
Avrupa Bilim ve Teknoloji Dergisi

Sayı 31 (Ek Sayı 1), S. 991-1003, Aralık 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 31 (Supp. 1), pp. 991-1003, December 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 991

Comparison of Different Classification Algorithms for Extraction

Information from Invoice Images Using an N-Gram Approach

Resmiye Nasiboglu1*, Adem Akdogan2

1* Dokuz Eylul University, Faculty of Science, Departmant of Computer Science, Izmir, Turkey, (ORCID: 0000-0003-1739-1469), resmiye.nasiboglu@deu.edu.tr
2 Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir, Turkey, (ORCID: 0000-0002-4236-1563), adem.akdogan92@gmail.com

(First received 24 December 2020 and in final form 6 October 2021)

(DOI: 10.31590/ejosat.844862)

ATIF/REFERENCE: Nasiboglu, R., & Akdogan, A. (2021). Comparison of Different Classification Algorithms for Extraction

Information from Invoice Images Using an N-Gram Approach. European Journal of Science and Technology, (31), 991-1003.

Abstract

Artificial intelligence (AI) has started to be used in many areas today. One of these areas is the accounting sector. Accounting

companies may sometimes be inadequate especially in the face of intense invoicing transactions of large companies. This problem

raised the need to process invoices by an Artificial Intelligence powered system. The goal of this work is to determine the best

machine learning model to extract information such as invoice number, invoice date, due date, delivery date, total gross, total net, vat

amount and IBAN from the invoice image files. Information obtained by the Tesseract Optical Character Recognition (OCR) system

has been converted into n-gram format. A number of attributes of the n-gram are calculated such as the coordinates, the length, the

width, the line number, the template information of n-grams, the Levenshtein and the Jaro-Winkler distances between the candidate n-

grams and the keywords in the control keywords list. The use of the Levenshtein distance between candidate n-grams and the control

keywords has resulted in a sufficiently high predictive rate. The most appropriate model and features are determined for the training.

Algorithms such as Random Forest, Gradient Boosting Machine, Extreme Gradient Boosting, K-Nearest Neighbors, AdaBoost and

Decision Tree were compared as prediction models. A total of 9910 invoices were used by splitting 80% for training and 20% for

testing. It was observed that the Random Forest model using the Levenshtein distance is the best model with an average F1 score of

0.9137.

Keywords: Machine learning, Information extraction, N-gram, Levenshtein distance, Jaro-Winkler distance.

N-Gram Yaklaşımı Kullanılarak Fatura Görüntülerinden Bilgi

Çıkarımında Farklı Sınıflandırma Algoritmalarının Karşılaştırılması

Öz

Yapay Zeka (AI) günümüzde birçok alanda kullanılmaya başlanmıştır. Bu alanlardan biri de muhasebe sektörüdür. Özellikle büyük

firmaların yoğun faturalama işlemleri karşısında muhasebe firmaları bazen yetersiz kalabilmektedir. Bu sorun, faturaların Yapay Zeka

destekli bir sistemle işlenmesi ihtiyacını ortaya çıkarmıştır. Bu çalışmanın amacı, fatura görüntü dosyalarından fatura numarası, fatura

tarihi, vade bitiş tarihi, teslim tarihi, toplam brüt, toplam net, kdv tutarı ve IBAN gibi bilgileri çıkarmak için en iyi makine öğrenme

modelini belirlemektir. Çalışmada, Tesseract Optik Karakter Tanıma sistemi ile elde edilen bilgiler n-gram formatına

dönüştürülmüştür. N-gramların koordinatları, uzunluk, genişlik, satır numarası gibi şablon bilgileri, aday n-gramlar ile kontrol anahtar

kelimeler listesindeki anahtar kelimeler arasındaki Levenshtein ve Jaro-Winkler mesafeleri gibi bir dizi öznitelikleri hesaplanmıştır.

Aday n-gramlar ile kontrol anahtar kelimeler arasındaki Levenshtein mesafesinin kullanılması, yeterince yüksek bir tahmin oranıyla

sonuçlanmıştır. Eğitim için en uygun model ve özellikler belirlenmiştir. Tahmin modelleri olarak Rassal Orman (Random Forest),

Gradyan Yükseltme Makinesi (Gradient Boosting Machine), Aşırı Gradyan Yükseltme (Extreme Gradient Boosting), K-En Yakın

Komşu (K-Nearest Neighbors), AdaBoost ve Karar Ağacı (Decision Tree) gibi algoritmalar karşılaştırılmıştır. Çeşitli firmalardan

toplanan 9910 adet fatura, %80’i eğitim ve %20’si test olacak şekilde bölünerek kullanılmıştır. Levenshtein mesafesini kullanan

Rassal Orman modelinin ortalama 0,9137 olan F1 puanı ile en iyi model olduğu görülmüştür.

Anahtar Kelimeler: Makine öğrenimi, Bilgi çıkarımı, N-gram, Levenshtein uzaklığı, Jaro-Winkler uzaklığı.

* Corresponding Author: The Department of Computer Science, Dokuz Eylul University, Izmir, Turkey, ORCID: 0000-0003-1739-1469,

resmiye.nasiboglu@deu.edu.tr

http://dergipark.gov.tr/ejosat

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 992

1. Introduction

Digitization of invoices, receipts and similar company

documents has become very common with the rapid

development in technology. It is a very labor intensive and

expensive process to obtain and manage the information in these

documents using traditional methods that depend on manpower

(Klein et al., 2004). In addition, manual processing of these

documents poses a serious timing problem. In particular,

invoices are documents that need to be processed and managed

continuously. As many companies use different types of

invoices, we can see that the invoices have a very variable

structure. Although we have strong estimation methods and

techniques for specific templates, these methods do not work for

uncertain documents. Therefore, these methods can only be

applied to a small number of limited problems.

The main goal of our study is to compare machine learning

models to extract information from invoices without a specific

template. First of all, text information is extracted from the

invoice images. For this, Tesseract is used that is an optical

character recognition (OCR) engine. After obtaining the text

information, the stage of creating useful features is performed.

The location of words is very important in structural documents

such as invoices and receipts. Especially, other words that are

around the target word can give us remarkable information

abaout our target. These words are vectorized by using distance

values from potential words that can be keywords determined

according to frequency.

Figure 1. Tesseract OCR Process Scheme (Zelic and Sable

2020)

Two distances such as the Levenshtein distance and the

Jaro-Winkler distance are used for measuring of word

similarities. Various machine learning models such as Random

Forest, Gradient Boosting Machine, Extreme Gradient Boosting,

K-Nearest Neighbors, AdaBoost and Decision Tree were

compared as prediction models. There are eight fields that we

want to predict on the invoice such as invoice number, invoice

date, delivery date, due date, total gross, total net, vat amount

and IBAN. Instead of using a general trained model for

predicting of all fields, different models are used for each field.

Thus, the attributes that best represent that field are used in the

training of each field. A dataset containing total 9910 invoice

images collected by authors from different firms is used in

training and testing process by dividing 80% and 20% as

appropriate. Since the invoices contain sensitive financial

information, the dataset cannot be presented as an open source.

The Random Forest model with Levenshtein distance is obtained

as the best prediction model for all fields.

 The rest of the article is organized as follows. Information

about the tools, methods and models used in this work are given

in chapter 2. Related work and the proposed approach are given

in chapter 3. Chapter 4 provides information about the data set.

Explanation and discussion of obtained results are also included

in this chapter. Finally, the concluding remarks are given in

chapter 5.

2. Methodology

2.1. Tesseract OCR

The first tool we used in the document processing is an

Optical Character Recognition (OCR) engine called Tesseract,

which is supported by the Google, in order to convert documents

in image format to text format (Smith, 2007). The scheme of the

Tesseract OCR is given in Fig. 1.

While the documents are converted to text via Tesseract,

information of the words such as coordinate information, line

number, height and width can also be obtained (Table 1).

Line-based n-gram structure is created from the list of

words generated by Tesseract OCR. While creating the n-gram

structure, besides some features used in the study (Palm et al.,

2017), other effective features can be calculated (Table 2). The

most suitable features are obtained by processing the attributes

of n-grams in different combinations for training.

Table 1. Attributes Obtained with Tesseract OCR.

Attribute

name

Description Attribute

name

Description

level Level of the detected unit left X coordinate of the upper-left corner of the detected unit

page_num Page number of the detected unit top Y coordinate of the upper left corner of the detected unit

block_num The block number of the detected

unit

width Width of the detected unit

par_num Paragraph number of the detected

unit in the block

height Height of the detected unit

line_num Line number of the detected unit in

the paragraph

conf Recognition accuracy percentage of detected unit

word_num The word number of the detected

unit on the line

text Text of the detected unit

https://nanonets.com/blog/author/filip/?&utm_source=nanonets.com/blog/&utm_medium=blog&utm_content=%5BTutorial%5D%20OCR%20in%20Python%20with%20Tesseract,%20OpenCV%20and%20Pytesseract
file:///C:/Users/Efendi/Desktop/ResmiOgrenciler/Adem%20makale/Makale%20N-gram/%20Sable

European Journal of Science and Technology

e-ISSN: 2148-2683 993

Table 2. Attributes Created for the N-gram Structure.

The attribute

of n-gram

Description The attribute of

n-gram

Description

RawText Text of n-gram Left Left margin of n-gram (X coordinate)

TextPattern Template of n-gram Top Top margin of n-gram (Y coordinate)

IsFirstStr Is the first character of n-gram

an alphabetical one?

LeftMargin Proportional left margin to the page width of n-gram

IsFirstInt Is the first character of n-gram a

digit?

TopMargin Proportional right distance to the page width of n-gram

IsFirstSpc Is the first character of n-gram a

special character?

HasDigit Whether there is a digit in the n-gram

IsLastStr Is the last character of n-gram

an alphabetical one?

FirstQuarter The n-gram is in the first quarter of the page

IsLastInt Is the last character of n-gram a

digit?

SecondQuarter The n-gram is in the second quarter of the page

IsLastSpc Is the last character of n-gram a

special character?

ThirdQuarter The n-gram is in the third quarter of the page

StrCount Total number of alphabetical

characters in n-gram

FourthQuarter The n-gram is in the fourth quarter of the page

IntCount Total number of digits in n-

gram

LineNo Number of the line of the n-gram

SpcCount Total number of special

characters in n-gram

PageNo Number of the page of the n-gram

WordCount Total number of words of n-

gram

PageWidth Width of the page containing n-gram

CharCount Total number of characters of n-

gram

PageHeight Height of the page containing n-gram

Figure 2. The Process of Recognizing Certain Fields from the Image File.

Read an image file

Convert the image file to

the text file

Construct the line based n-

grams model

Compute attributes of n-

grams

Recognize the labels using

n-grams’ attributes

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 994

The process of recognizing certain labels on invoices is

shown in Fig. 2. First of all, string expressions that are the result

of the Tesseract OCR are converted into n-grams. Although

some information such as invoice number and postal code on the

invoice consists of one piece of string expression ("12345",

"A1245"), other information such as address and IBAN number

can have multiple string expressions ("TR 2600 1200 0000 0000

0000", "110 St No: X Ankara”). When the field we are

predicting has more than one string expression, the single string

expressions that Tesseract OCR outputs are insufficient. In this

case, we reach the word sequence that we are looking for by

using multiple n-grams (Watanabe et al., 2009).

2.2. The n-gram structure

Let's examine the word sequence "Dokuz Eylul University".

An example of the creation of n-grams is given in Table 3

Table 3. Example N-gram Structure

1-grams “Dokuz”,”Eylul”,” University”

2-grams “Dokuz Eylul”,”Eylul University”

3-grams “Dokuz Eylul University”

As can be seen in the example in Table 3, 1-gram and 2-

gram sequences must be created in order to reach the 3-gram

sequence. The following formula can be used to calculate the

total number of n-grams that can be generated with maximum

length 𝑤 from a sequence of 𝑘 numbers of words:

𝐶𝑛−𝑔𝑟𝑎𝑚 =∑(𝑘 − (𝑖 − 1))

𝑤

𝑖=1

=

= 𝑘 ∙ 𝑤 −
(𝑤−1)∙𝑤

2
=

2𝑘𝑤−𝑤2+𝑤

2
 (1)

For example, the total number of n-grams is calculated as 6

by applying the Eq. (1) for Table 3. When we want to apply the

same method for invoices, every n-gram sequence is created

starting from 1-gram up to the specified maximum n-gram value.

Thus, the n-gram sequences are achieved like the invoice date

(the n-gram value must be at least 3 to detect the date "20 June

2022”). The maximum n-gram value, 𝑛 was determined as 6

considering the long expressions such as address and IBAN

number. Let 𝐿 be the number of lines in the document and 𝑘 be

the number of words in each line. The total number of n-grams

in the document will be calculated as follows:

∑ 𝐶𝑛−𝑔𝑟𝑎𝑚
𝑖 ≤ 𝐿

2𝑘𝑤−𝑤2+𝑤

2
𝐿
𝑖=1 (2)

In Eq. (2), 𝐶𝑛−𝑔𝑟𝑎𝑚
𝑖 , shows the number of n-grams to be

formed in the line i. Let 𝑘 be the number of words in the line. In

the case where 𝑤 ≥ 𝑘, the constraint as 𝑤 = 𝑘 should be

considered.

The Tesseract OCR, where we receive the necessary

information for the n-gram design, also offers some features that

would be useful in machine training. The information of each

string expression can be obtained from Tesseract OCR such as

width, height, number of lines, coordinate information of the

expression, page number, page width, and page height. Then, the

pattern of each n-gram sequence is extracted. The pattern of the

text of the n-gram is formed via replacing all lowercases with

“x”, all uppercases with “X”, all numbers with “0” and all

special characters with “?”. The purpose of this pattern is to

provide the model with the best learning of the structure of each

field to predict. For example, it may be not every expression as

an alpha numerical one in the invoice date. Although it usually

has a special pattern (eg, 13.09.2018), in some cases only part of

the sequence may be a string expression (eg, 8 October 1993). In

our work, we used information such as total letters, total digits,

total special characters, and the type of the first and last

character of the pattern as an attribute. Although the pattern is

used in this way in this work, the pattern can also be used by

making One Hot Encoding, which means that categorical

variables are represented using a binary vector. In One Hot

Encoding firstly, we create vectors consisting of 0 or 1 values as

much as the number of categorical values for this operation.

Then we create a vector by assigning 1 to the value

corresponding to its index and 0 to the others for each

categorical data. For example, there are data in three categories

as “blue”, “red” and “green”. When these fields are decomposed

into binary, the value “red” is converted to the vector (0, 1, 0).

In addition to the features mentioned above, we also used

features such as the number of words in each n-gram, the

number of characters in each n-gram, left margin, right margin,

left alignment, right alignment, the closest 1-gram on the left,

top, right and bottom. The nearest left and the nearest top n-

grams are most likely to be keywords. It is conceivable that

these n-grams will increase the effectiveness of the training,

considering that each field has different keywords. However,

there are some problems that need to be solved at this point.

There are many different types of invoices. For this reason, the

keywords can be a variable structure rather than a fixed one. For

example, the keywords can be “invoicenummer”,

“belegnummer” or “rechnungnummer” on an invoice where the

invoice number is to be predicted. Also another problem is that

these keywords can be shortened in some invoices (for ex.

“rech.num.“) or that may be misspelled due to human errors (for

ex. “recnhugnummr”). At this point, the Levenshtein and the

Jaro-Winkler methods of similarity (distance) can solve these

problems instead of exact matching. These methods provide us

calculation of the distances between the strings from two

existing sequences (Schulz and Mihov 2002). The first sequence

is potential keywords that we have already obtained from n-

gram. The second sequence is a specified keyword checklist.

The frequencies of the potential keywords of all the invoices are

calculated to create the specified keyword checklist. Keywords

that exceed a specified threshold value of similarity are added to

the result list. The distance between the keyword with the

highest similarity is added as a feature.

2.3. The Levenshtein distance

There are three basic operations in calculating Levenshtein

distance such as replace, insert and delete. The goal is to

transform one string into another using the minimum number of

basic operations (Haldar and Mukhopadhyay, 2011). The

Levenshtein distance between any strings 𝑎 and 𝑏 is calculated

as a recursive function as follows:

European Journal of Science and Technology

e-ISSN: 2148-2683 995

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 max

(𝑖, 𝑗) , 𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3)

In Eq. (3), the Levenshtein distance is calculated between

the first 𝑖 character of the sequence 𝑎 and the first 𝑗 character of

the sequence 𝑏. 1(𝑎𝑖≠𝑏𝑗) is the token function, i.e. it equals 0

when 𝑎𝑖 = 𝑏𝑗, otherwise equals to 1. The first row corresponds

to the deletion, the second row to the insert, and the third row

corresponds to match operations in section 𝑚𝑖𝑛 in the Eq. (3).

Let's look at the calculation of the Levenshtein distance

between the words "PAIN" and “CHAIN" as an example. If we

use the Eq. (3), the first thing to do to convert the word "PAIN"

to "CHAIN" is to add the letter “C". Subsequently, the letter “P”

is converted to the letter “H” by making a replacement

operation. Since the remaining three letters are the same, no

action is taken on them. Thus, the Levenshtein distance between

these two words is equal to 2.

2.4. The Jaro-Winkler distance

Another method to measure the similarity between two

strings is the Jaro-Winkler distance (Wang et al., 2017). In order

to calculate this distance between two given strings 𝑠1 and 𝑠2,

the Jaro similarity value must be found before as follows:

𝑠𝑖𝑚𝑗 = {
0 , 𝑖𝑓 𝑚 = 0,

1

3
(
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+

𝑚−𝑡

𝑚
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

where, |𝑠| is the length of the string, 𝑚 is the number

of matching characters and 𝑡 is half the number

of transpositions. Two characters from 𝑠1 and 𝑠2 respectively,

are considered matching only if they are the same and not farther

than

⌊
max(|𝑠1 |,|𝑠2|)

2
⌋ − 1 (5)

positions, where ⌊. ⌋ denotes the lower bound integer value of the

operand. For example, the matching range value of a 6-character

word is 2. A match is accepted for the character "B" between the

words “BXXXXX” and “XBXXXX”, while the match is not

accepted between the words “BXXXXX” and “XXXXBX”. The

number of matching (but different sequence order) characters

divided by 2 defines the number of transpositions. For example,

in comparing CRATE with TRACE, only 'R', 'A', 'E' are the

matching characters, i.e. m=3. Although 'C', 'T' appears in both

strings, they are farther apart than 1 (the result of ⌊
5

2
⌋ − 1), so

t=0. In “DwAyNE” versus “DuANE” the matching letters are

already in the same order D-A-N-E, so no transpositions are

needed (Jaro, 1989). So, the Jaro-Winkler similarity value (that

is used for distance calculation) can be calculated as follows

 𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 ∙ 𝑝(1 − 𝑠𝑖𝑚𝑗). (6)

In Eq. (6), the 𝑠𝑖𝑚𝑗 is the Jaro similarity value (we got in

Eq. (4)), 𝑙 is the length of common prefix at the start of the string

up to maximum of 4 characters and 𝑝 is scaling factor (default

value 0.1) should not exceed 0.25 (i.e., 1/4, with 4 being the

maximum length of the prefix being considered), otherwise the

similarity could become larger than 1. Then the Jaro-Winkler

distance 𝑑𝑤 is defined as

 𝑑𝑤 = 1 − 𝑠𝑖𝑚𝑤 (7)

The rest of the calculation on the invoice data according to

the Jaro-Winkler similarity is made similar to the Levenshtein

calculation given in section 2.4 and the calculated Jaro-Winkler

similarity values are added into attributes list.

2.5. Prediction models

The Random Forest model that was concluded as the best

model in this work, is based on the Decision Tree approach

(Quinlan, 1986). The idea in Decision Trees is to create the

decision structure by using all available attribute values in the

most efficient way (Mashat et al., 2012). In this way we can

achieve high success rates very quickly. One of the most used

decision tree algorithms is the C4.5 algorithm to create trees

(Xiaoliang et al., 2009).

The selection of attributes used in decision nodes is based

on “information gain” in the C4.5 algorithm. The concept of

entropy (uncertainty level) is used in determining the

information gain. The following calculations to determine

information gain of a given attribute 𝐴 must be performed:

𝑖𝑛𝑓𝑜(𝐷) = −∑ 𝑝𝑖 log 𝑝𝑖
𝑚
𝑖=1 , (8)

𝑖𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|
𝑖𝑛𝑓𝑜(𝐷𝑗)

𝑣
𝑗=1 , (9)

𝐺𝑎𝑖𝑛(𝐴) = 𝑖𝑛𝑓𝑜(𝐷) − 𝑖𝑛𝑓𝑜𝐴(𝐷), (10)

where

𝑝𝑖 : The ratio of the number of labels with class 𝑖 to the total

number of labels,

𝐷𝑗 : Subset that contains only the 𝑗.th value of a given

attribute 𝐴 in the dataset,

𝑖𝑛𝑓𝑜(𝐷) : Total entropy value in the data set,

𝑖𝑛𝑓𝑜𝐴(𝐷) : Total entropy value after splitting according to

different values of the attribute A,

𝐺𝑎𝑖𝑛(𝐴) : The information gain of the attribute A.

The total entropy value of the system is calculated with the

Eq. (8) to calculate the information gain with a certain attribute.

The entropy value of each attribute in the system is calculated

separately with the Eq. (9). Then, the information gain provided

by the value of that attribute to the system is obtained with the

Eq. (10). When the calculations are completed, the gain values

calculated for each attribute are compared. The attribute that

provides the highest value is determined as the decision node to

the next split. These nodes are combined to create an optimal

decision tree structure.

Another method used to create decision trees is the Gini

index method developed by IBM (Gelfand et al., 1991). In this

method, calculations are made similar to the Eqs. (8) - (10). The

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 996

amount of information is calculated with the help of the Gini

index determined in Eq. (11) instead of Eq. (8):

𝑔𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1 . (11)

One of the biggest problems in machine learning is

overfitting. This problem is that the system loses its flexibility as

a result of over-training. In the training of the decision tree

model, the system creates a special structure that takes into

account the details. Outlier observations may also be included in

these details as a result of the model's over-training. For

example, after the required eliminations are made in the decision

tree, 99.990 of 100.000 data return True and the remaining 10

return False value. A separate branch can be created for these 10

data, which is inconsistent observation with the system's

overfitting. This negatively affects the optimum number of

branches in the system.

The Random Forest model is the solution to the above-

mentioned overfitting problem of decision trees. The random

forest model consists of a random combination of multiple

decision trees (Aydın, 2018). This method was developed by Leo

Breiman in 2001 (Breiman, 2001). The chosen decision trees

should be as different as possible. The low correlation between

decision trees will allow the system to yield more accurate

results by lowering the amount of deviation in the overall

prediction mechanism. The Model does not give equal weight to

each tree that makes up itself. The model uses out-of-Bag (OOB)

error rate to determine the weight of these trees. The data set is

divided into 2/3 of the training and 1/3 of the test. As a result of

this process, the tree with the lowest error is given the highest

weight, while the tree with the highest error is given the lowest

weight. In the classification problem, each tree in the forest

makes a prediction. The prediction value with the majority is

determined as the overall prediction value of the model.

2.6. Evaluation metrics

For the evaluation of binary classification models, various

metrics are used based on confusion matrix using TP (True

Positive), FP (False Positive), TN (True Negative), and FN

(False Negative) values (Yıldız and Karadeniz, 2019):

𝑇𝑃 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑚𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠,

𝑇𝑁 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠,

𝐹𝑃 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑜𝑚𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠,

𝐹𝑁 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑟𝑜𝑛𝑔𝑙𝑦 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠.

The most used model evaluation metrics are precision,

recall and F1-score values, where the precision is the number of

correctly identified positive results divided by the number of all

positive results, including those not identified correctly, and the

recall is the number of correctly identified positive results

divided by the number of all samples that should have been

identified as positive:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (12)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . (13)

The F1-score value is a more accurate evaluation metric,

especially in cases where the number of positive and negative

data in the training set is unbalanced. The F1-score is calculated

from the precision and recall as their harmonic mean as follows:

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 . (14)

In our study, precision, recall and F1-score metrics were

also used to evaluate the models.

3. Proposed Method

3.1. Related work

There are some studies in the literature to predict invoice

fields from image files. Although some of them resemble our

work in terms of ideas, there are differences with some critical

points. The following are some of these works identified as a

result of the literature review. An automatic indexing approach

was used in the study (Esser et al., 2012). The desired inputs

must be in precisely determined positions in this approach.

Results are obtained by making index assignments to the

information in this position. Although correct results can be

obtained, changing the positions of the information on the

invoices negatively affects the results. Therefore, only invoices

in allowed templates can give good results. The Intellix is

another work with similarities to the automatic indexing

approach (Schuster et al., 2013). In the Intellix method proposed

in the work, the classification process is performed first. Then,

according to the rules, the information is extracted from the

invoice. The positions in the invoice information must always be

the same and precise to make the results accurate. It is necessary

to use templates to get the correct results. The approach in the

study (Liu et al., 2019) is to ensure that the 2-dimensional

structures of the documents are preserved. It is aimed to transfer

information without the need for any template. Each text has

been converted into graph format and the position information of

the words that they represent has been assigned to the vertexes in

this graph. Thus, each word has become a vector whose

coordinates are determined in space. The training was carried

out with BiLSTM - CRF model. The main purpose of the work

(Katti et al., 2018) is to create the model that best represents the

2-dimensional structure in the documents as in the work (Liu et

al., 2019). The information is used to describe each letter in the

words and their position on the document. The model consists of

two main parts as encoder and decoder. As a result of the

training, they achieved good results in sections such as invoice

number and invoice date, unlike in sections such as seller name

and address. The CloudScan approach presented in the study

(Palm et al., 2017) does not require a template, unlike automatic

indexing and Intellix. The working principle is based on the n-

gram system. Each sentence is evaluated based on the sequence

of words. The information that matches the correct format has

been transferred to the system. In addition to the Logistic

Regression model used as baseline, LSTM (Long Short-Term

Memory) model was also used. The CloudScan approach is the

most related work to the appoach proposed in this work.

3.2. Proposed Approach

The proposed in this study approach does not require any

invoice document template, unlike automatic indexing and

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)

European Journal of Science and Technology

e-ISSN: 2148-2683 997

Intellix. The working principle is also based on the n-gram

analysis as in the CloudScan approach. Nevertheless, there are

some important differences between CloudScan and the

proposed approach. Both the training models and vectorization

techniques used are different. The main difference of the

proposed approach is using of the word distance measurement

methods such as Levenshtein and Jaro-Winkler for vectorization

technics. CloudScan uses Logistic Regression and LSTM

models while the Random Forest model as the main training

model is used in this work. Contrary to these differences, N-

gram creation and feature calculation methods are similar to

those in the CloudScan aproach.

def calc_levenshtein(i,j):

 rows = len(i) + 1

 cols = len(j) + 1

 dist = create_zeros_matrix(i,j)

 for col in range(1,cols):

 for row in range(1,rows):

 if i[row-1] == j[col-1]:

 cost = 0

 else:

 cost = 1

 dist[row][col] = min(dist[row-1][col]+1,

 dist[row][col-1]+1,

 dist[row-1][col-1] + cost)

 ratio = ((len(i)+len(j) – dist[row][col])/ (len(i) + len(j))

 return ratio

pot_keys = list of potential keys

control_keys=list of control keys

result_list = []

for pot_key in pot_keys:

 ratio_list = []

 for control_key in control_keys:

 ratio = calc_levenshtein(pot_key, control_key)

 ratio_list.append(ratio)

 result_list.append(max(ratio_list))

Figure 3. Pseudocode of the algorithm using the Levenshtein

Distance

In the proposed approach, firstly Levenshtein distances are

calculated between potential keywords and members in the

control keywords list. In order the method to work properly, the

keyword checklist, which are compared with the potential

keywords, should be carefully selected. When the number of

elements in this list is more than one, the distance of the

keyword closest to the potential keyword is taken and processed

in the system. The pseudocode of the algorithm is used is given

in Fig. 3.

Since the invoices used in this work are in German, it was

sufficient to use 1-gram to identify potential keywords. It would

be better to use 2-gram in case of working on a Turkish or

English invoice. Because potential keywords consist of 2 words

in these languages such as “Fatura Numarası”, “Fatura Tarihi” or

“Invoice Number”, “Invoice Date”. However, these structures

can be expressed in a single word in German, such as

"Rechnungsnummer", "Rechnungsdatum", “Belegdatum". After

the 1-gram structure of the words on the invoice is created,

Levenshtein distances are calculated by comparing them with

each element in the keyword checklist. Additional attributes used

in the proposed approach reflecting Levenshtein distances of the

n-gram to the potential keywords used for training are given in

Table 4.

Table 4. Additional Levenshtein Distance Attributes Used in

Training

Attribute Description

InvoiceDateLevDistance Levenshtein Distance value used

for Invoice Date

DeliveryDateLevDistance Levenshtein Distance value used

for Delivery Date

DueDateLevDistance Levenshtein Distance value used

for Due Date

InvoiceNoLevDistance Levenshtein Distance value used

for Invoice No

TotalGrossLevDistance Levenshtein Distance value used

for Total Gross

TotalNetLevDistance Levenshtein Distance value used

for Total Net

VatAmountLevDistance Levenshtein Distance value used

for Vat Amount

IbanLevDistance Levenshtein Distance value used

for IBAN

4. Computational Results

4.1. Dataset

A dataset containing of 9910 invoice images collected by

authors from different firms is divided into 80% training and

20% test sets. Since the invoices contain sensitive financial

information, the dataset cannot be presented as an open source.

A total of 34 features were used given in Tables 2 and 4. There

are 26 features in Table 2 and 8 features in Table 4. An example

of invoice image that is used in training is shown in Fig. 4. The

invoice can be seen in Table 5, where all processes are

completed and ready for training. The labeling process was done

by two experts. While one expert performed the labeling, the

other one checked the labelled fields.

The machine learning models are used such as Random

Forest, Gradient Boosting Machine, Extreme Gradient Boosting,

K-Nearest Neighbors, AdaBoost and Decision Tree to predict the

labels for all fields. There is an imbalance between labeled and

unlabeled data used in training. Although there is single field

(for example, invoice number) on a single invoice, there is an

average of 1500 to 2000 unclassified data (n-grams). This

situation causes unbalanced data problem (Chawla et al., 2002).

If the unbalanced data problem is not solved, the model may

qualify very few classes of observations as completely outlier.

For this reason, whole data in the minor class (labeled) is taken,

while only a certain part of the data in the major class

(unlabeled) is taken. As a result of the training, the best ratio of

the number of unlabeled data to the number of labeled data was

determined as 15. Its effect on training may be different each

time since the unlabeled data will be chosen randomly. Apart

from these, the overfitting problem has been prevented by

limiting the number of invoices of the same type. The training

has been repeated 500 times because of this randomness.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 998

4.2. Results and Discussion

Computational experiments were performed on the computer

with 2.3 Ghz 8-core 9th-generation Intel Core i9 processor,

AMD Radeon Pro 5500M with 4GB of GDDR6 memory and

16GB of 2666 MHz DDR4 memory. The training process took

164 minutes for all invoices. Python was used as the

programming language, numpy and pandas were used as a

library in this work. The scores for labeled data such as "invoice

date", "invoice number", "due date", "delivery date", "total

gross", "total net", "vat amount" and "IBAN" are given in tables

6-13. The models generally using the F1-scores because of the

unbalanced data are compared. The bold numbers represent the

best F1-scores in the tables. In the Random Forest, which is

concluded as the best prediction model, we achieve F1 scores as

0.97 for the “invoice number”, 0.97 for the “invoice date”, 0.88

for the “due date”, 0.76 for the “delivery date”, 0.93 for “total

gross”, 0.89 for “total net”, 0.92 for “vat amount” and 0.99 for

“IBAN”. When the values are analyzed, the Extreme Gradient

Boosting model achieved the second closest results to the

Random Forest. The other models did not show any obvious

superiority over each other.

The training results of all labeled fields to be predicted were

obtained separately. The results obtained for each model and

each distance measurement technique can be seen in Tables 6-

13. First of all, there are two main reasons for special training

for each field. First reason is ensuring maximum score by

choosing different attributes that best represent each tag. The

second is to be able to choose different models that provide the

best success for the field. Note that, it may not always be

possible to achieve the best score in all fields with a single

model (Nasiboğlu and Akdoğan, 2020).

According to the Tables 6-13, it can be seen that the best

model is Random Forest for all fields. However, as can be seen

in Table 6, Table 7 and Table 13, the Extreme Gradient Boosting

model was able to produce results close to Random Forest. In

the future, it can be thought that these two models will be

successful in the estimation of other fields such as address, tax

number. At the same time, the values of two different distance

measurement methods can be evaluated in the tables. Although

Jaro-Winkler and Levenshtein methods obtain very close scores,

we can say that Levenshtein method gives a better result.

If we evaluate the results on the basis of fields, high scores were

obtained on invoice number, invoice date and IBAN. The reason

for this success is that these tagged data, coordinates and

potential words around them are similar in many invoices. The

reason for not achieving such high success in the amounts

section is because the labeled data can be located in very

variable regions on the page. For example, total amount may be

at the top on the second page in a multi-page invoice, while it is

in the middle on the page of single-page invoice. It can also be

located on both the right and left side on the page. Despite these

variations, a satisfactory success has been achieved for the

amount fields. Due to the insufficient amount of labeled data in

the delivery date and the due date fields, the desired success can

not be achieved for this fields.

Table 5. Part of the Sample Invoice Ready for Traning

RawText Pattern IsFirstStr IsFirstInt … InvoiceDateLevDistance TotalNetLevDistance

Gesamt Xxxxxx
1 0 … 0 0

Gesamt netto Xxxxxx xxxxx
1 0 … 0 0

Gesamt netto
483,60

Xxxxxx xxxxx
000?00

1 0 … 0 0

Gesamt netto
483,60 €

Xxxxxx xxxxx
000?00 ?

1 0 … 0 0

netto xxxxx
1 0 … 0.35 0.65

netto 483,60 xxxxx 000?00
1 0 … 0.35 0.65

netto 483,60
€

xxxxx 000?00 ?
1 0 … 0.35 0.65

483,60 000?00
0 1 … 0.25 1

European Journal of Science and Technology

e-ISSN: 2148-2683 999

...

Figure 4. A Sample Invoice image from the Dataset

Table 6. Precision, Recall and F1 Scores for “invoice number”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.99 0.96 0.97 0.99 0.96 0.97

Gradient Boosting

Machine
0.96 0.91 0.93 0.96 0.90 0.93

Extreme Gradient

Boosting
0.98 0.97 0.97 0.98 0.97 0.97

K-Nearest Neighbors 0.93 0.95 0.94 0.90 0.94 0.92

AdaBoost 0.94 0.89 0.92 0.94 0.88 0.91

Decision Tree 0.95 0.96 0.95 0.95 0.96 0.95

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 1000

Table 7. Precision, Recall and F1 Scores for “invoice date”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.97 0.97 0.97 0.97 0.97 0.97

Gradient Boosting

Machine
0.93 0.95 0.94 0.93 0.94 0.94

Extreme Gradient

Boosting
0.96 0.97 0.96 0.96 0.97 0.96

K-Nearest Neighbors 0.91 0.93 0.92 0.92 0.93 0.93

AdaBoost 0.90 0.94 0.92 0.90 0.93 0.92

Decision Tree 0.97 0.96 0.96 0.97 0.96 0.96

Table 8. Precision, Recall and F1 Scores for “due date”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.97 0.81 0.88 0.95 0.81 0.87

Gradient Boosting

Machine
0.90 0.64 0.75 0.87 0.65 0.74

Extreme Gradient

Boosting
0.91 0.80 0.85 0.91 0.81 0.86

K-Nearest Neighbors 0.66 0.61 0.63 0.64 0.56 0.60

AdaBoost 0.85 0.53 0.65 0.69 0.56 0.61

Decision Tree 0.78 0.80 0.79 0.74 0.78 0.76

Table 9. Precision, Recall and F1 Scores for “delivery date”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.93 0.64 0.76 0.89 0.63 0.74

Gradient Boosting

Machine
0.83 0.44 0.58 0.76 0.52 0.62

Extreme Gradient

Boosting
0.84 0.61 0.71 0.81 0.57 0.67

K-Nearest Neighbors 0.65 0.50 0.56 0.70 0.57 0.63

AdaBoost 0.65 0.34 0.45 0.83 0.34 0.48

Decision Tree 0.63 0.64 0.64 0.64 0.62 0.63

European Journal of Science and Technology

e-ISSN: 2148-2683 1001

Table 10. Precision, Recall and F1 Scores for “total gross”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.97 0.88 0.93 0.98 0.88 0.93

Gradient Boosting

Machine
0.93 0.69 0.79 0.93 0.68 0.79

Extreme Gradient

Boosting
0.96 0.88 0.92 0.96 0.88 0.92

K-Nearest Neighbors 0.87 0.78 0.82 0.84 0.77 0.80

AdaBoost 0.86 0.67 0.76 0.85 0.64 0.73

Decision Tree 0.86 0.88 0.87 0.85 0.88 0.86

Table 11. Precision, Recall and F1 Scores for “total net”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.96 0.83 0.89 0.96 0.83 0.89

Gradient Boosting

Machine
0.90 0.55 0.68 0.89 0.55 0.68

Extreme Gradient

Boosting
0.93 0.81 0.86 0.93 0.81 0.86

K-Nearest Neighbors 0.79 0.70 0.74 0.76 0.69 0.73

AdaBoost 0.78 0.52 0.62 0.76 0.52 0.62

Decision Tree 0.80 0.83 0.82 0.81 0.82 0.82

Table 12. Precision, Recall and F1 Scores for “vat amount”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.96 0.88 0.92 0.96 0.87 0.92

Gradient Boosting

Machine
0.91 0.63 0.75 0.91 0.62 0.74

Extreme Gradient

Boosting
0.95 0.88 0.92 0.94 0.87 0.91

K-Nearest Neighbors 0.85 0.80 0.82 0.85 0.78 0.81

AdaBoost 0.80 0.59 0.68 0.82 0.57 0.67

Decision Tree 0.85 0.85 0.85 0.82 0.85 0.83

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 1002

Table 13. Precision, Recall and F1 Scores for “IBAN”

Model
Precision

Lev.

Recall

Lev.

F1

Lev.

Precision

J-Win

Recall

J-Win.

F1

J-Win

Random Forest 0.99 0.99 0.99 0.99 0.99 0.99

Gradient Boosting

Machine
0.98 0.97 0.98 0.98 0.97 0.98

Extreme Gradient

Boosting
0.99 0.99 0.99 0.99 0.99 0.99

K-Nearest Neighbors 0.97 0.99 0.98 0.98 0.99 0.99

AdaBoost 0.97 0.97 0.97 0.97 0.97 0.97

Decision Tree 0.99 0.99 0.99 0.99 0.99 0.99

5. Conclusion

In this work, the machine learning models based on n-gram

structure were discussed to recognize information on the invoice

images. The conversion of the words on the invoice into n-grams

and the using of Levenshtein and Jaro-Winkler distances

between words were effective in the training of the models.

Although there is not a big difference between Jaro-Winkler and

Levenhstein distances’ calculation methods, the Levenshtein

distance is slightly better, as seen in the results. The effective

attributes’ list was discovered to increase the performance values

of the models. The data set, collected by authors from different

firms, containing 9910 invoice images were divided into 80%

training and 20% test sets. The labeling process performed by

two expert. While one expert performed labeling for the fields,

the other one checked the labeled fields. The F1 scores were

used to compare the models because of the unbalanced data.

When the performances of the models were compared, it

was observed that the Random Forest model was superior to

other models with a value of 0.9137 average F1 score. In

addition, the Random Forest model was found to be robust to the

overfitting problem. The average scores of the other models

were determined as Gradient Boosting Machine with 0.80,

Exreme Gradient Boosting with 0.8975, K-Nearest Neighbour

with 0.8012, AdaBoost with 0.7462 and Decision Tree with

0.8587 F1-scores.

 In the future studies, it is aimed to construction of the models

and the additional attributes for effective extraction of invoice

information. Also, it is planned to construct effective approaches

to extract other information such as address, postal code and

customer number on the invoice images.

References

Aydın, C. (2018). Makine Öğrenmesi Algoritmaları Kullanılarak

İtfaiye İstasyonu İhtiyacının Sınıflandırılması. Avrupa

Bilim ve Teknoloji Dergisi, 14(4), 169–175.

Breiman, L. (2001). Random Forests. Machine learning, 45(1),

5–32.

Chawla, N.V., Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P.

(2002). SMOTE: Synthetic Minority Oversampling

Technique. Journal of Artificial Intelligence Research, 16,

321–357.

Esser, D., Schuster, D., Muthmann, K., Berger, M., & Schill, A.

(2012). Automatic indexing of scanned documents: a

layout-based approach. Document Recognition and

Retrieval, XIX, 8297, 82970H.

Gelfand, S.B., Ravishankar, C.S., & Delp, E.J. (1991). An

iterative growing and pruning algorithm for classification

tree design. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 13(2), 163-174.

Haldar, R., & Mukhopadhyay, D. (2011). Levenshtein distance

technique in dictionary lookup methods: an improved

approach. https://arxiv.org/abs/1101.1232. Accessed

23.05.2020.

Jaro, A. (1989). Advances in record-linkage methodology as

applied to matching the 1985 census of tampa. Journal of

the America Statistical Association, 84(406), 414-420.

Katti, A., Reisswig. C., Guder, C., Brarda, S., Bickel, S., Hohne,

J., & Faddoul, J. (2018). Chargrid: Towards understanding

2d documents. Conference on Empirical Methods in

Natural Language Processing. Brussels, Belgium, pp.

4459-4469.

Klein, B., Agne, S., & Dengel, A. (2004). Results of a Study on

Invoice-Reading Systems in Germany. In: Marinai S,

Dengel AR (eds.), Document Analysis Systems VI, ser.

Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 451–462.

Liu, X., Gao, F., Zhang, Q., & Zhao, H. (2019). Graph

convolution for multimodal information extraction from

visually rich documents. Proceedings of the 2019

Conference of the North. Minnesota. NAACL.

Mashat, A., Fouad, M., Yu, P., & Gharib, T. (2012). A decision

tree classification model for university admission

system. International Journal of Advanced Computer

Science and Applications, 3(10), 17–21.

https://arxiv.org/abs/1101.1232

European Journal of Science and Technology

e-ISSN: 2148-2683 1003

Nasiboğlu, R., & Akdoğan, A. (2020). Estimation of the

secondhand car prices from data extracted via web scraping

techniques. Journal of Modern Technology and

Engineering, 5(2), 157-166.

Palm, R., Winther, O., & Laws, F. (2017). CloudScan - A

configuration-free invoice analysis system using recurrent

neural networks. 14th IAPR International Conference on

Document Analysis and Recognition (ICDAR), Kyoto,

Japan, pp. 406 – 413.

Quinlan, J. (1986). Induction of decision trees. Machine

learning, 1(1), 81–106.

Schulz, K., & Mihov, S. (2002). Fast string correction with

Levenshtein-automata. International Journal of Document

Analysis and Recognition, 5(1), 67–85.

Schuster, D., Muthmann, K., Esser, D., Schill, A., Berger, M.,

Weidling, C., Aliyev, K., & Hofmeier, A. (2013). Intellix –

end-user trained information extraction for document

archiving. 12th International Conference on Document

Analysis and Recognition, pp 101–105.

Smith, R. (2007). An overview of the Tesseract OCR engine.

Ninth International Conference on Document Analysis and

Recognition (ICDAR 2007), 2007, pp. 629–633.

Wang, Y., Qin, J., & Wang, W. (2017). Efficient Approximate

Entity Matching Using Jaro-Winkler Distance. 18th

International Conference on Web Information Systems

Engineering, Puschino, Russia, pp 231-239.

Watanabe, T., Tsukada. H., & Isozaki, H. (2009). A succinct n-

gram language model. International Joint Conference on

Natural Language Processing (IJCNLP), Singapore, pp.

341–344.

Xiaoliang, Z., Jian, W., Hongcan, Y., & Shangzhuo, W. (2009).

Research and Application of the improved Algorithm C4.5

on Decision Tree. International Conference on Test and

Measurement (ICTM), Hong Kong, 2, 184-187.

Yıldız, İ., & Karadeniz, A. (2019). Enhancement of Breast

Cancer Diagnosis Accuracy with Deep Learning. European

Journal of Science and Technology, (Special Issue), 452-

462.

Zelic, F., & Sable, A. (2020). A comprehensive guide to OCR

with Tesseract, OpenCV and Python.

https://nanonets.com/blog/ocr-with-tesseract/. Accessed

02.06.2020.

https://nanonets.com/blog/author/filip/?&utm_source=nanonets.com/blog/&utm_medium=blog&utm_content=%5BTutorial%5D%20OCR%20in%20Python%20with%20Tesseract,%20OpenCV%20and%20Pytesseract
file:///E:/Yüksek%20Lisans/1-Seminer/final_makale/%20Sable
https://nanonets.com/blog/ocr-with-tesseract/

