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Abstract 

In this study, some applications of model-dependent and model-free learning based control techniques are presented for the control of 

attitude dynamics of vertical take-off and landing unmanned aerial vehicle. Towards this goal, reinforcement learning control 

algorithms are examined. Control algorithms are discussed and the main differences are presented. A number of numerical simulations 

are carried out on the attitude control of the system and the results are discussed. Performance evaluation of the proposed learning-

based control method has been carried out. 
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Pekiştirmeli Öğrenme Algoritmaları ile İnsansız Hava Aracının Duruş 

Dinamiklerinin Kontrolü 

Özet 

Bu çalışmada, dikey kalkış ve iniş yapabilen insansız bir hava aracının duruş dinamiklerinin kontrolü için modele bağlı ve modelden 

bağımsız öğrenme tabanlı kontrol tekniklerinin bazı uygulamaları sunulmaktadır. Bu amaç için, pekiştirmeli öğrenme kontrol 

algoritmaları incelenmiştir. Kontrol algoritmaları ele alınmış ve temel farklar sunulmuştur. Sistemin durum kontrolü üzerinde bir 

takım sayısal benzetimler gerçekleştirilmiş ve sonuçlar tartışılmıştır. Önerilen öğrenmeye dayalı kontrol yönteminin performans 

değerlendirmesi yapılmıştır. 

 

Anahtar Kelimeler: Modelden bağımsız kontrol, Pekiştirmeli Öğrenme Algoritmaları, Kontrol Uygulamaları, Kararlılık, İnsansız 

Hava Araçları 
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1. Introduction 

Control systems and applications, which act key role in 

many technological developments, have rapidly evolving 

dynamics. In many technological development areas, research 

studies are carried out focusing on the basics such as being safer, 

being less costly, requiring less personnel power and saving 

time. Autonomous systems are important products of recent 

developments. Along with the developing technology, 

Unmanned Aerial Vehicles (UAV) has recently become a 

development area that includes these foundations. UAVs can 

perform the necessary tasks without any onboard operator 

(Özbek, Önkol, & Efe, 2016) and can be controlled remotely or 

automatically. UAVs provide advantages over other aircraft 

owing to the ability to hover in the air, vertical take-off-landing, 

and superior mobility and maneuverability (Hayat, Yanmaz, & 

Muzaffar, 2016). Furthermore, UAVs offer a number of benefits 

such as reduced operating costs and increased safety (Sadraey, 

2017). The ability of unmanned aerial vehicles to perform many 

different tasks, such as target tracking, observation, etc., has 

enabled them to be used actively in defense industry and civil 

applications. With these advantages, its popularity has increased 

in numerous tasks such as industrial, academic, government, 

military and civilian. They tend to be useful for many civil tasks 

such as forest fire detection (Lesecq, Gentil, & Daraoui, 2014), 

security patrol (Zhong, Zhang, Zhang, Zuo, & Zhan, 2018), 

inspection of power lines (Luque-Vega, Castillo-Toledo, 

Loukianov, & Gonzalez-Jimenez, 2014), inspection of civil 

infrastructure, large-scale map making, documentation of 

archaeological sites (Çömert, Avdan, & Şenkal, 2012), visual 

inspection-manufacturing, and disaster management. 

Control systems are the building blocks of many 

technological developments. It has been the subject of many 

articles based on model-based and model free control systems. 

In most control techniques, it is necessary to create a 

mathematical model of the system. The correct determination of 

the dynamics of the system is the basic step in the creation of the 

mathematical model (Boubakir, Labiod, Boudjema, & Plestan, 

2014). However, systems are affected by many different 

uncertainties and external disturbances. These undesirable 

disturbances may cause poorly modeled systems and provide 

inefficient control. Model-free control systems are offered as a 

solution to eliminate this drawback (Ei, n.d.) (Coelho, Pessôa, 

Rodrigues Sumar, & Augusto Rodrigues Coelho, 2010). 

The rapid development of unmanned aerial vehicles (UAVs) 

has brought a big impression on many countries to intensify their 

research and development activities in these areas. This has 

increased the investments made in the high-safety efficient 

systems and improved their production capabilities (Papachristos 

et al., 2018). It is known that the autonomous vehicles can 

perform their duties, with a number of sub-components such as 

the payload, battery system, actuators, control system, 

navigation system, etc. according to the operational needs (Qi, 

Li, Ren, Lei, & Yang, 2021).  

The decision-making mechanisms of unmanned systems are 

currently provided via the ground station or the command center. 

However, the developments of self-deciding drone systems and 

their active use in the near future are targeted by many countries. 

With this motivation in mind, this study elaborates a number of 

learning algorithms for the attitude control of quadrotor type 

aerial robots. The algorithms are addressed with an in depth 

discussion.  

Furthermore, recent results on model-based and model-free 

control of UAVs can be summarized as follows. The elaborated 

control techniques are fuzzy control, artificial neural network-

based control, feedback linearization, sliding mode control 

method, back stepping control method, and model predictive 

control. Fuzzy control of an unammanned aerial robot is 

demonstrated in (Santoso, Garratt, & Anavatti, 2020), wherein a 

PD-type fuzzy algorithm is integrated to follow a predetermined 

path. Yet another work elaborates high-order sliding mode 

control (Rezoug, Hamerlain, Achour, & Tadjine, 2015), in which 

the observer and the controller show satisfactorily good results 

in the presence of the external disturbances. A further study 

presents a reinforcement control of an autonomous aerial 

vehicle. Trajectory planning of load transportation with multi-

quadrotors based on reinforcement learning algorithm is 

proposed in (Li, Zhang, & Han, 2021). An integral sliding mode 

controller combined with super-twisting algorithm is proposed in 

(Efe, 2011).  

The contributions of this study are given as follows: The 

reinforcement learning algorithms are discussed with and in-

depth assesment. Furthermore, control of the attitude dynamics, 

which is the core of unmanned aerial vehicle applications, are 

investigated through learning algorithms. From these aspects, the 

present research provides a practical guide of reinforcement 

learning algorithms for unmanned aerial vehicles. 

This paper is organized as follows. The vehicle dynamics 

are presented in section II. The theoretical background and 

recent studies on the reinforcement learning algorithms are 

presented in Section III. Performance results for controlling the 

attitude dynamics are demonstrated in section IV. Finally, the 

concluding remarks are addressed in the last section. 

2. The Vehicle Dynamics 

UAVs, which can be designed for different purposes, sizes, 

and weights, are especially designed for dangerous missions 

(Loh, Yi Bian, & Roe, 2009). The vehicle control system is the 

basic unit that manages the UAV. Control system provides an 

adequate coordination with sub-systems such as actuators, 

guidance system, battery management system, sensors in the 

UAV. A case study for the simulation test of the controller is 

investigated to understand the inner and the outer loop of the 

UAV (Wang, 2020).  
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The states and input vectors given in (4) are presented in (5) and (6) (Özbek, Önkol, & Efe, 2014).  
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Where the parameter are given as: a1=(IyyIzz)/Ixx, a2=Jr/Ixx, a3= 

l/Ixx, a4=(IzzIxx)/Iyy, a5= Jr/Iyy, a6=l/Iyy, a7=(IxxIyy)/Izz, a8=1/Izz. 

As presented in the above literature, the critical part is to control 

the attitude dynamics of the system. Then, the tracking can be 

provided in Cartesian space. While determining the control 

parameters in the process of creating the model, the control 

system toolbox and trial-error PID tuning method are used 

(Ozbek, 2019).  

3. Reinforcement Learning Algorithms   

Reinforcement learning is one of the control methods 

frequently used in unmanned aerial vehicle systems. In this 

context, control of the vehicle is control with reinforcement 

learning (Yoo, Jang, Kim, & Johansson, 2021). In classical-

based control methods that are not based on learning, it is 

necessary to determine the necessary parameters to control the 

system and to know the exact model of the system. However, it 

is not possible to accurately obtain the models of the complex 
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real systems, so the model that is closest to the system behavior 

is tried to be determined. In this context, the controller 

parameters obtained in computer simulations cannot provide the 

system to respond as desired. In cases where the model cannot 

be precisely known or extracted, learning the movements of the 

systems allows the system to be controlled. Reinforcement 

learning methods, which have a learning structure, consist of 

model-based and model-free algorithms (Zhu, Yao, Liu, Liu, & 

Liang, 2020). 

Reinforcement learning techniques generate a reward or 

punishment value by considering whether the amount of error 

made is less or more than the amount of error made in the 

previous step. According to this calculated reward or penalty 

score, the system learning is continued and the parameters that 

will provide the best control are tried to be obtained. As a result 

of the determination of these parameters, a state action chart will 

be obtained, this chart will be used to provide control. 

The reinforcement learning algorithms are classified into 

model-based and model-free learning algorithms.  To mention a 

few, Value Iteration model is in the class of model-based 

algorithms. However, Q-Learning, Sarsa and Sarsa (λ) 

algorithms do not need a model of the system (Hwangbo, Sa, 

Siegwart, & Hutter, 2017). 

The basic philosophy of the reinforcement learning 

approaches is to provide a desired result by arranging the reward 

or punishment progress. The tabulated values of the state vector, 

the possible values of the control signal, and the reward values 

aredetermined for each combination than the control signal that 

will produce the desired behavior is selected among the states 

with the highest reward value (Elhaki & Shojaei, 2021). This 

learning method can be performed both depending on the model 

and free of the system model. A number of numerical 

simulations were carried out on the attitude control of the system 

and the results are discussed. 

3.1. Model-based learning algorithms 

In the model-based learning method, it is assumed that the 

environmental model parameters p(rt+1|st, dt) and p(st+1|st, at) are 

known (Polydoros & Nalpantidis, 2017a). Under these 

assumptions, the optimal value function and rule can be 

calculated directly using dynamic programming without the need 

for any model analysis. Once we know the optimal value 

function, the optimal policy (rule) is to choose the move that 

maximizes the reward value in the next case. 

In cases where system dynamics and model parameters 

are known, methods that train using the model are widely used. 

The model-based Value Iteration algorithm tries to determine the 

most appropriate response in the situations to be encountered by 

visiting all possible state and motion pairs. When the appropriate 

V* value is found in the Value Iteration algorithm, the algorithm 

will converge to a fixed value. The pseudocode of the method 

can be given as follows (Polydoros & Nalpantidis, 2017b). 

Table 1. Pseudocode for model-based learning 

Determine the values V(s) arbitrarly 

Do 

,s s S    

,a a A   

   ( , ) | , ( ')Q s a E r s a V s   

( ) max ( , )aV s l Q s a  

( )V s   

Here, the variable s is the state, and the variable S is the 

predetermined state space. Further, 𝑎 is the move in the 

predetermined move space, 𝑄(𝑠, 𝑎) is the reward value 

corresponding to the 𝑎 move. V(s) is the value at which Q(s,a) is 

the largest, V(s') is the highest reward value obtained for the 

expected situation with the applied movement, and γ is the 

efficiency value. 

A threshold value is set ( ) to determine the 

convergence of the algorithm, and if the change in reward value 

between two iterations is less than this threshold value, the most 

appropriate move for that situation is said to have been 

determined. Provided that l is the iteration counter, the 

convergence formula can be given as follows, 

1max ( ) ( )l l
s S V s V s 
                              (7) 

In the rule iteration method, we save and update the rule 

directly instead of updating the rule over the reward values. Each 

iteration of the algorithm takes more time than the value 

iteration algorithm, but it needs less iteration than the rule 

iteration value iteration algorithm. The pseudocode of the 

algorithm is as follows. 
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Table 2. Pseudocode for modified model-based learning 

Start the π rule arbitrarily 

Do 

'    

By solving the linear equations to  value.  

 
'

( ) | , ( ) ( ' | , ( )) ( )
s S

V s E r s s P s s s V s   


    

 Update the rule  

       arg max | , | ,
s S

s r s a P s s a V s 


 
     

 
  

Under these assumptions, the optimal value function and 

rule can be calculated directly using dynamic programming 

without the need for any model analysis. Once we know the 

optimal value function, the optimal policy (rule) is to choose the 

move that maximizes the reward value in the next case. 

 

 

3.2. Model-free learning algorithms 

Model-free learning-based control methods play an 

important role in increasing the control performance of various 

complex systems. If the results and rewards of the moves are not 

deterministic, there is a probabilistic distribution for the reward 

value p(rt+1|st,at). This allows us to model uncontrollable 

environmental uncertainties in the system. In such a case, the 

reward definition of the state-action pair can be made as follows, 

       
1

1

1 1 1 1, | , max ,
t

t

t t t t t t a t t
s

Q s a r P s s a Q s a




                (8)   

Direct value assignment cannot be made, as different 

responses may be obtained or different situations can be reached 

when the same action is applied for the same situation at 

different times. In this case, the Q-Learning algorithm is used. 

The update function used in the Q-Learning algorithm is as 

follows. 

        11 1 1
ˆ ˆ ˆ ˆ, , max , ,

tt t t t t a t t t tQ s a Q s a r Q s a Q s a 
              (9) 

The value of η given in Equation (9) is known as the 

degree of learning and training is done by gradually decreasing 

it. The reward matrix 𝑄(𝑠𝑡 , 𝑎𝑡) obtained as a result of the Q-

Learning algorithm will be composed of the most appropriate 

(optimal) values. It is to be noted that the Q-Learning algorithm 

is an off-policy algorithm, that is, the result of the best rule to be 

applied in the next step is determined without using it. 

As previously stated, the Q-Learning algorithm is an off-

policy type method. However, the Sarsa algorithm is obtained by 

developing the Q-Learning algorithm. Sarsa algorithm is on-

policy type, that is, the reward matrix can be calculated by 

considering the rule to be applied in the next step. In the Sarsa 

algorithm, instead of looking at all possible moves and choosing 

the best one, the rule derived from the reward values obtained 

for the next single move is used and the temporary difference is 

calculated using the reward value. On-policy methods try to 

estimate the value of the rule while using the rule to find motion 

values. The pseudocode of the Sarsa algorithm is as follows, 

Table 3. Pseudocode for Sarsa-learning algorithm 

Determine the ( , )Q s a  values arbitrarily 

Determine the 𝑠 

Use the 𝜀 gready algoirthm to find the apprpriate movement (𝑎) in Q matrix 

Do the iteration  

  Apply (𝑎) to the system, observe  r  and 's  values  

 Use the ε gready algoirthm to find the apprpriate movement ( 'a  ) in Q matrix 

Update ( , )Q s a   

( , ) ( , ) ( ( ', ') ( , ))Q s a Q s a r Q s a Q s a       

's s  , 'a a  
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However, in Sarsa (λ), the frequency of visits of 

previously visited situations is kept in memory and the reward 

matrix is updated by taking into account the frequency of visits. 

The pseudocode of the Sarsa (λ) algorithm is as follows. 

Table 4. Pseudocode for Sarsa (λ) learning algorithm 

Determine the ( , )Q s a  values arbitrarily 

Determine the s 

Use the ε gready algoirthm to find the appropriate movement (a) in Q matrix 

Do the iteration  

  Apply 𝑎 to the system, observe  r  and 's  values  

 Use the ε gready algoirthm to find the appropriate movement ( 'a  ) in Q matrix 

Update ( , )Q s a   

( , ) ( , ) ( ( ', ') ( , ))Q s a Q s a r Q s a Q s a       

's s  , 'a a  

4. Results and Discussion  

The controller designed for the vehicle with 

reinforcement learning is obtained using the Sarsa (λ) learning 

algorithm. A reference of the vehicle is to keep the vehicle in its 

stable position around the zero. Angular position errors are given 

in Figure 1, wherein the results are observed fairly well.  

 

Figure 1. Stabilization of attitude dynamics with reinforcement 

learning algorithm 

The position errors that occur with the sarsa lambda 

algorithm of the revolving wing system are given in Figure 2. 

The performance of the controller shows satisfactorily good 

results to track the reference trajectory in Cartesian space.  

 

Figure 2. Position errors with reinforcement learning algorithms 

5. Conclusions and Recommendations 

The main goal of the current research is to discuss the 

reinforcement learning algorithms for UAV. Furthermore, it is 

aimed to guide the control researchers on the modelling and 

control of a vertical take-off and landing aerial robot. With this 

motivation in mind, recent studies on the learning algorihtms for 

UAV discussed. Furthermore, the numerical simulations of 

learning-based algorithms for the attidue control of the UAV are 

presented. Future works will focus on the design, analysis, and 

implementation of different model-free algorithms for UAVs. 
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