
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 29, S. 273-277, Aralık 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 29, pp. 273-277, December 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 273

FPGA Design of a High- Resolution FIR Band-Pass Filter

by Using LabVIEW Environment

Güner Tatar 1*, Salih Bayar2, İhsan Çiçek3

1* Fatih Sultan Mehmet Vakıf University, Faculty of Engineering, Departmant of Electrical-Electronic Engineering, İstanbul, Turkey, (ORCID: 0000-0002-3664-1366),

gtatar@fsm.edu.tr
2 Marmara University, Faculty of Engineering, Departmant of Electrical-Electronic Engineering, İstanbul, Turkey, (ORCID: 0000-0002-4600-1880),

salih.bayar@marmara.edu.tr
3 İstinye University, Faculty of Engineering, Departmant of Electrical-Electronic Engineering, İstanbul, Turkey, (ORCID: 0000-0002-7881-1263),

ihsan.cicek@istinye.edu.tr

 (International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 2021 – 21-23 October 2021)

(DOI: 10.31590/ejosat.1016363)

ATIF/REFERENCE: Tatar, G., Bayar, S., & Cicek, I. (2021). FPGA Design of a High- Resolution FIR Band-Pass Filter by Using

LabVIEW Environment. European Journal of Science and Technology, (29), 273-277.

Abstract

Designers regularly use Finite Impulse Response (FIR) filters to fulfil the need for current electronic design applications such as

signal or image processing and digital communications because of the remarkable selectivity computational efficiency. Fast and

efficient information processing requires a dedicated microprocessor or a digital signal processor that may not always be available or

provide enough performance. In such scenarios, designers can configure FPGAs for processing digitized signals. One of the most

popular signal processing applications is filtering. Unlike the Infinite Impulse Response (IIR) filters, FIR filters do not have analog

equivalent circuits. For this purpose, continuous time-discrete time conversion is not possible with the help of transforms. Because

analog filters cannot have a finite impulse response, the design methods of FIR filters can be made as windowing method, pulse

response truncation, and optimal filter design method. Considering this information, it aims to digitally separate two signals with

different frequencies (2.4 kHz and 4.2 kHz), which are given to the input as analog, to obtain the desired information signal and

suppress other signals. We preferred to use LabVIEW graphical programming language to get the digital FIR filter coefficients. We

selected rectangular windowing, set the digital filter's sampling frequency as 18720 Hz, and determined the filter's coefficient with

high-frequency resolution as 24. Using filter coefficients in the real-time FPGA-VHDL environment, we showed the performance and

resource consumption. LabVIEW is used for simulation as well as obtaining filter coefficients. In addition, we compared both

simulation and real-time FPGA-VHDL application output waveforms and examined both platforms' advantages and disadvantages.

Keywords: Digital filter design, Finite Impulse Response (FIR), FPGA-VHDL, LabVIEW Environment

LabVIEW Ortamını Kullanarak Yüksek Frekans Çözünürlüklü FIR

Bant Geçiren Filtrenin FPGA Tasarımı
Öz

Tasarımcılar, dikkate değer hesaplama verimliliği nedeniyle sinyal işleme görüntü işleme ve sayısal iletişim gibi mevut elektronik

tasarım uygulamalarına olan ihtiyacı karşılamak için düzenli olarak sonlu dürtü yanıtına (FIR) sahip filtreleri kullanılırlar. Verilerin

hızlı ve verimli bir şekilde işlenmesi için her zaman mevcut olmayan veya yeterli performans sağlamayan özel bir mikroişlemci veya

sayısal sinyal işlemcisi gerektirir. Bu tür senaryolarda tasarımcılar, sayısala çevrilmiş sinyalleri işlemek için FPGA’lerin yeniden

yapılandırılabilir özelliğinden yararlanırlar. En popüler sinyal işleme uygulamalarından biri filtrelemedir. Sonsuz darbe yanıtlı (IIR)

filtrelerin aksine, FIR filtrelerin analog eşdeğerleri yoktur. Bu amaçla dönüşümler yardımıyla sürekli – zaman, ayrık – zaman

dönüşümü mümkün değildir. Analog filtreler sonlu bir darbe yanıtına sahip olmadığından, FIR filtrelerin tasarım yöntemleri;

pencereleme yöntemi, darbe yanıtı kesme ve optimal filtre tasarım yöntemi olarak yapılabilir. Bu bilgiler ışığında girişe analog olarak

verilen farklı frekanstaki (2.4 Khz ve 4.2 Khz) iki sinyali sayısal olarak ayırarak istenilen bilgi sinyalinin elde etmeyi ve diğer

sinyalleri bastırmayı amaçlayan bir filtre tasarımı sunulmuştur. Sayısal filtrenin katsayılarını elde etmek için LabVIEW grafiksel

programlama dilini kullanmayı tercih ettik. Tasarladığımız filtrenin yüksek frekans çözünürlüğü ile katsayısını 24, örnekleme

frekansını 18720Hz ve filtreleme işlemi için dikdörtgen pencereleme yöntemini kullandık. Gerçek-zamanlı FPGA-VHDL ortamında

belirlediğimiz filtre katsayılarını kullanarak performans ve kaynak tüketimini gösterdik. Bunlara ek olarak, hem benzetim hem de

gerçek zamanlı FGPA-VHDL uygulaması çıkış dalga formlarını karşılaştırarak platformların avantaj ve dezavantajlarını inceledik.

Anahtar Kelimeler: Sayısal filtre tasarımı, Sonlu dürtü yanıtı (SDY), FPGA-VHDL, LabVIEW grafiksel tasarım platformu.

* Corresponding Author: gtatar@fsm.edu.tr

http://dergipark.gov.tr/ejosat
mailto:gtatar@fsm.edu.tr
mailto:salih.bayar@marmara.edu.tr
mailto:ihsan.cicek@

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 274

1. Introduction

Digital signal processing is widely used in many platforms

such as multimedia and communications. In most of these

applications, unwanted noise is generated due to the electrical

components, bad circuit design, or the A/D conversion artefacts.

The undesired noise signals must be eliminated for the proper

operation of the system of interest. Conventionally, both analog

and digital filters and filtering techniques have been used to

suppress the noise and process the signal of interest in a selective

manner. Discrete-time and continuous-time filter design options

are also available according to the requirements of the target

application. Thanks to the technological progress of A/D

converters, modern signal processing is mostly performed in the

digital domain. It is more convenient to use the digital

environment because of the advantages and performance.

Current semiconductor technology is focused on the

development of higher speed digital circuits at submicron

processes. In the digital domain, both hardware and software

acceleration approaches are used to improve the performance of

designs through parallelization. Hardware accelerators are used

as system peripherals to offload the processor from computation-

intensive tasks. Examples of hardware accelerators include

multi-core CPU architectures, GPUs, application-specific

integrated circuit ASICs, and FPGAs. Considering the cost,

performance and energy consumption, the use of FPGAs in real-

time applications is increasing [1-2]. FPGAs have been

successfully employed in signal processing applications where

both design flexibility and high performance are required. In

digital signal processing, FPGA implemented digital filters are

used frequently to remove interfering signals or noise.

In general, analog-to-digital converters are used to quantize

analog expressions in a signal processing cycle digitally. The

sampled and quantized information packet is then processed

using the FPGA, as shown in Figure 1. The unwanted signals in

the information signal are suppressed, and the processed signal

is converted into a continuous signal with the help of a digital-

analog converter. Signal processing in the digital domain allows

for advanced algorithm designs that provide higher performance

and greater flexibility than its analog counterpart. Developing

semiconductor technology and increasing performance

requirements in specific applications have made processing

speed a critical parameter. And it made processing speed a

required parameter. FPGA-based designs meet these

requirements with low latency responses, high-performance

workload, and parallel processing capability [3-4].

Figure 1. Block diagram of the designed band-pass FIR filter

In signal processing applications, filters perform the

suppression of unwanted signals (noise). As mentioned above,

filters can be discrete-time or continuous-time. We discussed

discrete-time filter design here. A discrete-time filter consists of

FIR and IIR [5]. Despite their low computational speed and high

filter order, FIR filters are often preferred due to their linear

phase and stability [6]. Designers can eliminate high

computational load with the help of hardware accelerators with

high switching frequencies such as FPGA. Since FIR filters do

not have analog equivalents like IIR filters, they require direct

discrete-time design. FIR filters, which are frequently used in

applications where memory is not needed, and linear phase

response is needed, have a stable output response for any input.

This is the reason why FIR filters are preferred. With digital

filters, the hardware design process can be a bottleneck for a

successful outcome. Alternative high-level design methods such

as National Instrumentation and Matlab have been developed to

shorten the design time of the hardware. Although the traditional

hardware description languages VHDL or Verilog are still used

today, the need for high-level synthesis approaches has increased

to shorten the design process.

This study examines high-frequency resolution FIR

bandpass filter design as a sample design scenario to compare a

digital filter design flow based on traditional hardware

description language VHDL with a high-level design approach

such as LabVIEW. The system diagram of the designed filter is

given in Figure 1. The filter is designed with the Kaiser

windowing method with 18750 Hz sampling frequency (FS), 1.8

kHz low cutoff frequency (FL), 3.6 kHz high cutoff frequency

(FH). The designed filter suppresses high-frequency signals

while allowing the low-frequency signal to pass through the sum

of two different signals (2.4 kHz and 4.2 kHz) applied to the

input, according to the determined cutoff frequencies.

We organised the rest of this study as follows; in Section II,

we explained the high-frequency resolution bandpass FIR filter;

in Section III, we discussed in detail the methods of obtaining

the coefficients of the designed filter and the simulation results

performed in the LabVIEW environment.

2. Design of the 24-Tap High Frequency

Resolution FIR Band-Pass Filter

FIR filters are linear phase filters with a finite impulse

response and have no analog equivalent. As the degree (tabs) of

the FIR filter increases, the pass frequency range of the filter

becomes narrower. While IIR filters consist of zeros and poles,

FIR filters contain only zeros, so they are filters without

feedback. Figure 2 shows the general block diagram of the FIR

filter. Equations (1) and (2) are FIR filters' zero distribution and

transfer functions.

Figure 2. General block diagram of FIR filter

0

[] []
M

k
k

y n b x n k


  (1)

0

()
M

k

k
k

H z b z



 (2)

European Journal of Science and Technology

e-ISSN: 2148-2683 275

We used Harris' rule-of-thumb method for filter design in

terms of quick and convenient estimation. This basic rule

provides the opportunity to obtain information about the number

of tabs during filter design and perform it with the iteration

method. Thus, we can see the effect of stopband attenuation and

the steepness of the passband on the number of tabs. In

equations (3) and (4), we found the value of tab 24 for a filter

with 50 dB attenuation, a sampling frequency of 18750 Hz, a

lower cutoff frequency of 1800 Hz and an upper cutoff

frequency 3600 Hz.

3600 1800
0.096

18750

stop pass

T

s

F F
B

F

 
   (3)

() 50
23.674 24

22 22 0.096
Taps

T

Attn dB
N

B
   

 

 (4)

Where, Ntaps is simply called as a coefficients/delay pair, BT

is the normalized transition band, Attn is the desired attenuation

in dB, Fpass and Fstop are the passband and stopband frequencies,

Fs is the sampling frequency in Hz and 22 is constant value.

We carried out the design of the filter in the LabVIEW

environment. We obtained the filter coefficients, and design

results in the LabVIEW environment, then transferred them to

the FPGA-VHDL environment and made comparisons

accordingly.

2.1. Verification of the Discrete-Time FIR Filter

and Calculation of the Filter Coefficients

We performed both simulation and verification of the filter

using the NI LabVIEW platform. Here, we obtained the

coefficients of the filter from the filter that we designed

graphically. To get the coefficients, we used the sum of two

signals, 2.4 Khz and 4.2 Khz, as the test signal and 18750 Hz. as

the sampling signal. We preferred 90 degrees as the phase

difference of the two signals with amplitudes of 0.8 V and 1.2 V.

For the bandpass filter with 1.8 Khz lower cutoff frequency and

3.6 Khz uppercut frequency; we preferred 24th order and Kaiser

window. Figure 3 shows the LabVIEW code block. As can be

seen from the figure, the code block consists of three parts: the

signal generation stage where we generated the test signal, the

analog filtering and the digital filtering stage. Since there is no

analog equivalent of FIR filters, there does not exist conversion

between each other. Hence, we had to make a discrete-time and

analog filter design. LabVIEW offers some programs as

subprograms (sub. vi). Here, we used virtual instruments (vi.)

provided by LabVIEW. The cutoff and sampling frequencies

used in the discrete and continuous-time filtering stages are the

same. We observed that the obtained filter coefficients are

different. Since we designed the discrete-time filter, we used the

coefficients of the digital filtering stage in the FPGA-VHDL

environment, and the results were accordingly. In addition,

amplitude response, phase response, Fast Fourier Transform

(FFT), and discrete-time Z-plane show the filter's properties.

We calculated the frequency spectrum of the filtered signal

using the Fast Fourier Transform (FFT) as shown in Figure 5-a.

FFT is an algorithm where mathematical operations are done

very quickly. While calculating the spectrum of signals, it uses

the Discrete Fourier Transform (DFT), which is expressed by the

equation (5) [7]. Computing the DFT for an application with N

data requires approximately ⁓N2 complex and time-consuming

mathematical processes. For this reason, instead of directly

applying DFT for an application with N data samples, we

preferred to use the built-in FFT algorithm provided by

LabVIEW and presented to the user out-of-the-box. Unlike IIR

filters, since there is no feedback in FIR filters, there are only

forward coefficients, which evolves to zero points. We obtained

zero-point representations (5-b) of the filter using pole-zero.vi

available in LabVIEW.

21

0

() ()
nkN j

N

n

X k x n e
    

 



 (5)

Figure 3. LabVIEW design of band-pass FIR filter with

filter coefficients

a)

b)

Figure 4. Sum of 4.2 Khz and 2.4 Khz (a) signal output, and 2.4

Khz filtered (b) signal output

Figure 4-a gives the sum of the 4.2 Khz interference signal

and the corresponding 2.4 Khz signal, whereas Figure 4-b shows

the filtered signal. As seen in the filtered signal, we can observe

that the output signal is about 0.8 V and 2.4 Khz. Since the

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 276

signal of interest stays in the passband range, it allows the filter

output, while the noise signal is stopped by the filter corner

frequencies and is not allowed to pass through.

a) b)

c) d)

Figure 5. Fast fourier transform (a), zero location (b) on the

complex z-plane, Magnitude (c) response, and phase (d)

response of the FIR filter

One can find the magnitude response of an FIR filter by

interpreting a linear system. The real magnitude spectrum is

defined as the input to a linear system with the magnitude

response of a rectangular window. The output obtained in

response to this input is obtained as the magnitude response of

the FIR filter. Considering the characteristics of linear systems,

the output of a system appears as the product of the input and the

system response. However, different window types affect the

shape of the magnitude response. Figure 5-c shows the

frequency spectrum of the magnitude response of the Kaiser

filter. Suppose it is desired to design a filter with a better

transition region approximation. In that case, it is recommended

to choose window functions with different frequency

characteristics in accordance with the magnitude response. Here,

the Kaiser window model is preferred by considering the filter's

structure, lower and upper cut-off frequencies and sampling

frequency. Figure 5-d gives the phase response of the system.

3. VHDL Implementation and Algorithm

Design

We used the flowchart given in Figure 6 and the pseudocode

next to it for the VHDL implementation. VHDL, which is one of

the hardware description languages, was preferred for the FPGA

platform. The VHDL language consists of the entity layer where

the input-output definition is made, an architecture that performs

the logic functions, and a process layer that performs serial

programming. We created an array of 24 in the architecture layer

to hold the filter coefficients we obtained in the LabVIEW

environment and two integer arrays to hold the input signal and

filtered signals. Since the clock speeds of each hardware are

different, we defined the source frequency after writing the code,

not at the input. Considering the rising edge of the clock

frequency in the process, we designed a shift register for each

clock transition. When the program is started to run, filter

coefficients are multiplied by each register cell according to the

determined parameter values, shifted and saved. This process

continues according to the value of the counter in the "for loop".

A continuous-time signal is generated from the discrete-time,

accordingly. Here, we preferred direct form FIR filter design and

compared both LabVIEW and VHDL results.

Start

Initialize the

filter parameters

Input coefficients

Input Array

parameters

Calculate and

update array

parameters

i=i+1

i=?25

cos cosl h

s s

 

 

     
    

     

Updated array

values

Finish

returns a new element

of the array value

 
 
 

Yes

No

Algorithm 1 Discrete-time FIR Filter Design

1: Initialize the filter parameters

2: Define the clock frequency and Array size

3: Compute filter coefficients

4: for iteration = 1, 2 .. do

5: Update array parameters

6: if the filteredSignal obtained

7: then

8: Generate output signal

9: end for

10: Implement as an hardware

Figure 6. Flowchart and algorithm of FIR filter implementation

The algorithm above provides the VHDL implementation of

the FIR filter. For the easy application of the algorithm, the

filter's lower and upper cutoff frequencies and sampling

frequency are determined. One should adjust the clock frequency

according to different hardware features. Upon the program

execution, we multiplied the input signal and the filter

coefficients. Because the filter is in the pipeline structure, we

kept the previous value of the filter output in memory in each

clock cycle. This situation continues until all the coefficient

values are updated. We calculated the filter order, lower cut and

uppercut frequencies and sampling frequencies for the VHDL

implementation. We tested them in the Aldec Active-HDL

simulation environment and obtained the results presented in

Figure 7.

Figure 7. VHDL implementation functional simulation resul

European Journal of Science and Technology

e-ISSN: 2148-2683 277

As seen in Figure 7, we obtained results similar to

LabVIEW design results. The result of the application shown in

blue in Figure 7 shows the sum of the two signals applied to the

input, and the filtered signal in red. It is essential to make the

necessary optimizations on hardware with limited resources.

Table 1. shows the estimated resource usage in the FPGA by

LabVIEW of the work done. The resource usage in the given

table is calculated as an estimate. The designer can reduce

resource usage with different algorithms and optimization

methods.

Table 1. LabVIEW approximate FPGA Resource Utilization

Data type FF LUT BRAM MUX DSP

Function

generator
94 156 2 -

-

FFT 697 2368 6 16 -

FIR filter vi 1000 1200 - - 12

Other remaining

usage
20473 21359 82 -

138

Total usage 22264 25083 90 16 150

4. Conclusions and Recommendations

In this study, we designed a high-frequency resolution (24

tabs) discrete-time direct form bandpass FIR filter both in the

LabVIEW environment and in real-time in the FPGA

environment. We obtained the filter coefficients for the FPGA-

VHDL application from the LabVIEW design. According to the

given corner frequencies (3.6 Khz upper, 1.8 Khz lower), the

designed filter passes the low frequencies from the sum of two

signals with different frequencies (2.4 Khz and 4.2 Khz) while

detecting other signals as noise and suppressing them. We

determined the sampling frequency of the filter to be 18750 Hz.

and its order to be 24. We developed and implemented the

VHDL model to validate the functionality of the proposed filter.

The simulation and application results show that the filter works

without any problems. Considering the LabVIEW-FPGA

resource usage, we observed that the designed filter has a

compact footprint, indicating a suitable basis for its integration.

On the one hand, we designed the filter in LabVIEW, in

which designers can develop programs quickly without

struggling with text-based languages. On the other hand, the

VHDL environment is more suitable for hardware designers

interested in hardware description languages and successful in

software languages. It is not possible to synthesize a program

without arithmetic optimization. In FPGA-based hardware, the

numbers must be fixed or floating-point; this is tiring and time-

consuming. If the designer is going to do HDL programming,

he/she should be aware of them. Therefore, LabVIEW is more

suitable for rapid prototyping. Transferring the code written in

the LabVIEW environment to the FPGA environment is possible

with the LabVIEW-FPGA ready software package. All the

designer has to do is compile the written code to suitable

hardware. Although the VHDL language is difficult to learn

compared to other languages, its human readability ensures that

it can interfere with the code at any point. Since LabVIEW is

graphical programming, there is almost no chance of

intervention for each piece of code.

References

[1] Özpolat, E., Karakaya, B., & Gülten, A. (2017). FIR Filtre

Tasarımı ve FPGA Ortamında Gerçeklenmesi. Fırat

Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 269-275.

[2] Singh, G., & Prakash, N. R. (2017). FPGA implementation

of higher order FIR filter. International Journal of Electrical

and Computer Engineering, 7(4), 1874.

[3] Paul, A., Khan, T. Z., Podder, P., Hasan, M. M., & Ahmed, T.

(2015, February). Reconfigurable architecture design of FIR

and IIR in FPGA. In 2015 2nd International Conference on

Signal Processing and Integrated Networks (SPIN) (pp. 958-

963). IEEE.

[4] Tatar, G., Kılıç, O., & Bayar, S. (2019, November). FPGA

Based Fault Distance Detection and Positioning of

Underground Energy Cable by Using GSM/GPRS. In 2019

International Symposium on Advanced Electrical and

Communication Technologies (ISAECT) (pp. 1-6). IEEE.

[5] Pal, R. (2017, December). Comparison of the design of FIR

and IIR filters for a given specification and removal of phase

distortion from IIR filters. In 2017 International Conference

on Advances in Computing, Communication and Control

(ICAC3) (pp. 1-3). IEEE.

[6] (2021, August 5). Know all About FIR Filters in Digital

Signal Processing. https://www.elprocus.com/fir-filter-for-

digital-signal-processing/.

[7] Tatar, G., Cicek, I., & Bayar, S. (2021). FPGA Design of a

Fourth Order Elliptic Band-Pass Filter Using LabVIEW.

European Journal of Science and Technology, (26), 122-127.

