
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 29, S. 415-424, Aralık 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 29, pp. 415-424, December 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 415

Conceptual Design of Python IDE with Embedded Turkish Spoken

Chatbot that Analyzes and Corrects the Syntax Errors

Turgay Tugay Bilgin1*, Erdem Yavuz2

1* Bursa Teknik Üniversitesi, Müh. ve Doğa Bil. Fak., Bilgisayar Mühendisliği Bölümü, Bursa, Türkiye (ORCID: 0000-0002-9245-5728), turgay.bilgin@btu.edu.edu.tr
2 Bursa Teknik Üniversitesi, Müh. ve Doğa Bil. Fak., Bilgisayar Mühendisliği Bölümü, Bursa, Türkiye (ORCID: 0000-0002-3159-2497), erdem.yavuz@btu.edu.tr

 (International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 2021 – 21-23 October 2021)

(DOI: 10.31590/ejosat.1035421)

ATIF/REFERENCE: Bilgin, T.T. & Yavuz, E. (2021). Conceptual Design of Python IDE with Embedded Turkish Spoken Chatbot that

Analyzes and Corrects the Syntax Errors. European Journal of Science and Technology, (29), 415-424.

Abstract

Intelligent agents, in addition to act as a cognitive tool, they can also to be designed as learning agents. In this way, they can learn the

user's behavior from users' past behaviors. Learning agents can analyze the user's / student's behavior to a task, build a database of past

activities, and suggest better strategies. This study provides a detailed review of interactive guidance using intelligent agents, and then

introduces a concept model for a Conversation-based Turkish Python Integrated development environment (IDE) that can analyze user

syntax errors and help them to correct errors. The model proposed in this study consists of three layers. These are user interface layer,

middle layer, and Python interpreter layers. User interface layer consists of code editor and chatbot components. Middle layer includes

code structural control subsystem, code error manager, and intelligent agent subsystems. The code structural control module analyzes

conditions, loops, branching, and other types of program flow controls in the user's code. The code error manager analyzes the error

outputs of the user code which is generated by the Python interpreter. The intelligent learner, on the other hand, uses these inferences

to understand the reason for the student's error and convey the necessary actions to the user by the help of chatbot and suggest possible

corrections. The proposed Integrated development environment (IDE) has a well-designed UI that can be easily adapted by newcomers.

The coding editor can be used as a stand-alone desktop software, or it can also connect to a cloud storage to store user codes in the

cloud. A web application is also planned for our proposed IDE. The teacher will be able to assign homework to the student over the

web. The student will be able to view these assignments on the web, do the assignments in the desktop editor and send them back to the

teacher over the web. In addition, each user’s error characteristics will be analyzed, the success of the learning will be measured, and

the deficiencies of the students will be determined using the Intelligent Agent Subsystem.

Keywords: Integrated Development Environments, Chatbots, Intelligent Agents.

Sözdizimi Hatalarını Analiz Eden ve Düzelten Türkçe Sohbet

Robotuna sahip Python Tümleşik Geliştirme Ortamı Kavramsal

Tasarımı

Öz

Zeki etmenler, bir bilişsel araç olarak hizmet etmenin yanı sıra, kullanıcıların geçmişteki davranışlarından hareketle kullanıcının

davranış biçimini öğrenebilecek şekilde, yani öğrenen etmen olarak tasarlanabilirler. Bu şekilde tasarlanmış etmenler

kullanıcının/öğrencinin bir göreve yaklaşımını analiz edebilir, geçmiş faaliyetler için bir veri tabanı oluşturabilir ve daha iyi stratejiler

önerebilir. Bu çalışma, zeki etmenler ile etkileşimli yönlendirme çalışmaları hakkında detaylı bir inceleme sunmakta ve ardından

kullanıcı hatalarını analiz edebilen diyalog tabanlı Türkçe Python kod editörü tasarımı için bir konsept model ortaya koymaktadır. Bu

çalışmada önerilen sistem, üç katmanlı mimariye dayandırılmaktadır. Bu katmanlar kullanıcı arayüzü katmanı, orta katman ve Python

yorumlayıcısı katmanlarıdır. Kullanıcı arayüzü katmanı; editör ve sohbet robotu bileşenlerinden oluşmaktadır. Orta katman; kod yapısal

kontrol, kod hata yöneticisi ve öğrenen zeki etmen alt sistemlerini içerir. Kod yapısal kontrol modülü kullanıcının kodundaki koşul,

döngü, dallanma ve diğer tür program akış kontrollerinin analizini yapar. Kod hata yöneticisi, kullanıcının yazdığı Python kodunun,

Python yorumlayıcı tarafından çalıştırılması sonucunda elde edilen hata bildirimlerini analiz eder. Öğrenen zeki etmen ise bu çıkarımları

kullanarak öğrencinin hatasının sebebini anlayarak bunları düzeltmesi için gereken işlemleri sohbet robotu aracılığıyla kullanıcıya

* Corresponding Author: turgay.bilgin@btu.edu.edu.tr

http://dergipark.gov.tr/ejosat
mailto:turgay.bilgin@btu.edu.e
mailto:erdem.yavuz@btu.edu.tr
mailto:turgay.bilgin@btu.edu.edu.tr

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 416

aktarır ve olası düzeltmeler önerir. Önerilen geliştirme ortamının, kodlamaya yeni başlayanların kolay adapte olabileceği ergonomiye

sahip olması planlanmıştır. Bu amaçla kullanıcıya yönlendirme sağlamak için diyalog tabanlı etmen içeren bir alt sistemin

düşünülmüştür. Kodlama editörü tek başına bir masaüstü yazılım olarak kullanılabileceği gibi, yazılan kodları bulut ortamında depolama

özelliğine de sahip olabilmektedir. Bulut ortamında eğitici/öğretmen tarafından kullanıcıya atanan ödevleri alabilme ve öğrencilerin

çözümlerini tekrar eğiticiye gönderebilme özelliklerine sahip olması planlanmıştır. Ayrıca, her bir kullanıcının hata analizlerinin

yapılabilmesine olanak sağlayarak öğrenmenin ne ölçüde gerçekleştiği ve öğrencilerin hangi konularda eksiklerinin olduğunun

görülebilmesine olanak sağlayan bileşenler tasarlanmıştır.

Anahtar Kelimeler: Tümleşik Geliştirme Ortamları, Sohbet Robotları, Zeki Etmenler.

1. Introduction

One of the earliest studies on the use of intelligent agents for

educational purposes was carried out by Roesler and Hawkins in

1994. In their study, the most general definition of intelligent

agents is expressed as software that can adapt to individual habits

and try to assist users in routine computer tasks [1]. This

technology requires using all methods such as artificial

intelligence, natural language processing (NLP) and human-

machine interface. In a study, Harmon classify the agents into

three groups [2]. Harmon states that his classification is based on

how the agents do, not what they do. These are end-user

programmed (or simple) agents, knowledge-based systems (or

smart) agents, and self-learning (or intelligent) agents. On the one

hand, Russell and Norvig divides the factors into five classes

according to their intelligence and ability levels [3]:

 Simple Reflex Agents

 Model-based Reflex Agents

 Goal-based Agents

 Utility-based Agents

 Learning Agents

In addition to serving as a cognitive tool, intelligent agents

can also be designed (as a learning agent) to learn the user's

behavior from the past behaviors of the users. Agents designed in

this way can analyze the student's approach to a task, create a

database of past activities, and suggest better strategies. One of

the most comprehensive studies on intelligent agents supported

by machine learning was published by Maes in 1997. Maes

proposed a machine learning approach to develop the intelligent

agent in the study [4]. In Maes' approach, the agent constantly

improves its abilities over time. The agent is competent from four

sources: (1) it realizes the behavior by tracking the user; (2) it

provides feedback to the user directly or indirectly; (3) it can be

trained with the examples provided by the user; (4) it may seek

advice from the other agents who have helped others before for

the same task.

One of the first studies suggesting that intelligent learning

agents can be used in education was carried out by Kearsley in

1993 [5]. According to Kearsley in that review, intelligent agents

can serve successfully as coaches or consultants. Kearsley stated

that it is necessary to be able to create agents in a programming

environment and students should be able to use them directly. In

the approach, students will learn to command an agent and help

the agent perform a complex task on its own. As Kearsley

suggests, it offers a new paradigm based on the notion of

intelligent agents, shared skills between humans and computers,

and collaborative learning.

In the study published by Giraffa and Viccari in 1998 [6], it

was stated that the agents used in intelligent learning

environments (ILE) should be named pedagogical agents.

Pedagogical agents are those that have a set of teaching goals and

plans and the resources necessary to achieve these goals [6]. The

same authors proposed a taxonomy classifying agents in another

study and expressed the relationship of pedagogical agents with

other agents in this taxonomy as seen in Figure 1 [7]. According

to this taxonomy, pedagogical ones are both software-based and

artificial intelligence.

2. Literature Review

According to the studies of Chen et al. [8], pedagogical

agents can be created in different ways such as animated factors

or text-based agents. [8]. Animated pedagogical agents are often

the focal point the interface and software. Text-based pedagogical

agents can be positioned in a fixed area on the user interface.

These can provide users with hints and guidance, or they can be

in the form of a chat window. In that study, Chen et al. designed,

implemented and measured the impact of CoLeMo, a

collaborative learning environment for UML (Unified Modeling

Language). In the aforementioned study, two types of pedagogical

agents were designed to facilitate collaboration and improve

learning. These were expressed as a domain agent and a facilitator

agent. Both of them provide text-based recommendations based

on students' activities. The domain agent knows the rules for UML

diagramming and is responsible for making recommendations,

thanks to its knowledge of the domain [8]. For example, if a

student tries to execute an operation against the UML rules, the

domain agent explains why this operation is illegal and what the

correct action is. The facilitator is responsible for making

recommendations to coordinate collaboration. This agent

monitors activities of each student and the whole group and makes

recommendations for organizing participation and collaboration

[8].

European Journal of Science and Technology

e-ISSN: 2148-2683 417

Figure 1. Taxonomy of agents according to Giraffa and Viccari [7].

Han et al. developed a peer-learning-based software in

programming education using pedagogical agents in their study

published in 2010 [9]. This system mimics the roles of "teacher"

and "learner" in a peer-learning method from pedagogical and

technical perspectives. The peer-learning agent uses the Bayesian

network and artificial intelligence methods as well as teaching and

learning methods. The role relationship between the peer-learning

agent and the student is shown in Figure 2. This model, which

combines peer-learning tools with a teaching and learning

strategy, has been shown to be effective in having students gain

programming skills [9].

Figure 2. The relationship between the peer-learning agent and student [9].

Pedagogical agents can also be formed as conversational

agents. Such agents imitate people's communication methods and

often chat with the student(s) through speech, text messages,

facial expressions, gestures, or other body language actions [10].

Having trailing the historical roots of pedagogical agents, the

mentioned study focused on creating an agent that is both

knowledgeable and that develops a social relationship with the

learner. Until now, many conversational agents have been

developed and they can successfully perform multiple

pedagogical roles such as teacher, learning-peer or coach [11].

Furthermore, Walker et al. (2011) showed that having a speaker

giving guiding directives/instructions during a peer activity can

increase the conceptual depth of students' expressions [12].

Tegos et al. developed and used a prototype conversational

agent system called MentorChat [13]. MentorChat is basically a

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 418

cloud-based computer-assisted collaborative learning system.

This system also enables a teacher to structure and distribute some

dialogue-based collaborative activities to students. The

architecture of the system, whose user interface is shown in Figure

3, consists of three modules: student, teacher and speaker agents.

The speaker agent of MentorChat uses an animated two-

dimensional avatar representation (Figure 3C) and uses a text-to-

speech engine to deliver instructions to the student. The agent

shows their notifications in a popup (Figure 3D) and not in the

common chat area (Figure 3B). In this way, the attention of the

students is drawn to the last message of the agent and they are

provided to respond to this message.

Figure 3. MentorChat user interface [13].

2.1. The use of chatbots in education

A chatbot is a computer program designed to simulate a chat

with its users, usually over the Internet [14]. “Furthermore the

analogy that a chatbot often treats a conversation like a game of

tennis can be used to describe the conversation flow of a chatbot,

i.e. get message, reply, get message, reply, and so on” (The

Oxford Dictionary, 2018). Deryugina (2010) makes almost the

same definition, but by adding the word “intelligent” before

communication, it indicates the need for intelligent answers rather

than just random answers. Chatbot is a general term for many

other names such as Chatterbot, Conversational Agent, Intelligent

Pedagogical Agent (IPA), and Conversational System and

Pedagogical Tool.

Chatbots can be developed in many ways, but a popular and

fairly simple way is to use Artificial Intelligence Markup

Language (AIML) [14]. AIML, was built by Dr. Wallace and an

open source community (Alice foundation) to work as the

brainchild of the chatbot [15]. AIML is a derivative of XML and

in this variant, AIML files as the knowledge base or brain of

chatbots allow the person managing the chatbot to add

information to the chatbot [14]. Chatbot A.L.I.C.E. was

developed using AIML based on categories containing a stimulus

or pattern, and a template in response. In this approach, the

category patterns are then matched to find the most appropriate

response to a user input.

Cleverbot was launched in 2008, and unlike other chatbots,

its responses were not pre-programmed. Instead, an approach was

adopted where a user would write a comment or question and

learn directly from human input, where Cleverbot would find all

keywords or an exact phrase matching the input [16].

Again, in a study published in 2008, it was reported that two

chatbots (T-Bot and Q-Bot) were developed to teach and evaluate

students. The authors have developed two AIML-based chatbots

to assist students in the learning process and support teaching

activities on an e-learning platform such as Claroline or Moodle.

One of the chatbots plays the role of a teacher (T-bot) and

communicates with the student in natural language to provide

adequate and domain-specific answers to students and guide

students to the correct course material. The other has the role of

an evaluator (Q-bot) and can monitor and supervise the student

through personalized questionnaires. Both chatbots have been

developed as easily integrated modules for Claroline or Moodle

[14].

A chatbot can be implemented as rule-based or artificial

intelligence (AI) [6]. However, unlike rule-based chatbots, AI-

based chatbots can become smarter and more scalable over time.

Also, AI-based systems have recently become a popular choice

for chatbot researchers. In this context, the recurrent neural

network based sequence-to-sequence (Seq2Seq) model is

reportedly one of the most researched models to implement the

artificial intelligence chatbot and has shown great progress since

its emergence in 2014 [17]. However, it is still open to progress

and has not yet been widely implemented in educational chatbot

development.

Chatbots used in education seem to promise to have a

significant positive effect on learning achievement and student

satisfaction [18]. For example, the University of Georgia has

created a chatbot called "Jill Watson", based on IBM's Watson

platform, developed specifically to process forum posts from

students enrolled in a computer science course [18]. As a result of

this, students were more interested in the lesson and stated that

European Journal of Science and Technology

e-ISSN: 2148-2683 419

they wanted them to have the same opportunity in other lessons

[19].

Today, students have access to most of their information

about courses and assignments online. Therefore, chat programs,

such as NerdyBot [20], provide important support in learning

processes [21]. NerdyBot is another educational chatbot available

via Facebook Messenger that can perform school-related tasks

such as solving math equations, drawing graphs, searching for

definitions, and finding historical events [22]. The screenshot of

NerdyBot is shown in Figure 4.

Figure 4. NerdyBot screenchot [20].

It is asserted in the study that such programs offer a

communication medium where Generation Z are very familiar.

These students tend to join virtual learning groups to chat with

other students. Chatbot usage may make it possible reminders

about exams to be sent, generative systems help to understand the

curriculum. Continuing developments in NLP make it possible for

systems to understand students' questions. These students are

inclined to believe information from chatmates rather than search

engines [22]. Therefore, the thesis that knowledge should be

spread in an environment where students pass a lot of time can be

defended.

3. Proposed Architecture

The system proposed in this study is designed with a three-

layer architecture. Although the three-tier architecture is generally

preferred in data-intensive applications, it has been adapted to the

requirements of this study. The block diagram of the proposed

three layers is shown in Figure 10.

These layers are:

a. User Interface Layer: The components in this layer are

Editor and Chatbot.

b. Middleware Layer: The components in this layer are

“Code Structure Checker”, “Code Error Manager”,

"Learning Agent Subsystem".

c. Python Interpreter: This layer consists of Python

interpreter itself, which will run the code developed

using the Editor.

It is planned to develop the designed Python editor as a

desktop application. However, in addition to this, a Cloud Storage

module is planned so that the student codes can be stored in the

cloud environment, and a web-based administration panel

(Dashboard) is planned so that the teacher can monitor the

statistics and the analysis about student errors and also teacher can

assign homework to the student via this panel.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 420

Figure 10. Block diagram of the proposed code editor.

3.1. User Interface Layer

An innovative design approach is planned while developing

the coding editor interface. The sample GUI interface is given in

Figure 11. The user interface is designed ergonomically so that

junior programmers can learn it with minimum effort.

As can be seen in the figure, the editor screen has been

designed to be as simple and uncomplicated as possible. Codelets

enable some frequently used code-parts to be moved to the editor

area by "drag-and-drop" are placed in the left section. Compiling,

saving, debugging, etc. buttons are located at the top. The output

of the written code is located just below the editor. The

dialog/chatbot is docked on the right. In this part, the chatbot

displays the dialog texts to the user and at the same time takes all

the input from the user to the learning agent module which is

located in the middle layer. The learning agent module is detailed

in the next section. Chatbot, is designed to be able to ask questions

to the student in some cases, and the student can choose the

answer from the list given to her/him, as seen in the Chatbot dock

in Figure 11. The "code formatter" component is responsible for

indentation and syntax highlighting in the editor.

The Natural Language Toolkit (NLTK) library is used to

design chatbot backend. NLTK, is a suite of libraries and

programs for symbolic and statistical natural language processing

(NLP) written in the Python programming language. It was

developed by Steven Bird and Edward Loper in the Department

of Computer and Information Science at the University of

Pennsylvania [23]. The aforementioned study is available to users

on the GitHub platform as open source [24]. Python and QT

Framework library, HTML and JavaScript technologies were

preferred in order to be able to develop platform independent

Desktop Editor.

Figure 11. Proposed code editor GUI design.

3.2. Middle Layer

This layer consists of "Code structural control", "Code error

manager" and "Intelligent Learning Agent Subsystem" units.

"Code structural control" module checks the syntax of structures

such as condition, loop, branching in the user's code and performs

the task of checking compliance with code writing standards and

formal analysis. Other libraries such as PyRight [25], Flake8 [26],

pyflakes [27], PyChecker [28] can also be used for code structural

analysis. These tools are known as “static code analysis tools”.

They perform the formal analysis of the code written by the user

without actually running it in the interpreter, and they can identify

the syntax errors’ position and the definition of the error more

accurately than the default error messages of the Python compiler.

For example, let's assume that a "test.py" python code is written

as in Figure 12.

print("Hello World!"

Figure 12. Sample Python code

The 3.X version python compilers display “SyntaxError:

unexpected EOF while parsing” error when this piece of code is

run. There is an incorrect use of the "print" function in this piece

of code due to the missing closing parenthesis. On the other hand,

static code analysis tools such as PyRight can detect such

problems. Pyright is a fast type checker meant for large Python

source bases. It is an open source project and mainly contributed

European Journal of Science and Technology

e-ISSN: 2148-2683 421

by Microsoft. A portion of the Python and PyRight output for this

piece of code is given in Figure 13.

C:\>python test.py

 File "test.py", line 2

 ^

SyntaxError: unexpected EOF while parsing

C:\>pyright test.py

Searching for source files

Found 1 source file

C:\test.py

 C:\test.py:1:21 - error: Expected ")"

1 error, 0 warnings, 0 infos

Completed in 0.626sec

Figure 13. Comparison of Python interpreter and PyRight outputs.

The error statement " test.py:1:21- error: Expected ")" ",

which is taken from the PyRight output as shown in Figure 13, is

sent to the Intelligent Learning Agent which is actually chatbot

itself. Chatbot takes the position of error and the error definition,

and generates a Conversational Dialog Tree in order to interact

with the student. During the rendering of the English error texts,

an offline lookup table based English-to-Turkish translator

subsystem translates the error into the Turkish Language.

Figure 14. The example chatbot-student dialog tree.

Intelligent Agent subsystem generates Dialog Tree by using

this information. A dialogue tree or conversation tree is a game

mechanic used in many adventure games and role-playing video

games. When interacting with a non-human character, the player

is given a choice of what to say and makes subsequent choices

until the conversation is over. An example computer generated

dialog tree in Turkish Language is given in Figure 14. Format or

syntax errors caught by “Code structural control” and “Code error

manager” and violations of python coding standards are stored as

relational database in the “training set” database. Thus, a

knowledge base is generated for the learning agent.

Intelligent Learning subsystem tracks the user’s error event

sequences. Figure 15 shows an example error event sequence. In

the example sequence, the student wants to print “Hello” on the

screen. Since he does not know the use of the” print" function, he

cannot achieve this task.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 422

Figure 15. The sample error event sequence.

In our proposed model, the first task is to generate

“key:value” pairs database. The “key” is the code fragment that

consists of syntax errors and the “value” are the “syntax error”

messages generated by the python interpreter or python code

linter. Then, any further syntax errors that may be occur due to

the user modifications are also stored in the same format.

Sequential patterns are generated by putting all the syntax errors

in the form of a sequential list. These patterns are also recorded in

the "training set" database.

Figure 16. Proposed architectural block diagram for learning factor [29].

"Learning Intelligent Agent Subsystem", the architecture

proposed by Śnieżyński and Bartlomiej in 2008 for "Learning

Agents" [29] was modified and adopted to our proposed model.

The block diagram of the architecture is given in Figure 16. The

learning agent consists of four modules:

1. Processing Module: It is responsible for basic agent

activities such as storing training data, executing the

learning process, using the learned information, percept

environment, and creating action.

2. Learning Module: It is responsible for executing the

learning algorithm and answering the questions of the

"Processing Module" regarding the use of the learned

knowledge.

3. Training Data: It is the repository where the samples

used for learning are stored.

4. Generated Knowledge: It is the repository where learned

information is stored.

In the proposed architecture, the components interact with

each other as follows: The Processing Module performs sensing

from the environment. This module can process the necessary

information and take action for the situation it detects.

Information that can be obtained by learning may be required

when performing the procedure. In this case, this module

formulates a problem and sends it to the Learning Module. The

learning module, on the other hand, creates an answer for the

European Journal of Science and Technology

e-ISSN: 2148-2683 423

problem using the generated information and sends it to the

processing Module. The Processing Module also decides what

data will be stored in the Training Data repository. It also calls the

Learning Module to execute the learning algorithm to generate

new knowledge periodically as needed or when the Training Data

contains new samples. The learned information is stored in the

"Generated Knowledge" base.

The Learning Module has four important components:

Learning Algorithm, Training Data, Problem and Answer. The

characteristics of the training data, problem and answer formats

are designed depending on the learning algorithm used in the

learning module. We planned to use the sci-kit learn [30] Python

library in the development of the learning module. File-based

databases (SqLite, JSON or XML) were preferred as the

Knowledge Base and Training Set.

In the Learning Module, it is planned to use decision tree

algorithms together with sequential pattern mining and deep

learning, as well as other supervised learning methods. The

knowledge obtained by learning is stored in the “Generated

Knowledge” database. The learning agent will use this knowledge

to notify the student of the code error and display the necessary

steps for the student to correct the error. In addition to these, it

also suggests possible corrections to the student. Students often

find it difficult to understand the cause of errors, as the

notifications from the Python interpreter are in English and not

informative enough for beginners. Thanks to the proposed model,

the student will be informed in Turkish and will be able to

understand the reason for this error and will not waste time on trial

and error to fix the code. Therefore, the learning process will be

shortened and facilitated.

When the proposed Python code editor is first installed on the

user's computer, the learning agent's Training dataset will contain

data from some of the basic syntax errors that students often

make. The learning agent training dataset will grow as the student

uses the Python editor. In addition, if there is not enough data in

the training dataset for the learning agent to make a decision, the

training set can be updated over the Internet. The training dataset

is planned to be kept in the cloud storage environment of the Code

Storage module.

3.3. Python Interpreter Layer

The Python interpreter is available from the Python Software

Foundation (PSF) website. As support for Python 2.X series

interpreters may end in the near future, only Python 3.X series

interpreters are planned to be supported in the proposed editor.

Cloud Based Code Storage Module consists of a web based

code storage system and authorization system like “github”. This

module communicates with the code editor designed as a desktop

application via web services. Thanks to this module, users will be

able to store their projects written in the Python editor in the cloud

and transfer them back to the editor when they need it. The Web

Based Management Module gains functionality when the editor is

used in schools and educational institutions. With this, teachers

will be able to see the student's mistakes, observe the most

common mistakes, get statistical information and reports for all

students in the class, and also assign homework to students.

4. Results and Discussion

In this study, firstly, a detailed research on interactive

guidance studies with intelligent agents is presented. Then, it

introduces a concept for designing a dialog-based Turkish Python

code editor that can analyze user errors. It is aimed to develop an

open source Turkish supported integrated development

environment (IDE) for the open source Python programming

language. One of the most important innovative features of the

study is that the code editor has an intelligent learning system that

will analyze the errors of the users and provide guidance to the

user. The design also has dialog based agent. The integrated

development environment (IDE) outlined in this study is actually

a complex system that brings together structures such as machine

learning, intelligent agents, dialog-based agents, and chatbots. In

this proposed system, users' coding styles, syntax errors and the

loops and decision-making structures they use are analyzed by

machine learning methods. According to the results obtained,

users are guided by the dialog-based agent and the chatbot. In this

way, users, especially beginners, can be given basic error-free

coding practice without an instructor. The coding editor can be

used as a stand-alone desktop software, or it will have the ability

to store python source codes in the cloud. The ability to receive

assignments assigned to the user by the trainer/teacher in the

cloud environment and to send the students' solutions back to the

teacher has also been designed. It will also enable error profile

analysis of each user. In this way, it is planned to see to what

extent the learning has been achieved and in which subjects the

students have deficiencies.

Acknowledgement

This Project is supported by TUBITAK 1003 Prioritized

Areas R&D Grant Program, Project No: 118E882

References

[1] Roesler, Marina, and Donald T. Hawkins. "Intelligent Agents:

Software Servants for an Electronic Information World (And

More!)." Online 18.4 (1994).

[2] Harmon, Paul. (Ed) (1995). Software agents. Intelligent

software strategies, 11(1), 1-13. (January, 1995.)

[3] Russell, S. J. "Norvig (2003)." Artificial intelligence: a

modern approach (2003): 25-26.

[4] Maes, Pattie. "Agents that reduce work and information

overload." Readings in Human–Computer Interaction. 1995.

811-821.

[5] Kearsley, Greg. "Intelligent agents and instructional systems:

Implications of a new paradigm." Journal of Interactive

Learning Research 4.4 (1993): 295.

[6] Giraffa, Lucia Maria Martins, and Rosa Maria Viccari. "The

use of agents techniques on intelligent tutoring systems."

Computer Science, 1998. SCCC'98. XVIII International

Conference of the Chilean Society of. IEEE, 1998.

[7] Giraffa, L. M. M., M. A. Nunes, and R. M. Viccari. "Multi-

Ecological: an Intelligent Learning Environment using Multi-

Agent architecture. MASTA’97: Multi-Agent System:

Theory and Applications." Proceedings... Coimbra: DE-

Universidade de Coimbra (1997).

[8] Chen, Weiqin, Roger Heggernes Pedersen, and Øystein

Pettersen. "CoLeMo: A collaborative learning environment

for UML modelling." Interactive Learning

Environments 14.3 (2006): 233-249.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 424

[9] Han, Keun-Woo, EunKyoung Lee, and YoungJun Lee. "The

impact of a peer-learning agent based on pair programming

in a programming course." IEEE Transactions on Education

53.2 (2010): 318-327.

[10] Gulz, Agneta, et al. "Building a social conversational

pedagogical agent: Design challenges and methodological

approaches." Conversational agents and natural language

interaction: Techniques and effective practices. IGI Global,

2011. 128-155.

[11] Haake, Magnus, and Agneta Gulz. "A look at the roles of

look & roles in embodied pedagogical agents–a user

preference perspective." International Journal of Artificial

Intelligence in Education 19.1 (2009): 39-71.

[12] Walker, Erin, Nikol Rummel, and Kenneth R. Koedinger.

"Designing automated adaptive support to improve student

helping behaviors in a peer tutoring activity." International

Journal of Computer-Supported Collaborative Learning 6.2

(2011): 279-306.

[13] Tegos, Stergios, Stavros Demetriadis, and Anastasios

Karakostas. "Promoting academically productive talk with

conversational agent interventions in collaborative learning

settings." Computers & Education 87 (2015): 309-325.

[14] Roos, S. (2018). Chatbots in education: A passing trend or a

valuable pedagogical tool?. Msc Thesis, Uppsala University.

[15] (2018). Artificial Intelligence Markup Language (AIML).

https://pandorabots.com/docs/aiml/aimlbasics.html. [Online;

accessed 2018-05-15].

[16] Gehl, R. W. 2014. Teaching to the Turing Test with

Cleverbot. Transformations: The Journal of Inclusive

Scholarship and Pedagogy, 24(1-2): 56–66.

[17] Palasundram, K., Sharef, N. M., Nasharuddin, N., Kasmiran,

K., & Azman, A. (2019). Sequence to sequence model

performance for education chatbot. International Journal of

Emerging Technologies in Learning (iJET), 14(24), 56-68.

[18] Goel, A., Creeden, B., Kumble, M., Salunke, S., Shetty, A.,

& Wiltgen, B. (2015, September). Using watson for

enhancing human-computer co-creativity. In 2015 AAAI fall

symposium series.

[19] Lip ko, H. Meet Jill Watson: Georgia Tech's first AI teaching

assistant; https://pe.gatech.edu/blog/meet-jill-watson-

georgia-techs-first-ai-teaching-assistant, 5 Jan 2018, 05 Jan

2018.

[20] https://gonerdify.com/nerdybot (Access Date: 20.09.2021)

[21] Molnár, G., & Szüts, Z. (2018, September). The role of

chatbots in formal education. In 2018 IEEE 16th

International Symposium on Intelligent Systems and

Informatics (SISY) (pp. 000197-000202). IEEE.

[22] Singh, J., Joesph, M. H., & Jabbar, K. B. A. (2019, May).

Rule-based chabot for student enquiries. In Journal of

Physics: Conference Series (Vol. 1228, No. 1, p. 012060).

IOP Publishing.

[23] Bird, Steven. "NLTK: the natural language

toolkit." Proceedings of the COLING/ACL 2006 Interactive

Presentation Sessions. 2006.

[24] https://www.nltk.org/ (Access Date: 20.09.2021)

[25] https://github.com/microsoft/pyright (Access Date:

20.09.2021)

[26] http://flake8.pycqa.org/en/latest/ (Access Date: 20.09.2021)

[27] https://pypi.org/project/pyflakes/ (Access Date: 20.09.2021)

[28] http://pychecker.sourceforge.net/ (Access Date: 20.09.2021)

[29] Śnieżyński, Bartłomiej. "An architecture for learning

agents." International Conference on Computational Science.

Springer, Berlin, Heidelberg, 2008.

[30] https://scikit-learn.org/stable/ (Access Date: 20.09.2021)

