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Abstract 

Describing an image with a grammatically and semantically correct sentence, known as image captioning, has been improved 

significantly with recent advances in computer vision (CV) and natural language processing (NLP) communities. The integration of 

these communities leads to the development of feature-injection architectures, which define how extracted features are used in 

captioning. In this paper, a benchmark of feature-injection architectures that utilize CV and NLP techniques is reported for encoder-

decoder based captioning. Benchmark evaluations include Inception-v3 convolutional neural network to extract image features in the 

encoder while the feature-injection architectures such as init-inject, pre-inject, par-inject and merge are applied with a multi-layer gated 

recurrent unit (GRU) to generate captions in the decoder. Architectures have been evaluated extensively on the MSCOCO dataset across 

eight performance metrics. It has been concluded that the init-inject architecture with 3-layer GRU outperforms the other architectures 

in terms of captioning accuracy. 

 

Keywords: Convolutional Neural Network, Feature-injection Architectures, Gated Recurrent Unit.   

Görüntü Altyazılamada Öznitelik Enjeksiyon Mimarileri için Bir 

Kıyaslama 

Öz 

Görüntü altyazılama olarak bilinen, bir görüntüyü dilbilgisel ve anlamsal olarak doğru bir cümle olarak tanımlama, bilgisayarlı görme 

ve doğal dil işleme alanlarındaki son gelişmelerle birlikte önemli ölçüde ilerlemiştir. Bu iki alanın birleştirilmesi, çıkarılan özniteliklerin 

altyazı oluşturmada nasıl kullanılacağını tanımlayan öznitelik enjeksiyon mimarisinin geliştirilmesine öncülük etmiştir. Bu çalışmada, 

bilgisayarlı görme ve doğal dil işleme tekniklerini kodlayıcı-kod çözücü tabanlı görüntü altyazılamada kullanan öznitelik enjeksiyon 

mimarilerinin bir karşılaştırılması raporlanmaktadır. Kıyaslama değerlendirmelerinde, Inception-v3 evrişimsel sinir ağı, kodlayıcıda 

görüntü özniteliklerini çıkarmak için kullanılırken; init-inject, pre-inject, par-inject ve merge gibi öznitelik enjeksiyon mimarileri altyazı 

üretmek için çok katmanlı kapılı tekrarlayan birim ile kod çözücüde uygulanmaktadır. Mimariler sekiz performans metriği ile MSCOCO 

veri kümesi üzerinde kapsamlı bir şekilde değerlendirilmiştir. 3 katmanlı GRU ile init-inject mimarisinin altyazı doğruluğu açısından 

diğer mimarilerden daha iyi performans gösterdiği sonucuna varılmıştır. 
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1. Introduction 

Captioning is an automated image description with a 

meaningful and grammatically correct sentence that has 

applications in many areas, such as description generation in 

social media (Chiarella, Yarbrough, & Jackson, 2020), image 

indexing (Chang, 1995), and assistance for the visually impaired 

(Baran, Moral, & Kılıç, 2021; Çaylı, Makav, Kılıç, & Onan, 2020; 

Keskin, Moral, Kılıç, & Onan, 2021; Makav & Kılıç, 2019b). This 

task is accomplished using a combination of CV and NLP 

techniques.  

Earlier studies for image captioning have dealt with different 

approaches: retrieval-based, template-based and encoder-decoder 

based methods. The retrieval-based approach, which is a 

traditional image captioning approach, retrieves reference caption 

of images from a dataset and analyzes its semantic information 

for generating a caption of a new image based on similarities (X. 

Liu, Xu, & Wang, 2019). Therefore, in this approach, caption 

generation is limited to the properties of the dataset and cannot 

generate novel descriptions which are not in training (Ordonez, 

Kulkarni, & Berg, 2011). Researches in image captioning have 

advanced remarkably with the template-based approach, which 

utilizes object detection and language models (Kulkarni et al., 

2013). This approach detects objects, attributes, and spatial 

relationships from images to generate a syntactically correct 

sentence from a template that is a set of most likely words. This 

method improves the generated captions since it precisely 

complies with the grammatical rules. However, the generated 

sentence is not comparable with human style as it is only similar 

to the template, and it cannot add new words or reorder them. 

Effective image captioning methods have been introduced 

with the development of encoder-decoder based approaches. 

Unlike retrieval-based and template-based, this approach 

combines a convolutional neural network (CNN) and a recurrent 

neural network (RNN) to describe images (Makav & Kılıç, 

2019a). A CNN based encoder is employed to extract image 

features, then the features have been fed to the decoder. There are 

many types of research devoted to performance improvement in 

CNNs, resulting in the emergence of advanced CNN architectures 

such as Inception-v3 (Szegedy, Vanhoucke, Ioffe, Shlens, & 

Wojna, 2016), Xception (Chollet, 2017), and ResNet (Targ, 

Almeida, & Lyman, 2016) that are widely used in encoder design. 

Image features extracted by CNN-based encoders are processed 

in RNN-based decoders to generate natural language captions 

using this information. However, the simple RNN has issues like 

the vanishing and exploding gradient problems that prevent 

modeling of long-term dependencies (Ouyang, Zeng, Li, & Luo, 

2020). To overcome these issues, advanced RNNs are introduced, 

including the long-short term memory (LSTM) (Hochreiter & 

Schmidhuber, 1997) and gated recurrent unit (GRU) (Chung, 

Gulcehre, Cho, & Bengio, 2014). LSTM network solves the 

vanishing gradient and losing the content of the information 

problem with the addition of memory cells to capture long-term 

dependencies. 

GRU controls the information flow without additional 
memory cells and uses fewer gates that correspond to only one-
fourth parameters of the LSTM (Gao & Glowacka, 2016). In this 
regard, GRU has been proven to be an efficient choice over 
traditional RNNs or LSTM due to the high accuracy with the 
lower computation (Gers & Schmidhuber, 2001). RNN-based 
decoders require a  feature-injection that utilizes the image and 
linguistic features to generate a more meaningful caption  (Baran 

et al., 2021; Çaylı et al., 2020), (Devlin et al., 2015; Tanti, Gatt, 
& Camilleri, 2018; Vinyals, Toshev, Bengio, & Erhan, 2016). The 
feature-injection architectures could be categorized into init-
inject, pre-inject, par-inject, and merge (Tanti et al., 2018). The 
image feature is fed to the initial hidden state of the RNN in the 
init- inject (Devlin et al., 2015), (S. Liu, Zhu, Ye, Guadarrama, & 
Murphy, 2016), while the first input of the RNN is fed by the 
image feature as in pre-inject architecture (Nina & Rodriguez, 
2015; Vinyals, Toshev, Bengio, & Erhan, 2015). The image 
feature is used with the linguistic feature in parallel as an input to 
the RNN in par-inject architecture (Donahue et al., 2015; Yao, 
Pan, Li, Qiu, & Mei, 2017). The image feature is exposed to the 
system after the GRU processes in merge architecture (Baran et 
al., 2021; Mao et al., 2015). 

In this study, a benchmark of feature-injection architectures, 
i.e., init-inject, par-inject, pre-inject and merge, is reported for 
image captioning based on the encoder-decoder approach. The 
Inception-v3 architecture is used for all experiments to extract 
image features due to its high-level performance in ILSVRC 2015 
(He, Zhang, Ren, & Sun, 2016). GRU is employed in the decoder 
to generate image captions because of its computational 
efficiency and prediction accuracy. As it is reported in (Tanti et 
al., 2018), a fully connected (FC) layer optimized the captioning 
accuracy in par-inject architecture. Based on this conclusion, 
benchmark evaluations have been extended for all architectures, 
including a connection of an FC layer to the decoder. In addition, 
multi-layer GRU is employed to examine the effect of layer size 
in caption generation. The motivation behind the increasing layer 
size is to enhance the memory ability of the model to compute 
more complex representations in learning sequential data to 
provide a captioning model that generates more accurate 
predictions (Keskin et al., 2021; Kılıç, 2021; Tao, Wang, Sánchez, 
Yang, & Bai, 2019). The experiments were evaluated on the 
MSCOCO dataset (T.-Y. Lin et al., 2014) with commonly used 
performance metrics BLEU-n (n = 1, 2, 3, 4) (Papineni, Roukos, 
Ward, & Zhu, 2002), ROUGE-L (C.-Y. Lin, 2004), SPICE 
(Anderson, Fernando, Johnson, & Gould, 2016), METEOR 
(Banerjee & Lavie, 2005) and CIDEr (Vedantam, Lawrence 
Zitnick, & Parikh, 2015). 

The rest of the paper is organized as follows:  Section 2 covers 
the encoder-decoder based approach and feature-injection 
architectures with theoretical foundations. Section 3 introduces 
the dataset, performance metrics and results with implementation 
details. Conclusions are drawn in Section 4. 

2. Image Captioning Methods 

The feature-injection architectures based on the encoder-
decoder approach to utilize the image and linguistic features are 
described in this section. 

2.1. Encoder-Decoder Based Approach 

In encoder-decoder based approach, it is intended to 

maximize the probability 𝑝(𝑆|𝐼) for generating the best 

descriptions (X. Liu et al., 2019) as follows 

𝜃∗ = arg max
𝜃

∑ log 𝑝(𝑆|𝐼; 𝜃)     

(𝐼,𝑆)

 (1) 

where θ represents learning parameter, I is the input image and 

𝑆 =  {𝑆0, 𝑆1, … ,  𝑆𝑡−1} is the corresponding caption. Since the 

varying length of the caption is generated for each image, the 

probability calculation is expressed by the chain rule (X. Liu et 

al., 2019), 
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log 𝑝(𝑆|𝐼) = ∑ log 𝑝(𝑆𝑡|𝐼, 𝑆0, … , 𝑆𝑡−1)

𝑁

𝑡=0

     (2) 

 

where  N  is the caption length.  The  conditional  probability 

𝑝(𝑆𝑡|𝐼, 𝑆0, … , 𝑆𝑡−1) in Eq. 2 is modeled with RNN taking the 

input at the current time step t and the output of the previous time 

step t − 1. This recursive process predicts every word in the 

caption, which produces a probability distribution over all 

possible words according to the current word and context from 

previous time steps. 

Encoder - CNN: The encoder is the first step of the encoder-
decoder based approach that extracts the image features using a 
CNN architecture. The Inception-v3, which consists of 48 
convolutional,  pooling,  and  FC  layers with an input image size 
of 3×299×299, was utilized to extract image features in this 
study. The process of the input image was propagated until the 
global average pooling layer of the Inception-v3, resulting in a 
feature vector with the length of 2048 to feed into the decoder 
for the comparison of feature-injection architectures. 

Decoder - GRU: The next step is the decoder, where the 
feature-injection architectures are applied to generate a caption 
word-by-word using both image and linguistic features. The 
multi-layer GRU based decoder mainly consists of the FC layer, 
embedding layer and GRUs, which is illustrated in Figure 1. The 
FC layer utilizes an activation function on input with weight to 
calculate the output. This layer normalizes the output of the 
GRU with a logarithmic softmax function that improves loss 
calculation. Here, this layer is first utilized to produce an image 
feature vector with the reduced size before the GRU layer to test 
the feature-injection architectures. Meanwhile, the embedding 
layer processes tokens representing numerical components and 
generates an embedding vector (or word embedding) containing 
linguistic features to feed the GRU, which is a type of RNN with 
a gating mechanism to control the information flow through 
cells. GRU consists of a hidden state vector, update and reset 
gates. The flow of information on GRU is as follows (Chung et 
al., 2014): 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑊𝑟ℎ𝑡−1) (3) 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑊𝑧ℎ𝑡−1) (4) 

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑊ℎ(𝑟𝑡 ⊙ ℎ𝑡−1)) (5) 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡𝑢𝑡 (6) 

where 𝑥𝑡  and ℎ𝑡 are the input and the hidden state vectors, 𝑟𝑡,  
𝑧𝑡  and 𝑢𝑡 corresponds to the reset gate, update gate and candidate 
hidden vector, respectively. W denotes weight matrices, σ and 
tanh are sigmoid and hyperbolic tangent. ⊙ denotes the element-
wise multiplication operator. The multi-layer GRU is a 
combination of K-GRU for k = 1, ..., K. The first GRU layer takes 
the embedding vector, which is generated using start-token from 
the embedding layer. The output vector of the first layer feeds to 
the next GRU layer, and this process is continued K-times 
reaching the last output is generated, which is the input for the FC 
layer. The FC layer generates the first token, which is computed 
by the embedding layer in the next time step. The procedure is 
repeated T-times to reach the end token. All generated tokens are 
converted to the image caption. Inject-based and merge 
architectures are applied to the multi-layer GRU based decoder to 
see the effect of layer size on generating caption.  

2.2. Feature-Injection Architectures 

Images can be incorporated into the decoder with feature-
injection architectures in two different ways (i.e., inject-based 
and merge) using a fixed-length image feature vector and 
linguistic feature vector (embedding vector) from the encoder 
and embedding layer, respectively. The inject-based architecture 
is designed to utilize both image feature and linguistic feature 
vector to the decoder, such as init-inject, pre-inject and par-
inject. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Multi-layer gated recurrent unit 

Init-inject architecture: The hidden state vector of GRU is 
initialized with the same-sized image feature vector (Tanti et al., 
2018), and the embedding vector is fed to the GRU as an input 
vector. The probability calculation is represented in the init- 
inject architecture as 

𝑝𝑡+1 = (𝐺𝑅𝑈(𝑥𝑡), 𝐶𝑁𝑁(𝐼)),

𝑡 ∈  {0, 1, … , 𝑁 − 1}   

(7) 

where GRU is the abbreviation of all processes in the Eqs. 3 - 6 
and CNN is the abbreviation of the process of the encoder. 

Pre-inject architecture: The image feature vector is utilized 

as the first input vector of GRU at t = −1, whereas the embedding 

vectors feed the GRU for the next step (Tanti et al., 2018). The 

image feature vector can be considered as the first word of the 

sequence. The process in the pre-inject architecture is represented 

as (Vinyals et al., 2015)  

𝑥𝑡−1 = 𝐶𝑁𝑁(𝐼) (8) 

𝑥𝑡 = 𝑊𝑒𝑆𝑡   𝑡 ∈ {0,1, … , 𝑁 − 1} (9) 

𝑝𝑡+1 = 𝐺𝑅𝑈(𝑥𝑡),   𝑡 ∈  {0, 1, … , 𝑁 − 1}  (10) 

where 𝑊𝑒 denotes the weight of the embedding layer. 
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Par-inject architecture: The image and embedding vector 

are concatenated as a single input before incorporating into the 

GRU (Tanti et al., 2018). The probability calculation is 

represented in the par-inject architecture as 

𝑝𝑡+1 = 𝐺𝑅𝑈 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑥𝑡 , 𝐶𝑁𝑁(𝐼))),    

𝑡 ∈  {0, 1, … , 𝑁 − 1}  
(11) 

where concat represents the concatenation that joins existing 

vectors together. 

Merge architecture: GRU takes only the embedding vector 
that handles linguistic features in this architecture, whereas the 
image feature vector is fed into the architecture after the GRU 
processes the linguistic features (Tanti et al., 2018). The image 
feature vector and the output vector of the GRU are merged into 
a single vector to calculate the probability. The probability 
calculation of the merge architecture is given as 

𝑝𝑡+1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐺𝑅𝑈(𝑥𝑡), 𝐶𝑁𝑁(𝐼)),   

  𝑡 ∈  {0, 1, … , 𝑁 − 1}    
(12) 

 

The general structure of the four architectures is illustrated in 
Figure 2. 

3. Experimental Evaluations  

This section presents the dataset, performance metrics and 
the evaluation of feature-injection architectures on multi-layer 
GRU based decoder with or without the FC layer. 

3.1. Dataset and Performance Metrics 

In order to evaluate feature-injection architectures, a dataset 
including a variety of images with reference captions is required. 
Flickr8k (Hodosh, Young, & Hockenmaier, 2013), Flickr30k 
(Young, Lai, Hodosh, & Hockenmaier, 2014), VizWiz-Captions 
(Gurari et al., 2018) and MSCOCO (T.-Y. Lin et al., 2014) are 
publicly available image captioning datasets. Flickr8k and 
Flickr30k include 8000 and 31783 images with five reference 
captions focused on people and objects involved in specific 
events and activities. The VizWiz- Captions dataset consists of 
23431 training, 7750 validation and 8000 test images taken by 
blind people, paired with five reference captions. MSCOCO is a 
relatively large dataset containing 118287 training and 5000 
validation images, each annotated with at least five reference 
captions. As a result, the MSCOCO dataset was employed, 
which is the most commonly used in captioning studies because 
it comprises all of the images in the Flickr datasets and offers a 
wide diversity of contents. 

The benchmark of the feature-injection architectures was 
built with several metrics such as BLEU-n (n = 1, 2, 3, 4), 
ROUGE-L, SPICE, METEOR and CIDEr. BLEU was initially 
developed to evaluate the machine translation system, which 
counts the number of co-occurrence n-grams in the system and 
reference captions. METEOR is also used to evaluate machine 
translation, which considers the accuracy, recall rate, and F-
value of the entire corpus. ROUGE-L is an automated text 
summary evaluation metric based on the longest subsequence at 
the sentence level. SPICE is a semantic metric for image 
captioning that evaluates by considering the objects, attributes, 
and relationships in the generated caption.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Init-inject (b) Pre-inject 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Par-inject (d) Merge 

Figure 2.  An illustration of the four different architectures incorporating the visual and linguistic feature vector representations into the 

decoder. The image feature vector is used as an initial state of GRU in (a). The image feature vector is used as the first input in (b). The 

concatenated image feature vector and embedding vector are incorporated into the GRU in (c). GRU is fed only with an embedding vector, 

then GRU output is combined with the image vector in (d). 
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Table 1. Performance metrics results of different feature-injection architecture-based image captioning systems on MSCOCO 

dataset. 

CIDEr is a customized metric for an image captioning system 
to evaluate the captions using sentence similarity to capture the 
notions of grammatically, saliency, and accuracy. Unlike CIDEr 
and SPICE, other metrics based on the ranking of captions (Young 
et al., 2014) and cannot evaluate novel image descriptions. 

3.2. Results and Discussion 

The feature-injection architectures have been examined under 
different designs of the multi-layer GRU based decoder and an FC 
layer to observe the effects in caption generation. All architectures 
were evaluated with BLEU-n, ROUGE-L, SPICE, METEOR, and 
CIDEr metrics on MSCOCO dataset. An FC layer is utilized 
before GRU for reducing the size of the image feature vector from 
2048 to 128 as it leads further improvement in par-inject 
architecture (Tanti et al., 2018). The negative log-likelihood 
function and Adam optimization algorithm are applied with the 
following training parameters: 50 epochs, batches of 128 image 
caption pairs and a hidden state size of 128. 

The experimental results in Table 1 are mainly evaluated 
based on CIDEr due to its better correlation with human 
assessment compared to other metrics. Extensive experiments 
indicate that inject-based architectures mostly outperform the 
merge architecture in terms of all performance metrics. The par-
inject architecture performs better than the other architectures for 
a single-layer GRU regardless of the FC layer. The connection of 
the FC layer to the par-inject does not lead to any improvement in 
the single-layer GRU, however, the improvement is clear in the 3-
layer GRU. On the contrary, the FC layer does not have a direct 
impact on the other architectures. The performance of the init-
inject architecture is enhanced with the increase of the layer size 
contrary to others. Among all the designs, the highest 
performance is obtained by 3-layer GRU under the init-inject 
architecture which incorporates the high-level visual information 
without the FC layer before the GRU.  Table 2 shows the ground 
truth (reference) and generated captions on samples from 
MSCOCO for each decoder design. These results indicate that the 
generated captions are coherent with the CIDEr scores as more 
meaningful captions are obtained.  

4. Conclusions 

In this study, a benchmark of feature-injection architectures that 
incorporate visual information into the decoder is reported. These 
architectures are based on a CNN that encodes an image into a 
feature vector, followed by a GRU based decoder that generates 
the corresponding caption of the image. These architectures are 
tested with multi-layer GRU, and an  FC layer to see their 
contributions to captioning performance. Extensive evaluations of 
architectures on the MSCOCO dataset demonstrate that the init-
inject architecture with multi-layer GRU design offers promising 
performance compared to the other architectures. In the future 
study, the effect of hyper-parameters on the generating captions 
will be investigated to provide a tuning strategy for respective 
architectures. 
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Decoder Design 

 

Decoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L SPICE METEOR CIDEr 

          

 Init-inject 0.6232 0.4273 0.2828 0.1869 0.4545 0.1280 0.1993 0.6001 

single-layer GRU 
Par-inject 0.6336 0.4430 0.2971 0.1957 0.4621 0.1295 0.2008 0.6210 

 Pre-inject 0.6235 0.4273 0.2849 0.1893 0.4549 0.1240 0.1961 0.5821 

 Merge 0.5923 0.3930 0.2547 0.1665 0.4279 0.1170 0.1842 0.5102 

Init-inject 0.5934 0.3950 0.2584 0.1696 0.4316 0.1140 0.1868 0.5131 

single-layer GRU Par-inject 0.6304 0.4348 0.2910 0.1932 0.4553 0.1251 0.1961 0.5903 

with FC layer Pre-inject 0.6325 0.4331 0.2883 0.1907 0.4540 0.1232 0.1948 0.5848 

Merge 0.5857 0.3823 0.2443 0.1581 0.4226 0.1077 0.1809 0.4953 

 Init-inject 0.6379 0.4476 0.3038 0.2045 0.4640 0.1349 0.2067 0.6524 

3-layer GRU 
Par-inject 0.6200 0.4247 0.2850 0.1898 0.4517 0.1221 0.1938 0.5693 

 Pre-inject 0.6169 0.4213 0.2814 0.1868 0.4496 0.1193 0.1908 0.5522 

 Merge 0.5898 0.3904 0.2517 0.1623 0.4261 0.1164 0.1833 0.4988 

 
3-layer GRU 

Init-inject 0.5618 0.3592 0.2221 0.1387 0.4090 0.0910 0.1637 0.3830 

Par-inject 0.6240 0.4290 0.2881 0.1933 0.4538 0.1218 0.1945 0.5815 

with FC layer Pre-inject 0.6177 0.4222 0.2825 0.1885 0.4511 0.1188 0.1910 0.5609 

Merge 0.5903 0.3847 0.2463 0.1595 0.4236 0.1077 0.1802 0.4882 
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Table 2. Examples of ground truth and generated captions of images selected from the MSCOCO validation set. 

Decoder Design MSCOCO Images Reference Captions Generated Captions 

 

 
 
 
 
 
 

Single-layer GRU 

 

 

 

 

 

 

 

 A baseball game is in action 
as a batter swings. 

 A baseball game with a 

batter ready to swing. 

 A batter, catcher and umpire 

in a baseball game. 

 A photo of a person being 

taken in this picture. 

 A baseball player holding a 

bat while standing on a field. 

Init-inject: Man swinging a 

baseball bat on a field. 

Par-inject: A baseball player 

swinging a bat at a game. 

Pre-inject:  A  baseball 

player is getting ready to hit 

a ball. 

Merge: A baseball player is 

getting ready to hit the ball. 

 
 
 
 
 
 
 

Single-layer GRU 

with FC layer 

 

 

 

 

 

 

 

 A rain covered terrain after a 

night of rain. 

 A street at night time with 

many different lights. 

 A bright city street with a 

stop light and a big christmas 

tree. 

 An empty street at night with 

lots of lights in the 

background. 

 A red traffic light at night 

next to a christmas tree. 

Init-inject: A  night  time  

view  of a  city street with a 

church in the distance. 

Par-inject: A night view of a 

city street with lit up tower. 

Pre-inject: A street with a 

lot of cars and a large 

building. 

Merge: A street light at 

night with lights on. 

 

 
 
 
 
 

3-layer GRU 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 A dog that is sitting down in 

a backseat. 

 An adorable brown and white 

dog hanging it's head out of a 

window. 

 A dog looking out the 

window as seen through a 

mirror. 

 A dog has its head hanging 

out of a window. 

 The reflection of a dogs head 

out of a car window in one of 

the cars wing mirrors. 

Init-inject: A dog is sitting 

on a car with his head 

sticking out the window. 

Par-inject: A dog is standing in the 

car. 

 
Pre-inject: A dog that is 

sitting on a car. 

Merge: A man in a car is 

seen through the mirror. 

 

 
 
 
 
 
 
 

3-layer GRU 

with FC layer 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 A man walking next to a 

snowy hill. 

 A cross country skier 

traveling down a slight slope. 

 A man with skis and ski poles 

is standing next to a hill 

covered in snow. 

 The elderly man on skis is 

making his way down the 

edge of the snow-covered 

road. 

 A person on skis riding down 

a snowy slope. 

Init-inject: A group of 

people who are standing in 

the snow. 

Par-inject: A person is walking 

down a hill with a pair of skis. 

Pre-inject: A man is 

ski ing in  a  snowy f ie ld .  

Merge: A man is standing in 

a field with a pair of skis. 

 

 

 

 

Comparison of best 
decoder architectures 

 

 

 

 

 

 

 

 

 Water traffic along the 

thames by big ben. 

 A barge floating down a river 

with the skyline in the 

background. 

 The enveloping of an outside 

town in the picture. 

 Tall building sitting on the 

rivers edge and a barge. 

 A castle and the big ben 

clocktower next to a river. 

 

Par-inject: A view of a big clock tower 

in London.  (Single-layer GRU) 

Par-inject: A big ben clock tower 

towering over a city. (Single-layer with 

FC layer) 

Init-inject:  A view of a river with boats 

and a clock tower in the background. (3-

layer GRU) 

Par-inject: A large building with a clock 

tower on it. (3-layer with FC layer) 
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