175614925 | 0.001282458243851 | —0.0057360 | -0.005000381951327 | 0.000735618048673
0.5833 |—0.1230| -0.125507412310708 0.002507412310708 | —0.0717459 | -0.073208473600836 | 0.001462573600836
0.5900 |—0.2100| -0.208472325535473 0.001527674464527 | —0.1239000 | -0.122998672065929 | 0.000901327934071
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Figure 3. Comparisons between measured data and estimated data achieved by MA for SD model

The calculated values of current, power and individual
absolute errors (IAE) achieved with MA for the single diode
model are reported in Table 3. Also, using calculated values, P-V
and 1-V characteristics for SD model are shown in Figure 3. As
seen Figure 3, the alignment between the measured and
calculated values by MA is quite perfect.

4.2. Analysis of Double Diode Model

For DD model, the performance of MA is compared with
those of the TLBO (Li et al., 2019), HISA (Kler et al., 2019),
MADE (Li et al., 2019), CS (Chen & Yu, 2019), CS-BBO (Chen
& Yu, 2019), ABC (Olivia et al., 2014), TLBO-ABC (Chen et
al., 2018), BLPSO (Yu et al.,, 2019), BMO (Askarzadeh &

Coelho, 2015), LBSA (Yu et al., 2018), CWOA (Olivia et al.,
2017), ISCA (Chen et al., 2019), IGHS (Askarzadeh &
Rezazadeh, 2012), PSO-WOA (Xiong et al., 2018), SA (EI-
Naggar et al., 2012), GWO (Long et al., 2020), mMGWO (Long et
al., 2020), EGWO (Long et al., 2020), AgGWO (Long et al.,
2020), SCA (Long et al., 2020), WOA (Long et al., 2020) and
GWOCS (Long et al., 2020) algorithms.

In Table 4, the best estimated diode parameters and RMSE
values of competitor algorithms for double diode model are
reported. As reported in Table 4, the best value 9.8237E-04 of
RMSE is achieved by ISCA and the second best algorithm is
MA with RMSE value 9.8248E-04.

Table 4. The best obtained diode parameters and RMSE values of competitor algorithms for DD model.

Algorithm RMSE Iph Isa1 Isa2 Rs Rsh n1 n2
ABC (Olivia et al., 2014) 9.8956E—04/0.76071 |0.14623) 0.24605 | 0.03654 |55.36509| 1.68023 | 1.46226
AgGWO (Long et al., 2020) 1.1646E—03|0.76003 |0.30993/0.071708| 0.03643 | 67.6033 | 1.4778 | 1.8839
BLPSO (Yuetal.,, 2019) 1.1042E—03|0.76056 |0.17895| 0.31560 | 0.03553 |64.79937| 1.69574 | 1.48789
BMO (Askarzadeh & Coelho, 2015)  [9.8262E—04{0.76078 |0.21110| 0.87688 | 0.03682 | 55.8081 | 1.44533|1.99997
CS (Chen & Yu, 2019) 2.4440E—03|0.76223|0.02732] 0.50832 | 0.03530(97.73242/1.70274 | 1.52893
CS-BBO (Chen & Yu, 2019) 9.8249E—04]0.76078 [0.74935) 0.22597 | 0.03674 [55.48544] 2 1.45102
CWOA (Olivia et al., 2017) 9.8272E—04/0.76077 0.24150 0.6 |0.03666 |55.2016 |1.45651 | 1.9899
EGWO (Long et al., 2020) 1.8062E—03|0.76251 |0.20856| 0.12109 | 0.03837|32.8813| 1.6971 | 1.3982
GWO (Long et al., 2020) 2.2124E-03|0.7616680.40302| 0.45338 | 0.03265 [72.52775] 1.6460 | 1.5527
GWOCS (Long et al., 2020) 9.8334E—04]0.76076 [0.53772) 0.24855 | 0.03666 | 54.7331 2 1.4588
HISA (Kler et al., 2019) 2.0166E—03[1.0323682.64194(1.00E—09 1.23178 [748.4507|47.6574 | 47.6325
IGHS (Askarzadeh & Rezazadeh, 2012)(9.8635E—04/0.76079 0.97310] 0.16791 | 0.03690 | 56.8368 | 1.92126 | 1.42814
IGWO (Long et al., 2020) 1.7576E—03(0.760725/0.52878| 0.23949 | 0.03330 [80.84466 1.5420 |1.74057
ISCA (Chen et al., 2019) 9.8237E—040.76078|0.74935| 0.22597 | 0.03674 |55.48543 2 1.45102
LBSA (Yuetal., 2018) 1.0165E—03| 0.7606 |0.29814] 0.27096 | 0.0363 | 60.1880| 1.4760 | 1.9202
MADE (Li etal., 2019) 9.8261E—04] 0.7608 |0.7394| 0.2246 |0.03680|55.4329| 1.9963 | 1.4505
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mMGWO (Long et al., 2020) 1.3163E—03]0.76088 |0.49333| 0.17345 |0.034646/62.17868| 1.52522 | 1.94264
Proposed 9.8248E-04| 0.7608 |0.22641) 0.74563 | 0.0367 |55.4777| 1.4512 2
PSO-WOA (Xiong et al., 2018) 1.6700E—03|0.761091/0.20123] 0.93611 |0.03422382.822991.4633241.773674
SA (El-Naggar et al., 2012) 1.9000E—02| 0.7623 |0.4767| 0.01 | 0.0345 |43.1034| 1.5172 2
SCA (Long et al., 2020) 4.0585E—020.750912 0 |0.94825 0 |7.374536 1 1.6156
TLBO (Li et al., 2019) 1.0069E—-03| 0.7610 {0.2947| 0.1373 | 0.0366 |53.1210| 1.4730 | 1.9938
TLBO-ABC (Chen et al., 2018) 9.8415E—04]0.76081 |0.42394| 0.24011 | 0.03667 [54.66797|1.90750 | 1.45671
WOA (Long et al., 2020) 3.1312E—03]0.761631/0.37996| 0.98043 |0.029896| 69.8988 |1.876598/1.609125

The calculated current, power and IAEs values achieved
with MA for the DD model are tabulated in Table 5. 1-V and P-V
characteristics obtained by MA for DD model are shown in

Figure 4.
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The low IEA values shown in Table 5 and the overlapping of
measured and calculated data in Figure 4 show the prediction
accuracy and efficiency of the MA algorithm.
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Figure 4. Comparisons between measured data and estimated data achieved by MA for DD model
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Table 5. The calculated current, power and I1AEs values achieved with MA for the DD model.

VIV) [ 1A

Calculated 1 (A)

IAE (1)

P (W)

Calculated P (W)

IAE (P)

—0.2057] 0.7640

0.763983771266760

0.000016228733240

—0.1571548

-0.157151461749573

0.000003338250427

—0.1291] 0.7620

0.762604263115149

0.000604263115149

—0.0983742

-0.098452210368166

0.000078010368166

—0.0588| 0.7605

0.761337690239598

0.000837690239598

—0.0447174

-0.044766656186088

0.000049256186088

0.0057 | 0.7605

0.760173622040099

0.000326377959901

0.00433485

0.004332989645629

0.000001860354371

0.0646 | 0.7600

0.759107377820958

0.000892622179042

0.04909600

0.049038336607234

0.000057663392766

0.1185 | 0.7590

0.758121009380292

0.000878990619708

0.08994150

0.089837339611565

0.000104160388435

0.1678 | 0.7570

0.757188137450428

0.000188137450428

0.12702460

0.127056169464182

0.000031569464182

0.2132 | 0.7570

0.756243127853974

0.000756872146026

0.16139240

0.161231034858467

0.000161365141533

0.2545 | 0.7555

0.755176905587466

0.000323094412534

0.19227475

0.192192522472010

0.000082227527990

0.2924 | 0.7540

0.753722142366433

0.000277857633567

0.22046960

0.220388354427945

0.000081245572055

0.3269 | 0.7505

0.751399198721574

0.000899198721575

0.24533845

0.245632398062083

0.000293948062083

0.3585 | 0.7465

0.747301829752872

0.000801829752872

0.26762025

0.267907705966405

0.000287455966405

0.3873 | 0.7385

0.740011324679151

0.001511324679151

0.28602105

0.286606386048235

0.000585336048235

0.4137 | 0.7280

0.727247747002051

0.000752252997949

0.30117360

0.300862392934749

0.000311207065251

0.4373 | 0.7065

0.706850991411476

0.000350991411476

0.30895245

0.309105938544238

0.000153488544238

0.4590 | 0.6755

0.675210919040362

0.000289080959638

0.31005450

0.309921811839526

0.000132688160474

0.4784 | 0.6320

0.630760720624882

0.001239279375118

0.30234880

0.301755928746944

0.000592871253056

0.4960 | 0.5730

0.571994341340495

0.001005658659505

0.28420800

0.283709193304886

0.000498806695114

0.5119 | 0.4990

0.499705573500788

0.000705573500788

0.25543810

0.255799283075053

0.000361183075053

0.5365 | 0.4130

0.413733208249973

0.000733208249973

0.21744450

0.217830534143611

0.000386034143611

0.5398 | 0.3165

0.317546025847281

0.001046025847281

0.17084670

0.171411344752362

0.000564644752362
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0.5521 | 0.2120

0.212123193219821

0.000123193219821

0.11704520

0.117113214976663

0.000068014976663

0.5633 | 0.1035

0.102163759194494

0.001336240805506

0.05830155

0.057548845554258

0.000752704445742

0.5736 |—0.0100

-0.008791410321428

0.001208589678572

—0.0057360

-0.005042752960371

0.000693247039629

0.5833 |-0.1230

-0.125543404541762

0.002543404541762

—0.0717459

-0.073229467869210

0.001483567869210

0.5900 |-0.2100

-0.208372428076835

0.001627571923165

—0.1239000

-0.122939732565333

0.000960267434667

4.3. Analysis of PV Panel Model

For Photowatt-PWP-201 model, the performance of MA is
compared with those of the MADE (Li et al., 2019), TLBO-ABC
(Chen et al., 2018), FPA (Alam et al., 2015), CPSO (Xu &
Wang, 2017), CLPSO (Yu et al., 2019), JAYA (Yu et al., 2019),
LBSA (Yu et al., 2018), MLBSA (Yu et al., 2018), CWOA
(Olivia et al., 2017), ISCA (Chen et al., 2019), PSO-WOA
(Xiong et al., 2018), SA (EI-Naggar et al., 2012), GWO (Long et
al., 2020), mGWO (Long et al., 2020), EGWO (Long et al.,
2020), AgGWO (Long et al., 2020), SCA (Long et al., 2020),
WOA (Long et al., 2020) and GWOCS (Long et al., 2020)

In Table 6, the best obtained diode parameters and RMSE
values of competitor algorithms for Photowatt-PWP-201 model
are tabulated. When the estimation results in Table 6 are
compared, the best RMSE value 2.4250E-03 is achieved by MA.

The calculated current, power and IAEs values achieved
with MA for Photowatt-PWP-201 model are mentioned in Table
7. The calculated values of current, power values are employed
to plot P-V and I-V characteristics of Photowatt-PWP-201 model
and they are shown in Figure 5. It is easily understood that the
success of the MA algorithm continues because of the low error
values (RMSE and IAE) in the tables and the graphical

algorithms. coherence  between measured and calculated  data.
Table 6. The best obtained diode parameters and RMSE values of competitor algorithms for Photowatt-PWP-201 model.
Algorithm RMSE Iph Isd Rs Rsh n
AgGWO (Long et al., 2020) 2.6145E-03] 1.02808 4.9187 1.16459 1728.7773 50
CLPSO (Yu et al., 2019) 2.4281E-03] 1.0304 3.6131 1.1978 1017.0 48.7847
CPSO (Xu & Wang, 2017) 3.5000E—03] 1.0286 8.3010 1.0755 1850.1 52.2430
CWOA (Olivia et al., 2017) 2.6417E-03] 1.029962 | 3.847725| 1.201407 |1172.121142 |49.023217
EGWO (Long et al., 2020) 2.6448E—03] 1.02984 4.9105 1.16042 1268.9149 50
FPA (Alam et al., 2015) 2.7425E—03] 1.032091 | 3.047538 | 1.217583 811.3721 | 48.13128
GWO (Long et al., 2020) 2.6749E-03] 1.03038 4.9068 1.15926 1173.7966 50
GWOCS (Long et al., 2020) 2.4251E-03| 1.03049 3.4650 1.2019 082.7566 | 48.62367
IGWO (Long et al., 2020) 2.6228E—03] 1.0277 4.9210 1.16582 1895.9042 | 49.9986
ISCA (Chen et al., 2019) 2.4251E-03] 1.030514201 | 3.4822623| 1.201271659 | 981.9966 | 48.64283
JAYA (Yu et al., 2019) 2.4278E—-03] 1.0302 3.4931 1.2014 1022.5 48.6531
LBSA (Yuetal., 2018) 2.4296E-03] 1.0304 3.5233 1.2014 1020.4 48.6866
MADE (Li etal., 2019) 2.4251E-03] 1.0305 3.4823 1.2013 081.9823 | 48.6428
mGWO (Long et al., 2020) 2.6034E-03] 1.02952 4.6005 1.17284 1261.0638 | 49.7338
MLBSA (Yu et al., 2018) 2.4251E-03] 1.0305 3.4823 1.2013 081.9823 | 48.6428
Proposed 2.4250E-03]  1.0305 3.4823 1.2013 981.9870 | 48.6428
PSO-WOA (Xiong et al., 2018) [2.6242E—03] 1.033772 | 3.340338 | 1.205482 | 776.330261 | 48.48701
SA (EI-Naggar et al., 2012) 2.7000E-03] 1.0331 3.6642 1.1989 833.3333 | 48.8211
SCA (Long et al., 2020) 3.1103E-02 1.0722 5.2254 1.27171 2000 50
TLBO-ABC (Chen et al., 2018) [2.4251E—03] 1.0305 3.4826 1.2013 082.1815 | 48.6432
\WOA (Long et al., 2020) 3.6253E—03] 1.03265 2.1278 1.22796 624.58027 | 46.8347
Table 7. The calculated current, power and IAEs values achieved with MA for the Photowatt-PWP-201 model.
VV) | TA) Calculated 1 (A) IAE (1) P (W) Calculated P (W) IAE (P)
0.1248 |1.0315| 1.029119159571656 | 0.002380840428344 |0.1287312 | 0.128434071114543 | 0.000297128885457
1.8093 |1.0300| 1.027381071767876 | 0.002618928232125 | 1.8635790 | 1.858840573149617 | 0.004738426850383
3.3511 |1.0260| 1.025741795860399 | 0.000258204139601 | 3.4382286 | 3.437363332107783 | 0.000865267892217
4.7622 |1.0220| 1.024107154017180 | 0.002107154017180 |4.8669684 | 4.877003088860617 | 0.010034688860617
6.0538 |1.0180| 1.022291804049050 | 0.004291804049050 | 6.1627684 | 6.188750123352136 | 0.025981723352136
7.2364 |1.0155| 1.019930680571695 | 0.004430680571695 | 7.3485642 | 7.380626376889014 | 0.032062176889013
8.3189 |1.0140| 1.016363105520908 | 0.002363105520908 | 8.4353646 | 8.455023038517878 | 0.019658438517878
9.3097 |1.0100| 1.010496151251689 | 0.000496151251689 | 9.4027970 | 9.407416019307844 | 0.004619019307844
10.2163|1.0035| 1.000628969664897 | 0.002871030335103 | 10.252057 | 10.222725742787487 | 0.029331307212514
e-1SSN: 2148-2683 231



file:///C:/Users/HP/Desktop/Ejosat%20Solar%20Cell/Solar%20Cell%20Article%202021.docx%23_bookmark56
file:///C:/Users/HP/Desktop/Ejosat%20Solar%20Cell/Solar%20Cell%20Article%202021.docx%23_bookmark55
file:///C:/Users/HP/Desktop/Ejosat%20Solar%20Cell/Solar%20Cell%20Article%202021.docx%23_bookmark58

Avrupa Bilim ve Teknoloji Dergisi

11.0449(0.9880| 0.984548378375851 | 0.003451621624149 |10.912361 | 10.874238384323434 | 0.038122815676566
11.8018|0.9630| 0.959521675878379 | 0.003478324121621 | 11.365133 | 11.324082914381457 | 0.041050485618543
12.4929|0.9255| 0.922838817701344 | 0.002661182298656 | 11.562179 | 11.528933065661123 | 0.033245884338877
13.1231|0.8725| 0.872599662395507 | 0.000099662395507 | 11.449905 | 11.451212629582480 | 0.001307879582479
13.6983|0.8075| 0.807274263265701 | 0.000225736734299 | 11.061377 | 11.058285040492549 | 0.003092209507450
14.2221|0.7265| 0.728336477684136 | 0.001836477684136 | 10.332355 | 10.358474219271551 | 0.026118569271551
14.6995|0.6345| 0.637137999872465 | 0.002637999872465 | 9.3268327 | 9.365610029125293 | 0.038777279125293
15.1346|0.5345| 0.536213063203068 | 0.001713063203068 | 8.0894437 | 8.115370226353159 | 0.025926526353159
15.5311{0.4275| 0.429511325125178 | 0.002011325125178 | 6.6395452 | 6.670783341651655 | 0.031238091651654
15.8929|0.3185| 0.318774483107432 | 0.000274483107432 | 5.0618886 | 5.066250982578100 | 0.004362332578100
16.2229|0.2085| 0.207389507018174 | 0.001110492981826 | 3.3824746 | 3.364459233405143 | 0.018015416594857
16.5241|0.1010| 0.096167172050621 | 0.004832827949379 | 1.6689341 | 1.589075967681673 | 0.079858132318327
16.7987|-0.008| -0.008325386101837 | 0.000325386101837 |—0.134390 | -0.139855663508923 | 0.005466063508923
17.0499|-0.111| -0.110936483014156 | 0.000063516985844 |—1.892539 | -1.891455941743056 | 0.001082958256944
17.2793|-0.209| -0.209247266603263 | 0.000247266603263 | —3.611374 | -3.615646293817758 | 0.004272593817759
17.4885|-0.303| -0.300863588123880 | 0.002136411876120 |—-5.299016 | -5.261652860904483 | 0.037362639095516
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Figure 5. Comparisons between measured data and estimated data achieved by MA for Photowatt-PWP-201 model

4.4. Performance Summary of MA

for all models. Also, compared with the other algorithms, MA is

In table 8, the robustness results of RMSE achieved by MA for
single diode, double diode and Photowatt-PWP-201 models are
summarized. As seen Table 8, standard deviations are very small

obtained minimum RMSE values for single diode and
Photowatt-PWP-201 models. For double diode model, second
minimum value is converged by MA.

Table 8. The robustness results of RMSE achieved by MA for SD, DD and Photowatt-PWP-201 models.

Model Min Mean Max SD
SD model 9.8602E-04 9.8602E-04 9.8602E-04 6.8856E-15
DD model 9.8248E-04 9.8282E-04 9.8332E-04 2.7878E-07
Photowatt-PWP-201 module model 2.4250E-03 2.4272E-03 2.4383E-03 3.0873E-06
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5. Conclusion

In this paper, Mayfly algorithm is applied to estimate the
characteristic parameter of aforementioned photovoltaic models,
such as single and double diodes. Especially, to analyze the
accuracy and robustness of the proposed approach, real-time
devices such as R.T.C France, Photowatt-PWP-201 and STM-
40/36 are measured and output current and voltage values are
used for estimation. Estimated parameters and RMSE values of
MA are compared with well-known literature algorithms. Also,
current, voltage and their IAEs are calculated and I-V and P-V
characteristics are plotted.

Outstanding conclusions of this paper can be declared as
follows:

*+  When the Max_FES is set 50000 for competitor
algorithms suggested in literature, MA is realized estimation
process for 10000 evaluations. But despite this important factor,
MA shows good performance for characteristic parameter
estimation of PV models than the other literature algorithms.

» Although several algorithms are improved with
strategies and mechanisms in literature, the performance of basic
Mayfly algorithm has been demonstrated for four models.

» The robustness and efficiency of MA are quite
satisfactory according to achieved statistical results.

I-V and P-V curves are plotted using estimated parameters by
MA for all aforementioned models. The alignment between
measured and calculated data concludes that the semiconductor
models for PV are done correctly and MA algorithm performs
characteristic parameter estimation with high precision.
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