
Avrupa Bilim ve Teknoloji Dergisi

Sayı 31 (Ek Sayı 1), S. 861-869, Aralık 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 31 (Supp. 1), pp. 861-869, December 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 861

Robot Programming Using Model Based Design Tools

Mustafa Engin1*, Okan Duymazlar2, Dilşad Engin3

1* Ege University, Ege Higher Vocational School, Department of Electronic and Automation, İzmir, Turkey, (ORCID: 0000-0001-7247-4545),

mustafa.engin@ege.edu.tr
2 Ege University, Ege Higher Vocational School, Department of Mechatronics, İzmir, Turkey, (ORCID: 0000-0002-1327-7493), okan.duymazlar@ege.edu.tr

3 Ege University, Ege Higher Vocational School, Department of Electronic and Automation, İzmir, Turkey, (ORCID: 0000-0003-0159-275X), dilsad.engin@ege.edu.tr

(First received 16 October 2021 and in final form 27 December 2021)

(DOI: 10.31590/ejosat.1010444)

ATIF/REFERENCE: Engin, M., Duymazlar, O. & Engin, D. (2021). Robot Programming Using Model Based Design

Tools. European Journal of Science and Technology, (31), 861-869.

Abstract

The aim of this study is to perform a model-based design for six-revolute (6R) manipulators with six degrees of freedom commonly

used in the industrial field and to obtain a simulation and test environment as output. 3D model of the 6R manipulator is designed and

drawn using a solid drawing and simulation software. The obtained solid model is transferred to MATLAB™ and integrated to

SimMechanics™. With the obtained data output, the forward and inverse kinematic calculations are performed in the computer

environment instead of the manipulator controller. The functionality of the simulation and designed visual interface (VI) is tested

using the IRB120 6R manipulator. The data transfer between the interface and the manipulator is performed via TCP / IP socket

communication.

Keywords: Kinematics, Robotics, Model-based design, Socket communication.

Model Tabanlı Tasarım Araçları ile Robot Programlama

Öz

Bu çalışmada endüstriyel alanda yaygın olarak kullanılan altı serbestlik derecesine sahip 6R manipülatörleri için model tabanlı bir

tasarım yapılmış ve çıktı olarak bir simülasyon ve test ortamı elde edilmiştir. 6R manipülatörünün 3 boyutlu modeli, katı model ve

simülasyon yazılımı kullanılarak tasarlanmış ve çizilmiştir. Elde edilen katı model MATLAB™'e aktarılmış ve SimMechanics™'e

entegre edilmiştir. Elde edilen çıktı ile ileri ve ters kinematik hesaplamalar bilgisayar ortamında gerçekleştirilmiştir. Tasarımı

gerçekleştirilen simülasyon ve tasarlanan görsel arayüzün işlevselliği, IRB120 6R manipülatörü kullanılarak doğrulanmıştır. Arayüz

ile manipülatör arasındaki veri aktarımı, TCP / IP soket iletişimi ile yapılmıştır.

Anahtar Kelimeler: Kinematik, Robotik, Model tabanlı tasarım, Soket iletişimi.

* Corresponding Author: mustafa.engin@ege.edu.tr

http://dergipark.gov.tr/ejosat
mailto:xxxx@xxx.xx.xx
mailto:xxxx@xxx.xx.xx
mailto:xxxx@xxx.xx.xx
mailto:mustafa.engin@ege.edu.tr

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 862

1. Introduction

Increasing demand in the digitization of manufacturing,

mass customization, and flexible manufacturing systems bring

forth the utilization of robots in industry is becoming more

widespread. Robots are one of the main components of the

industry 4.0, which conceptualize the flexible production

systems and the technological transformation with the adoption

of computers and automation improved by smart autonomous

systems that are equipped with data (Hermann et al., 2016;

Mourtzis et al., 2019).

The use of robots in mass production lines, transport,

assembly, and quality control areas where repetitive works are

carried out, provides a 90% reduction in the unqualified

workforce needed in production enterprises, while the faulty

production rates allow an 80% reduction in comparison with

traditional methods (Alkan, 2018).

When the benefits of integrating robots into existing

systems are considered, an adaptation of the robots to the

manufacturing and production industry becomes important,

regardless of whether they have large or small production

quantities. However, it will take time in learning how to control

a new robot that will be included in production, packaging,

transportation, or quality control operations. Learning cost and

time loss will arise for different interfaces and software of each

manufacturer’s robot. Moreover, the requirements related to the

control development of the robot’s motion performance result in

utilization of simulation and model-based control of industrial

robotic applications to enhance the productivity (Brogårdh,

2009).

Although different industrial robot manufacturers produce

robots in various forms, the general form of industrial robots is

like each other. It will be useful to develop a generalized testing

interface that will serve as an input and monitoring interface.

This interface also acts like a simulator, which only needs link

dimensions of manipulators, which are of the same form.

Researchers work on software interface development and

hardware design platforms. These are dedicated to specific

industrial robots, only hardware design, or just simulation

platforms.

A SolidWorks Application Programming Interface is

utilized where a platform, named as IRoSim, is developed for

CAD design and a simulation of serial robot arms with different

types of joints (Baizid et al., 2016). Neto et al. present an

intuitive robot programming based on CAD drawings to

generate offline robot programs equipped with human-robot

interface (Neto et al., 2012). A developed toolbox named ARTE

(A Robotics Toolbox for Education) is for teaching of serial

industrial robotic manipulators, which works under MATLAB

and has functions to solve kinematics and dynamics related

problems as well as graphics functions to get dynamic

visualization of robotic manipulators. This toolbox eases the

development of advanced robotic models and simulate them (Gil

et al., 2015). 3D CAD design and dynamic simulation of a

KUKA robot via Autodesk Inventor, and simulation by

MATLAB SimMechanics gives very accurate results

comparatively (Udai et al., 2011). A CAD-based programming

platform and human-robot interface is developed based on open-

source libraries where any user can generate a robot path from a

CAD model and visualize the simulation (Schou et al., 2013). A

Java-based open-source platform, JOpenShowVar, is designed

for industrial Kuka robots and robot controllers as a

communication interface which allows to read/write the

controlled manipulator variables and data structures (Sanfilippo

et al., 2015). Rehbein et al. (2019) developed a simplified

model-based design for industrial robot programming with

offline programming capability (Rehbein, Wrutz, and

Biesenbach 2019). This research provides model-based robot

programming for KUKA robot manipulators using

MATLAB/Simulink with an implemented interface to improve

the robot system capabilities by advanced programming

languages with the aim to increase the flexibility and ease of

robot programming.

These efforts are for less time consuming, and more flexible

solutions regarding the traditional online/offline robot

programming. To achieve these goals, we need to convey robot

programming to a higher level of abstraction rather than a

specific robot programming.

In this study, we carried out a design process for a common

type six-rotary (6R) axis open chain manipulators produced by

different manufacturers, which are only different in link

dimensions. The model-based design process includes the

mathematical model of the manipulator, the forward and inverse

kinematic calculations, as well as the dynamic analysis to

determine the torque requirements of the actuators and the

implementation of the controller design for use in the simulator.

In the design phase, observability is prioritized instead of

aesthetic concern. For this purpose, the observed manipulator in

the simulation interface is designed as a direct drive in the form

of a skeleton. Control of ABB’s 6R robot IRB120, which is

independent of the designed system, is performed with the test

interface. We examined the functionality of this interface and

shared the findings with the suggestions.

Section 2 introduces the physical system design, material

selection, forward and inverse kinematic analysis and dynamic

analysis to determine torque requirements of the manipulator.

This section also presents the control interface and programming

ABB IRB120 manipulator via Transmission Control

Protocol/Internet Protocol (TCP/IP) socket communication with

the IRC5 server. We presented our results in Section 3. Section 4

reviews the results and discuss the findings.

2. Material and Method

The two basic parameters to classify open chain industrial

manipulators are the degree of freedom and the joint type. The

degree of freedom (DoF) is the most important factor in robotic

modeling and increasing the complexity in kinematic analysis.

Basically, for open chain manipulators, DoF determined by the

total numbers of joints which connect two cascade link/arm

(Banka & Lin, 2003). Joint types are classified as spherical,

cylindrical, prismatic, helical, planar, and rotating. In open chain

industrial robots, commonly rotary joints and prismatic joints are

preferred. We preferred a 6R manipulator of 6-DoF for creating

a generalized test environment where all joints are rotary.

2.1. Physical System Design

A CAD process is handled to design a 6R serial manipulator

using SolidWorks software as shown in Figure 1(a). The most

important aim considered in the design is to decrease the design

complexity to observe the movements visually. Then it is

European Journal of Science and Technology

e-ISSN: 2148-2683 863

integrated to Simulink using SimMechanics add-on library as

shown in Figure 1(b).

(a) (b)

Figure 1 6R serial manipulator (a) design using SolidWorks,

(b) Simulink-integrated design using SimMechanics

The designed 3D manipulator can also be classified as

articulated robotic arm in literature, which is human arm

structure-based manipulators where all joints are rotary.

Articulated robots are the most common type since they

manipulate objects in 3D workspace successfully and they are

cost effective while having the minimum DOF for 3D

manipulation requirements. In industrial use, articulated serial

manipulators with six rotary axes, are commonly used for

painting, welding, assembly, quality control, etc. and electric

motors are used as actuators in drive systems (Craig, 2005).

Although the link dimensions change, the basic skeletal structure

remains the same. Therefore, we shaped our design for the

articulated as simplified to contain all these findings.

The position of a point in space can be expressed in

parameters x, y, z in position by [31] vector. In the case of rigid

bodies, to determine the position in space, there is also a need

for the [33] orientation matrix. The orientation matrix refers to

the orientation of a coordinate system relative to another

coordinate system. This orientation is indicated by the

parameters Yaw, Pitch and Roll respectively for the x, y and z

axes (Fig. 2). In kinematic calculations, an orientation matrix

should be created for each joint based on the coordinate of the

joint before it. The homogeneous transformation matrix is

obtained by combining the position vector and the orientation

matrix of each axis (Mikkelsen, 1998). The resulting

transformation matrix is used for forward and reverse kinematic

calculations.

Figure 2 Orientation indicated by the parameters Yaw, Pitch and

Roll respectively for the x, y and z axes

2.2 Forward Kinematics

We use the DH method developed by Denavit and

Hartenberg (Denavit & Hartenberg, 1955) for kinematic

analysis. Forward kinematics is the process of taking the joint

angles of the robot as input and obtaining the position and

orientation of the end effector of the robot as output. To find the

position of the end effector, all the obtained matrices (one for

each coordinate frame) are multiplied (Mikkelsen, 1998).

For a 6-DoF articulated arm, six DH parameters are defined

as data set with three constants and one variable. Each

measurement in the table is calculated by considering the

previous joint and coordinate frame.

The DH table for the designed articulated arm, which is

used for simulation environment, is shown in Table 1 where a is

the distance between x-axis of successive links measured in the

z-axis, d is the distance between z-axis of successive links

measured in the x-axis, alpha is the angular difference between

z-axes of sequential coordinate frames, and theta is the variable

that express the rotation of the joint in its own z-axis direction.

Table 1. DH table for the designed articulated arm

Axis (i) a (mm) d (mm) alpha () theta ()

1 0 425 -90 variable

2 850 0 0 variable

3 425 0 90 variable

4 0 -295 -90 variable

5 0 0 90 variable

6 0 -385 180 variable

Transformation matrix 𝑇𝑖 is calculated for each axis using

Eq. (1).

𝑇𝑖 = [

cos(𝑄𝑖) − sin(𝑄𝑖) ∗ cos(𝛼𝑖) sin(𝑄𝑖) ∗ sin(𝛼𝑖) 𝑎𝑖 ∗ cos(𝑄𝑖)

sin(𝑄𝑖) cos(𝑄𝑖) ∗ cos(𝛼𝑖) −cos(𝑄𝑖) ∗ sin(𝛼𝑖) 𝑎𝑖 ∗ sin(𝑄𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖

0 0 0 1

] (1)

Then each transformation matrices are multiplied

consecutively and a [44] matrix is obtained, which contains

both rotation and the position values as given in Eq. (2).

𝑇0
6 = 𝑇5

6 ∗ 𝑇4
5 ∗ 𝑇3

4 ∗ 𝑇2
3 ∗ 𝑇1

2 ∗ 𝑇0
1

 𝑇0
6 = [

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧 𝑠𝑧 𝑎𝑧 𝑝𝑧
0 0 0 1

] = [
𝑛 𝑠 𝑎 𝑃
0 0 0 1

] (2)

From the resulting matrix, the position of the end effector of

the robot is obtained with the P vector and the orientation matrix

of size [33] formed in the upper left corner.

𝑛𝑥,𝑦,𝑧 , 𝑠𝑥,𝑦,𝑧 , 𝑎𝑥,𝑦,𝑧 that forms the orientation matrix

correspond to the following statements algebraically as given by

Eqs. (3–11).

If the parameters a and d in the DH table are changed for

any robot, i.e., a 6R articulated arm which has the same form

with different link dimensions, the same DH table and

calculations can also be used for kinematic calculations. For the

industrial robot ABB IRB120 having different dimensions from

the pre-designed robot for the simulation environment,

kinematic calculations and control are performed by updating

only the link dimensions.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 864

𝑛𝑥 = 𝑟11 = (𝑠𝜃4𝑠𝜃6 − 𝑐𝜃4𝑐𝜃5𝑐𝜃6) 𝑐𝜃1((𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) − 𝑠𝜃5𝑐𝜃6 (𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) + 𝑠𝜃1(𝑐𝜃4𝑠𝜃6 + 𝑠𝜃4𝑐𝜃5𝑐𝜃6) (3)

𝑛𝑦 = 𝑟21 = 𝑠𝜃1((𝑠𝜃4𝑠𝜃6 − 𝑐𝜃4𝑐𝜃5𝑐𝜃6)(𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) − 𝑠𝜃5𝑐𝜃6 (𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) − 𝑐𝜃1(𝑠𝜃4𝑐𝜃5𝑐𝜃6 + 𝑐𝜃4𝑠𝜃6) (4)

𝑛𝑧 = 𝑟31 = (𝑐𝜃2 𝑠𝜃3 + 𝑠𝜃2 𝑐𝜃3)(𝑠𝜃4𝑠𝜃6 − 𝑐𝜃4𝑐𝜃5𝑐𝜃6) + 𝑠𝜃5𝑐𝜃6 (𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) (5)

𝑠𝑥 = 𝑟12 = 𝑐𝜃1((𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3)(𝑐𝜃4𝑐𝜃5𝑠𝜃6 + 𝑠𝜃4𝑐𝜃6) + 𝑠𝜃5𝑠𝜃6 (𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) + 𝑠𝜃1(𝑐𝜃4𝑐𝜃6 − 𝑠𝜃4 𝑐𝜃5𝑠𝜃6) (6)

𝑠𝑦 = 𝑟22 = 𝑠𝜃1((𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3)(𝑐𝜃4𝑐𝜃5𝑠𝜃6 + 𝑠𝜃4𝑐𝜃6) + 𝑠𝜃5𝑠𝜃6(𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) − 𝑐𝜃1(𝑐𝜃4𝑐𝜃6 − 𝑠𝜃4 𝑐𝜃5𝑠𝜃6) (7)

𝑠𝑧 = 𝑟23 = (𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)(𝑐𝜃4𝑐𝜃5𝑠𝜃6 + 𝑠𝜃4𝑐𝜃6) − 𝑠𝜃5𝑠𝜃6(𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) (8)

𝑎𝑥 = 𝑟13 = 𝑐𝜃1(𝑐𝜃4𝑠𝜃5(𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) − 𝑐𝜃5(𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) − 𝑠𝜃1𝑠𝜃4𝑠𝜃5 (9)

𝑎𝑦 = 𝑟23 = 𝑠𝜃1(𝑐𝜃4𝑠𝜃5(𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) − 𝑐𝜃5(𝑐𝜃2 𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3)) + 𝑐𝜃1𝑠𝜃4𝑠𝜃5 (10)

𝑎𝑧 = 𝑟33 = 𝑐𝜃4𝑠𝜃5(𝑐𝜃2𝑠𝜃3 + 𝑠𝜃2𝑐𝜃3) + 𝑐𝜃5(𝑠𝜃2𝑠𝜃3 − 𝑐𝜃2𝑐𝜃3) (11)

2.3 Inverse Kinematics

Simply, inverse kinematics is a function that takes the end

effector position and orientation matrix as inputs and give the

joint angular values as outputs. Commonly, it is preferred to use

one of three approaches for inverse kinematic calculation of

open chain serial manipulators. These approaches are geometric,

algebraic, and iterative (Niku, 2001). In theory, it may be

complicated to obtain a closed form solution with using

geometric or algebraic approach. Consequently, iterative

approach seems preferable because it is superior to the first two

approaches in terms of its independency to the physical system

parameters. However, iterative approach requires more

calculations than the algebraic or geometric one and

convergence to the correct solution is not guaranteed (Jones BE,

1990). 6R manipulators commonly have the same physical form.

Therefore, if all joints of the manipulator are revolute and last

three joint axes intersect at a point, shortly spherical wrist, the

obtained closed form turns into a general solution.

In this study, we used kinematic decoupling method to

obtain closed-form solution, which is a sub-part of the geometric

approach. Kinematic decoupling method handles the robot

geometry in two parts as body and wrist.

The body part refers to the first three axes (q1, q2, q3)

responsible for positioning and the wrist part (q4, q5, q6)

represents the last three axes responsible for orientation as

shown in Figure 3.

Figure 3 Kinematic Decoupling of 6R Manipulators

Body part calculations of the 6R manipulator are given by

Eqns. (12 – 15). For the kinematic calculations a and d values

are taken from the DH table of the manipulator and the A and B

variables are for reducing the formulas’ complexity. ∓ symbol is

for obtaining both left- and right-hand solutions.

𝜃1 = atan2(𝑝𝑦 , 𝑝𝑥) (12)

𝐴 = (𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 − 𝑎3

2 − 𝑑4
2) / 2𝑎3

2𝑑4 (13)

𝜃3 = −𝑎𝑡𝑎𝑛2(𝐴, ±√(1 − 𝐴2) (14)

𝜃2 = −atan2(𝑝𝑧, (√𝑝𝑥
2 + 𝑝𝑦

2 − 𝑎𝑡𝑎𝑛2(𝑑4, sin (𝜃3)), 𝑎3 +

𝑑4cos (𝜃3)) (15)

The wrist part calculations are formulated in Eqs. (16–19).

𝜃5 = atan2(±√1 − (𝑟13sin (𝜃1) − 𝑟23cos (𝜃1))2, 𝑟13sin (𝜃1) −
𝑟23cos (𝜃1)) (16)

𝐵 = 𝑟13cos (𝜃1) + 𝑟23sin (𝜃1) (17)

𝜃4 = 𝑎𝑡𝑎𝑛2((∓(𝐵) ∗ 𝑠𝑖𝑛(𝜃2 + 𝜃3) ∓ (𝑟33𝑐𝑜𝑠(𝜃2 +

𝜃3)), (±(𝐵)𝑐𝑜𝑠(𝜃2 + 𝜃3) ∓ 𝑟23𝑠𝑖𝑛(𝜃2 + 𝜃3))) (18)

𝜃6 = 𝑎𝑡𝑎𝑛2(±(𝑟12sin (𝜃1), +𝑟22cos (𝜃1)), ±(𝑟11sin (𝜃1) −
𝑟21cos (𝜃1)) (19)

2.4 Dynamic Analysis to Determine Torque

Requirements

Torque requirements for each actuator of the designed

manipulator, which are subject to kinematic analysis for

positioning, were calculated by dynamic analysis. Inverse

dynamics utilizes the inertia and the angular acceleration

parameters as inputs and calculates the torque values as output.

We determined the material of designed manipulator’s

skeleton for obtaining the inertial parameters. 1060-H14

Aluminum Alloy with a density of 2.705 𝑘𝑔/𝑚3 was preferred

to obtain the inertia matrices used as input.

Six reference coordinates were placed on the rotation axis of

each actuator to calculate the inertial matrices. Masses, center of

mass positions, and inertia matrices are defined by a [33]

matrix as in Eq. (20), and the elements of this matrix are reduced

to six because of symmetry. The calculated results are presented

in Table 2.

𝐼𝑙𝑖𝑛𝑘 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] (20)

European Journal of Science and Technology

e-ISSN: 2148-2683 865

Table 2. The elements of the reduced inertial matrix

Link Mass (kg) Center of Mass

x y z Ixx Iyy Izz Ixy Ixz Iyz

1 1.19 0.000 0.000 0.094 0.000 0.000 0.021 0.019 0.004 0.000

2 2.235 0.212 0.000 0.050 0.024 0.000 0.011 0.147 0.138 0.000

3 1.192 0.118 0.000 0.062 0.009 0.000 0.008 0.032 0.025 0.000

4 0.855 0.000 0.000 0.092 0.000 0.000 0.010 0.011 0.002 0.000

5 0.561 0.040 0.002 0.051 0.001 0.000 0.002 0.004 0.002 0.000

6 0.454 0.000 0.005 0.060 0.000 0.000 0.002 0.002 0.001 0.000

A worst-case scenario was created for obtaining the second

input parameter which was required for inverse dynamics. The

manipulator configuration, that causes the maximum momentum

and the desired maximum angular velocity for motion were

determined.

Resulting inputs were used to obtain torque requirements of

the manipulator through the roboanalyzer software, which uses

recursive method for calculation (Rajeevlochana et al., 2011).

The results are shown in Fig. 4. It was obtained as a result of

inverse dynamic analysis that the largest torque value was in the

second joint motor. Since the layout axis of the base motor is

perpendicular to the surface, the first engine's torque

requirement was less since the mass effect caused by gravity was

negligible.

2.5 Simulation and Control Interface

We designed the simulation and control interface for any 6R

manipulator. SolidWorks® is the design platform for the

manipulator, and then the obtained model was transferred to

Simulink by SimMechanics add-on as illustrated in Figure 5.

Figure 4 Calculated torque requirements for each actuator

-6

-4

-2

0

2

4

0

0
,2

8

0
,5

6

0
,8

4

1
,1

2

1
,4

1
,6

8

1
,9

6

N
.m

Torque1

-30

-25

-20

-15

-10

-5

0

5

0

0
,2

8

0
,5

6

0
,8

4

1
,1

2

1
,4

1
,6

8

1
,9

6

N
.m

Torque2

-15

-10

-5

0

5

10

0

0
,2

8

0
,5

6

0
,8

4

1
,1

2

1
,4

1
,6

8

1
,9

6

N
.m

Torque3

-1,5000

-1,0000

-0,5000

0,0000

0,5000

1,0000

1,5000

0

0
,3

6

0
,7

2

1
,0

8

1
,4

4

1
,8

N
.m

Torque4

-2

-1,5

-1

-0,5

0

0

0
,2

8

0
,5

6

0
,8

4

1
,1

2

1
,4

1
,6

8

1
,9

6

N
.m

Torque5

-0,03

-0,02

-0,01

0

0,01

0,02

0,03

0,04

0

0
,3

2

0
,6

4

0
,9

6

1
,2

8

1
,6

1
,9

2

N
.m

Torque6

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 866

Figure 5 Scheme of the CAD programming and testing

For performing the real-time simulation of motion, we used

PID control block, which uses the result of each kinematic

calculation as an input. One separate controller was designed for

each joint actuator that activates the revolution as shown in Fig.

6.

Figure 6 PID controller design for joint actuators

The response time and amplitude parameters of the

simulation PID controller were changed to 0.05361s and 0.6

respectively, after auto-tuning for the smooth and stable motion

of the 6R manipulator. Untuned response and tuned response for

one joint actuator is shown in Figure 7a and Figure 7b,

respectively.

Joint parameters entry is through the designed MATLAB

Graphical User Interface (GUI) in Fig. 8 to facilitate the

movement of the robot manipulator. The GUI was used to supply

the target manipulators kinematic model over DH parameters,

calculate forward or inverse kinematics and to send joint angular

values the robot controller over TCP/IP.

2.3 Communication Method

We tested the simulation environment on ABB IRB120

manipulator via TCP/IP socket communication with the IRC5

server. In the standard internet protocol TCP, IP address is

equipped with the socket address, which is the port number, and

this type of communication is used to communicate with the

IRC5 client server. The ABB IRC5 is a robot controller, which

has a unique motion control feature and reliably follows the

robot motion path as programmed through the application

European Journal of Science and Technology

e-ISSN: 2148-2683 867

interfaces. Electronically linked motors in a robot control

master/slave motor configuration actuate the main axes of the

robot. Encoders give the exact angular position of each actuator.

The IRC5 server is the motion controller (drive) part of the

system that enables and positions the actuator via motor drives.

(a)

(b)

Figure 7 (a) Untuned response, (b) tuned response for the joint

actuator.

Figure 8 The designed GUI for joint parameters entry and socket

communication.

The IRC5 is a multi-robot controller with PC tool support

that optimizes the robot performance for short cycle times and

precise movements. Communication is real-time, resulting in a

continuous communication between PC and IRC5 (Server-

Client). Programming interface based on HTML5 communicates

with robot from any device, regardless of the operating system.

The computer manages the task control and robot simulation

whereas IRC5 controller is free of computational complexity and

only used for control of the motors. We programmed this server

to receive the position and the angle data from the embedded

MATLAB program codes and transmit to the motor drives. To

send the calculated joint angles to the IRC5 controller for

moving manipulator to the desired positions determined by user

in the designed GUI in Figure 8, a client software was created

with the RAPID programming language as shown in Figure 9

over pseudocode, and motion commands were processed

simultaneously with the simulation environment. For any other

manipulator belonging to different manufacturers which has the

same 6R articulated form, the only requirement is just creating a

client-side program with the controller’s own robot

programming language to receive TCP/IP socket messages by

using the pseudocode in Figure 10.

Input: IP address and port to receive socket message

(192.168.125.1, 55000)

Start to listen socket and receive the allow to incoming

connections (Socketbind)

While (192.168.125.1, 55000 = no message)

 Keep waiting for the receiving message

End

 Send message to Server (MATLAB) to approve successful

communication

 Read string message sent by Designed GUI and convert

string to float numbers for joint angles

 Send message to Server (MATLAB) to finish successful

reading of socket messages

 Wait 50 ms and close the socket

 Move joints to received joint angles with MoveAbsJ

command of RAPID language

Figure 9 IRC5 Client TCP/IP socket Communication pseudo-

code

MODULE Mainmodule

 PERS tooldata withgripper:=[TRUE, [[0, 0, 103.2], [1, 0, 0,

0]],[0.1, [0, 0, 0.001],[1, 0, 0, 0], 0, 0, 0]];

 CONST jointtarget sifiracilar:=

[[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 VAR string receivedFromMatlab;

 VAR socketdev clientABB;

 VAR socketdev serverMATLAB;

 VAR rawbytes data;

 PROC main ()

 SocketCreate clientABB;

 SocketBind clientABB," 192.168.125.1",55000;

 SocketListen clientABB;

 SocketAccept clientABB, serverMATLAB;

 SocketSend serverMATLAB,\Str:="Communication

Established

 SocketReceive serverMATLAB,\Str:= receivedFromMatlab;

 MoveJ receivedFromMatlab,v150,fine, withgripper;

 SocketClose clientABB;

 ENDPROC

ENDMODULE

Figure 10 IRC5 Client Program in RAPID Language

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 868

3. Results and Discussion

The model-based design process for the generalized 6R

articulated manipulator, which is widely used for painting,

welding, and assembly operations, was carried out including

kinematic and dynamic analysis. Functionality of the graphical

interface obtained as a result of the model-based design has been

tested for the IRB120 robot arm of ABB company as shown in

Figure 11. In the tests carried out, the robot’s DH parameters and

desired positions provided by the user through the designed GUI

were used as inputs, and the robot was moved to randomly

selected positions for various tasks. As an indicator of the

successful performance of the designed interface, it has been

seen that the same graphical outputs were obtained with

RobotStudio, ABB's own simulation program, and physical

robot arm successfully reached the desired positions and

performed various tasks as shown in Figure 11.

Figure 11 Observations of 6R manipulator over RobotStudio, Designed GUI and Physical Manipulator

4. Conclusions and Recommendations

Model-based design of the 6 DOF articulated robot arm,

which is widely used in industrial applications like painting,

welding and assembly operations, was carried out including

material selection, kinematic analysis and dynamic analyzes for

calculating torque requirements. Also, a simplified plate-based

3D model was created for the simulation and clear observation

of the any robotic manipulator which has the same kinematic

structure. The GUI obtained from the model-based design was

tested over ABB IRB120 industrial manipulator. Calculated joint

angular values for the desired position and tasks were sent to

IRC5 robot controller over TCP/IP socket messages and handled

various tasks. It has been shown on the physical robot that the

developed interface and real-time tests worked successfully. The

functionality of the developed control interface that can be

applied to the robots in the same form, has been tested and

verified with the applications performed with the IRB120 robot.

This study also showed that, in distance learning and remote

task planning, only by writing client-side software for the robot

controller in manufacturer’s own language to accept TCP/IP

socket messages, the control of the kinematic calculation and

motion planning accuracy of the users and whether they perform

the specified tasks can be observed without the need for any

other software.

References

Alkan, M. A. (2018). Karanlık Fabrikalar ile İnsansız Üretim.

Endüstri 4.0. https://www.endustri40.com/karanlik-

fabrikalar-ile-insansiz-uretim/

Baizid, K., Ćuković, S., Iqbal, J., Yousnadj, A., Chellali, R.,

Meddahi, A., Devedžić, G., & Ghionea, I. (2016). IRoSim:

Industrial Robotics Simulation Design Planning and

Optimization platform based on CAD and knowledgeware

technologies. Robotics and Computer-Integrated

Manufacturing, 42, 121–134.

https://doi.org/10.1016/j.rcim.2016.06.003

Banka, N., & Lin, Y. J. (2003). Mechanical design for assembly

of a 4-DOF robotic arm utilizing a top-down concept.

Robotica, 21(5), 567–573.

https://doi.org/10.1017/S0263574702004848

Brogårdh, T. (2009). Robot control overview: An industrial

perspective. In Modeling, Identification and Control (Vol. 30,

Issue 3, pp. 167–180). https://doi.org/10.4173/mic.2009.3.7

Craig, J. J. (2005). Introduction to Robotics Mechanics and

Control (A. Dworkin, Ed.; 3rd ed.). Pearson Prentice Hall.

Denavit, J., & Hartenberg, R. (1955). A kinematic notation for

lower-pair mechanisms based on matrices. ASME Journal of

Applied Mechanics, 22, 215–221.

Gil, A., Reinoso, O., Marin, J. M., Paya, L., & Ruiz, J. (2015).

Development and deployment of a new robotics toolbox for

education. Computer Applications in Engineering Education,

23(3), 443–454. https://doi.org/10.1002/cae.21615

Hermann, M., Pentek, T., & Otto, B. (2016). Design principles

for industrie 4.0 scenarios. Proceedings of the Annual Hawaii

International Conference on System Sciences, 2016-March,

3928–3937. https://doi.org/10.1109/HICSS.2016.488

Jones BE, F. J. (1990). Modelling, Simulation and Identification

of an Industrial Manipulator. Dublin City University.

Mikkelsen, J. (1998). A machine vision system controlling a

Lynx arm robot along a path. University of Cape Town,

South Africa.

Mourtzis, D., Fotia, S., Boli, N., & Vlachou, E. (2019).

Modelling and quantification of industry 4.0 manufacturing

complexity based on information theory: a robotics case

study. International Journal of Production Research, 1–14.

https://doi.org/10.1080/00207543.2019.1571686

Neto, P., Mendes, N., Arajo, R., Pires, J. N., & Moreira, A. P.

(2012). High-level robot programming based on CAD:

Dealing with unpredictable environments. Industrial Robot,

39(3), 294–303. https://doi.org/10.1108/01439911211217125

Niku, S. B. (2001). Introduction to Robotics: Analysis, Systems,

Applications (1st ed.). Prentice Hall.

Rajeevlochana, C. G., Jain, A., Shah, S. V, & Saha, S. K. (2011).

Recursive Robot Dynamics. In S. Bandopadhyay, S.

European Journal of Science and Technology

e-ISSN: 2148-2683 869

Gurunathan, & P. Ramu (Eds.), Introduction to Robotics (pp.

1–9). Narosa Publishing House, New Delhi.

Rajeevlochana, C. G., & Saha, S. K. (2011, February).

RoboAnalyzer: 3D model based robotic learning software. In

International Conference on Multi Body Dynamics (pp. 3-

13).

Sanfilippo, F., Hatledal, L. I., Zhang, H., Fago, M., & Pettersen,

K. Y. (2015). Controlling Kuka Industrial Robots: Flexible

Communication Interface JOpenShowVar. IEEE Robotics &

Automation Magazine, 22(4), 96–109.

https://doi.org/10.1109/MRA.2015.2482839

Schou, C., Damgaard, J. S., Bogh, S., & Madsen, O. (2013).

Human-robot interface for instructing industrial tasks using

kinesthetic teaching. 2013 44th International Symposium on

Robotics, ISR 2013, 1–6.

https://doi.org/10.1109/ISR.2013.6695599

Udai, A. D., Rajeevlochana, C. G., & Saha, S. K. (2011).

Dynamic Simulation of a KUKA KR5 Industrial Robot using

MATLAB SimMechanics. 15th National Conference on

Machines and Mechanisms, 96, 1–8.

