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Abstract 

Designers regularly use Finite Impulse Response (FIR) filters to fulfil the need for current electronic design applications such as 

signal or image processing and digital communications because of the remarkable selectivity computational efficiency. Fast and 

efficient information processing requires a dedicated microprocessor or a digital signal processor that may not always be available or 

provide enough performance. In such scenarios, designers can configure FPGAs for processing digitized signals. One of the most 

popular signal processing applications is filtering. Unlike the Infinite Impulse Response (IIR) filters, FIR filters do not have analog 

equivalent circuits. For this purpose, continuous time-discrete time conversion is not possible with the help of transforms. Because 

analog filters cannot have a finite impulse response, the design methods of FIR filters can be made as windowing method, pulse 

response truncation, and optimal filter design method. Considering this information, it aims to digitally separate two signals with 

different frequencies (2.4 kHz and 4.2 kHz), which are given to the input as analog, to obtain the desired information signal and 

suppress other signals. We preferred to use LabVIEW graphical programming language to get the digital FIR filter coefficients. We 

selected rectangular windowing, set the digital filter's sampling frequency as 18720 Hz, and determined the filter's coefficient with 

high-frequency resolution as 24. Using filter coefficients in the real-time FPGA-VHDL environment, we showed the performance and 

resource consumption. LabVIEW is used for simulation as well as obtaining filter coefficients. In addition, we compared both 

simulation and real-time FPGA-VHDL application output waveforms and examined both platforms' advantages and disadvantages. 

Keywords: Digital filter design, Finite Impulse Response (FIR), FPGA-VHDL, LabVIEW Environment 

LabVIEW Ortamını Kullanarak Yüksek Frekans Çözünürlüklü FIR 

Bant Geçiren Filtrenin FPGA Tasarımı 
Öz 

Tasarımcılar, dikkate değer hesaplama verimliliği nedeniyle sinyal işleme görüntü işleme ve sayısal iletişim gibi mevut elektronik 

tasarım uygulamalarına olan ihtiyacı karşılamak için düzenli olarak sonlu dürtü yanıtına (FIR) sahip filtreleri kullanılırlar. Verilerin 

hızlı ve verimli bir şekilde işlenmesi için her zaman mevcut olmayan veya yeterli performans sağlamayan özel bir mikroişlemci veya 

sayısal sinyal işlemcisi gerektirir. Bu tür senaryolarda tasarımcılar, sayısala çevrilmiş sinyalleri işlemek için FPGA’lerin yeniden 

yapılandırılabilir özelliğinden yararlanırlar. En popüler sinyal işleme uygulamalarından biri filtrelemedir. Sonsuz darbe yanıtlı (IIR) 

filtrelerin aksine, FIR filtrelerin analog eşdeğerleri yoktur. Bu amaçla dönüşümler yardımıyla sürekli – zaman, ayrık – zaman 

dönüşümü mümkün değildir. Analog filtreler sonlu bir darbe yanıtına sahip olmadığından, FIR filtrelerin tasarım yöntemleri; 

pencereleme yöntemi, darbe yanıtı kesme ve optimal filtre tasarım yöntemi olarak yapılabilir. Bu bilgiler ışığında girişe analog olarak 

verilen farklı frekanstaki (2.4 Khz ve 4.2 Khz) iki sinyali sayısal olarak ayırarak istenilen bilgi sinyalinin elde etmeyi ve diğer 

sinyalleri bastırmayı amaçlayan bir filtre tasarımı sunulmuştur. Sayısal filtrenin katsayılarını elde etmek için LabVIEW grafiksel 

programlama dilini kullanmayı tercih ettik. Tasarladığımız filtrenin yüksek frekans çözünürlüğü ile katsayısını 24, örnekleme 

frekansını 18720Hz ve filtreleme işlemi için dikdörtgen pencereleme yöntemini kullandık. Gerçek-zamanlı FPGA-VHDL ortamında 

belirlediğimiz filtre katsayılarını kullanarak performans ve kaynak tüketimini gösterdik. Bunlara ek olarak, hem benzetim hem de 

gerçek zamanlı FGPA-VHDL uygulaması çıkış dalga formlarını karşılaştırarak platformların avantaj ve dezavantajlarını inceledik. 

Anahtar Kelimeler: Sayısal filtre tasarımı, Sonlu dürtü yanıtı (SDY), FPGA-VHDL, LabVIEW grafiksel tasarım platformu. 
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1. Introduction 

Digital signal processing is widely used in many platforms 

such as multimedia and communications. In most of these 

applications, unwanted noise is generated due to the electrical 

components, bad circuit design, or the A/D conversion artefacts. 

The undesired noise signals must be eliminated for the proper 

operation of the system of interest. Conventionally, both analog 

and digital filters and filtering techniques have been used to 

suppress the noise and process the signal of interest in a selective 

manner. Discrete-time and continuous-time filter design options 

are also available according to the requirements of the target 

application. Thanks to the technological progress of A/D 

converters, modern signal processing is mostly performed in the 

digital domain. It is more convenient to use the digital 

environment because of the advantages and performance. 

Current semiconductor technology is focused on the 

development of higher speed digital circuits at submicron 

processes. In the digital domain, both hardware and software 

acceleration approaches are used to improve the performance of 

designs through parallelization. Hardware accelerators are used 

as system peripherals to offload the processor from computation-

intensive tasks. Examples of hardware accelerators include 

multi-core CPU architectures, GPUs, application-specific 

integrated circuit ASICs, and FPGAs. Considering the cost, 

performance and energy consumption, the use of FPGAs in real-

time applications is increasing [1-2]. FPGAs have been 

successfully employed in signal processing applications where 

both design flexibility and high performance are required. In 

digital signal processing, FPGA implemented digital filters are 

used frequently to remove interfering signals or noise.  

In general, analog-to-digital converters are used to quantize 

analog expressions in a signal processing cycle digitally. The 

sampled and quantized information packet is then processed 

using the FPGA, as shown in Figure 1. The unwanted signals in 

the information signal are suppressed, and the processed signal 

is converted into a continuous signal with the help of a digital-

analog converter. Signal processing in the digital domain allows 

for advanced algorithm designs that provide higher performance 

and greater flexibility than its analog counterpart. Developing 

semiconductor technology and increasing performance 

requirements in specific applications have made processing 

speed a critical parameter. And it made processing speed a 

required parameter. FPGA-based designs meet these 

requirements with low latency responses, high-performance 

workload, and parallel processing capability [3-4]. 

 

Figure 1. Block diagram of the designed band-pass FIR filter 

In signal processing applications, filters perform the 

suppression of unwanted signals (noise). As mentioned above, 

filters can be discrete-time or continuous-time. We discussed 

discrete-time filter design here. A discrete-time filter consists of 

FIR and IIR [5]. Despite their low computational speed and high 

filter order, FIR filters are often preferred due to their linear 

phase and stability [6]. Designers can eliminate high 

computational load with the help of hardware accelerators with 

high switching frequencies such as FPGA. Since FIR filters do 

not have analog equivalents like IIR filters, they require direct 

discrete-time design. FIR filters, which are frequently used in 

applications where memory is not needed, and linear phase 

response is needed, have a stable output response for any input. 

This is the reason why FIR filters are preferred. With digital 

filters, the hardware design process can be a bottleneck for a 

successful outcome. Alternative high-level design methods such 

as National Instrumentation and Matlab have been developed to 

shorten the design time of the hardware. Although the traditional 

hardware description languages VHDL or Verilog are still used 

today, the need for high-level synthesis approaches has increased 

to shorten the design process. 

This study examines high-frequency resolution FIR 

bandpass filter design as a sample design scenario to compare a 

digital filter design flow based on traditional hardware 

description language VHDL with a high-level design approach 

such as LabVIEW. The system diagram of the designed filter is 

given in Figure 1. The filter is designed with the Kaiser 

windowing method with 18750 Hz sampling frequency (FS), 1.8 

kHz low cutoff frequency (FL), 3.6 kHz high cutoff frequency 

(FH). The designed filter suppresses high-frequency signals 

while allowing the low-frequency signal to pass through the sum 

of two different signals (2.4 kHz and 4.2 kHz) applied to the 

input, according to the determined cutoff frequencies. 

We organised the rest of this study as follows; in Section II, 

we explained the high-frequency resolution bandpass FIR filter; 

in Section III, we discussed in detail the methods of obtaining 

the coefficients of the designed filter and the simulation results 

performed in the LabVIEW environment. 

2. Design of the 24-Tap High Frequency 

Resolution FIR Band-Pass Filter 

FIR filters are linear phase filters with a finite impulse 

response and have no analog equivalent. As the degree (tabs) of 

the FIR filter increases, the pass frequency range of the filter 

becomes narrower. While IIR filters consist of zeros and poles, 

FIR filters contain only zeros, so they are filters without 

feedback. Figure 2 shows the general block diagram of the FIR 

filter. Equations (1) and (2) are FIR filters' zero distribution and 

transfer functions. 

 

Figure 2. General block diagram of FIR filter  
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We used Harris' rule-of-thumb method for filter design in 

terms of quick and convenient estimation. This basic rule 

provides the opportunity to obtain information about the number 

of tabs during filter design and perform it with the iteration 

method. Thus, we can see the effect of stopband attenuation and 

the steepness of the passband on the number of tabs. In 

equations (3) and (4), we found the value of tab 24 for a filter 

with 50 dB attenuation, a sampling frequency of 18750 Hz, a 

lower cutoff frequency of 1800 Hz and an upper cutoff 

frequency 3600 Hz. 

3600 1800
0.096

18750

stop pass

T

s

F F
B

F

 
                 (3) 

( ) 50
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   

 

           (4) 

Where, Ntaps is simply called as a coefficients/delay pair, BT 

is the normalized transition band, Attn is the desired attenuation 

in dB, Fpass and Fstop are the passband and stopband frequencies, 

Fs is the sampling frequency in Hz and 22 is constant value.  

We carried out the design of the filter in the LabVIEW 

environment. We obtained the filter coefficients, and design 

results in the LabVIEW environment, then transferred them to 

the FPGA-VHDL environment and made comparisons 

accordingly. 

2.1. Verification of the Discrete-Time FIR Filter 

and Calculation of the Filter Coefficients   

We performed both simulation and verification of the filter 

using the NI LabVIEW platform. Here, we obtained the 

coefficients of the filter from the filter that we designed 

graphically. To get the coefficients, we used the sum of two 

signals, 2.4 Khz and 4.2 Khz, as the test signal and 18750 Hz. as 

the sampling signal. We preferred 90 degrees as the phase 

difference of the two signals with amplitudes of 0.8 V and 1.2 V. 

For the bandpass filter with 1.8 Khz lower cutoff frequency and 

3.6 Khz uppercut frequency; we preferred 24th order and Kaiser 

window. Figure 3 shows the LabVIEW code block. As can be 

seen from the figure, the code block consists of three parts: the 

signal generation stage where we generated the test signal, the 

analog filtering and the digital filtering stage. Since there is no 

analog equivalent of FIR filters, there does not exist conversion 

between each other. Hence, we had to make a discrete-time and 

analog filter design. LabVIEW offers some programs as 

subprograms (sub. vi). Here, we used virtual instruments (vi.) 

provided by LabVIEW. The cutoff and sampling frequencies 

used in the discrete and continuous-time filtering stages are the 

same. We observed that the obtained filter coefficients are 

different. Since we designed the discrete-time filter, we used the 

coefficients of the digital filtering stage in the FPGA-VHDL 

environment, and the results were accordingly. In addition, 

amplitude response, phase response, Fast Fourier Transform 

(FFT), and discrete-time Z-plane show the filter's properties. 

We calculated the frequency spectrum of the filtered signal 

using the Fast Fourier Transform (FFT) as shown in Figure 5-a. 

FFT is an algorithm where mathematical operations are done 

very quickly. While calculating the spectrum of signals, it uses 

the Discrete Fourier Transform (DFT), which is expressed by the 

equation (5) [7]. Computing the DFT for an application with N 

data requires approximately ⁓N2 complex and time-consuming 

mathematical processes. For this reason, instead of directly 

applying DFT for an application with N data samples, we 

preferred to use the built-in FFT algorithm provided by 

LabVIEW and presented to the user out-of-the-box. Unlike IIR 

filters, since there is no feedback in FIR filters, there are only 

forward coefficients, which evolves to zero points. We obtained 

zero-point representations (5-b) of the filter using pole-zero.vi 

available in LabVIEW. 
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Figure 3. LabVIEW design of band-pass FIR filter with 

filter coefficients 

 

a) 

b) 

Figure 4. Sum of 4.2 Khz and 2.4 Khz (a) signal output, and 2.4 

Khz filtered (b) signal output  

Figure 4-a gives the sum of the 4.2 Khz interference signal 

and the corresponding 2.4 Khz signal, whereas Figure 4-b shows 

the filtered signal. As seen in the filtered signal, we can observe 

that the output signal is about 0.8 V and 2.4 Khz. Since the 
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signal of interest stays in the passband range, it allows the filter 

output, while the noise signal is stopped by the filter corner 

frequencies and is not allowed to pass through. 

 

a) b) 

 

c)                                            d) 

Figure 5. Fast fourier transform (a), zero location (b) on the 

complex z-plane, Magnitude (c) response, and phase (d) 

response of the FIR filter 

One can find the magnitude response of an FIR filter by 

interpreting a linear system. The real magnitude spectrum is 

defined as the input to a linear system with the magnitude 

response of a rectangular window. The output obtained in 

response to this input is obtained as the magnitude response of 

the FIR filter. Considering the characteristics of linear systems, 

the output of a system appears as the product of the input and the 

system response. However, different window types affect the 

shape of the magnitude response. Figure 5-c shows the 

frequency spectrum of the magnitude response of the Kaiser 

filter. Suppose it is desired to design a filter with a better 

transition region approximation. In that case, it is recommended 

to choose window functions with different frequency 

characteristics in accordance with the magnitude response. Here, 

the Kaiser window model is preferred by considering the filter's 

structure, lower and upper cut-off frequencies and sampling 

frequency.  Figure 5-d gives the phase response of the system. 

3. VHDL Implementation and Algorithm 

Design  

We used the flowchart given in Figure 6 and the pseudocode 

next to it for the VHDL implementation. VHDL, which is one of 

the hardware description languages, was preferred for the FPGA 

platform. The VHDL language consists of the entity layer where 

the input-output definition is made, an architecture that performs 

the logic functions, and a process layer that performs serial 

programming. We created an array of 24 in the architecture layer 

to hold the filter coefficients we obtained in the LabVIEW 

environment and two integer arrays to hold the input signal and 

filtered signals. Since the clock speeds of each hardware are 

different, we defined the source frequency after writing the code, 

not at the input. Considering the rising edge of the clock 

frequency in the process, we designed a shift register for each 

clock transition. When the program is started to run, filter 

coefficients are multiplied by each register cell according to the 

determined parameter values, shifted and saved. This process 

continues according to the value of the counter in the "for loop". 

A continuous-time signal is generated from the discrete-time, 

accordingly. Here, we preferred direct form FIR filter design and 

compared both LabVIEW and VHDL results. 
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Algorithm 1 Discrete-time FIR Filter Design

1:   Initialize the filter parameters

2:   Define the clock frequency and Array size

3:   Compute filter coefficients

4:   for iteration = 1, 2 .. do

5: Update array parameters

6: if  the filteredSignal obtained 

7: then 

8: Generate output signal

9:   end for

10: Implement as an hardware

 
Figure 6. Flowchart and algorithm of FIR filter implementation 

The algorithm above provides the VHDL implementation of 

the FIR filter. For the easy application of the algorithm, the 

filter's lower and upper cutoff frequencies and sampling 

frequency are determined. One should adjust the clock frequency 

according to different hardware features. Upon the program 

execution, we multiplied the input signal and the filter 

coefficients. Because the filter is in the pipeline structure, we 

kept the previous value of the filter output in memory in each 

clock cycle. This situation continues until all the coefficient 

values are updated. We calculated the filter order, lower cut and 

uppercut frequencies and sampling frequencies for the VHDL 

implementation. We tested them in the Aldec Active-HDL 

simulation environment and obtained the results presented in 

Figure 7. 

 

Figure 7. VHDL implementation functional simulation resul 
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As seen in Figure 7, we obtained results similar to 

LabVIEW design results. The result of the application shown in 

blue in Figure 7 shows the sum of the two signals applied to the 

input, and the filtered signal in red. It is essential to make the 

necessary optimizations on hardware with limited resources. 

Table 1. shows the estimated resource usage in the FPGA by 

LabVIEW of the work done. The resource usage in the given 

table is calculated as an estimate. The designer can reduce 

resource usage with different algorithms and optimization 

methods. 

Table 1. LabVIEW approximate FPGA Resource Utilization 

Data type FF LUT BRAM MUX DSP 

Function 

generator 
94 156 2 - 

- 

FFT 697 2368 6 16 - 

FIR filter vi 1000 1200 - - 12 

Other remaining 

usage 
20473 21359 82 - 

138 

Total usage 22264 25083 90 16 150 

4. Conclusions and Recommendations 

In this study, we designed a high-frequency resolution (24 

tabs) discrete-time direct form bandpass FIR filter both in the 

LabVIEW environment and in real-time in the FPGA 

environment. We obtained the filter coefficients for the FPGA-

VHDL application from the LabVIEW design. According to the 

given corner frequencies (3.6 Khz upper, 1.8 Khz lower), the 

designed filter passes the low frequencies from the sum of two 

signals with different frequencies (2.4 Khz and 4.2 Khz) while 

detecting other signals as noise and suppressing them. We 

determined the sampling frequency of the filter to be 18750 Hz. 

and its order to be 24. We developed and implemented the 

VHDL model to validate the functionality of the proposed filter. 

The simulation and application results show that the filter works 

without any problems. Considering the LabVIEW-FPGA 

resource usage, we observed that the designed filter has a 

compact footprint, indicating a suitable basis for its integration. 

On the one hand, we designed the filter in LabVIEW, in 

which designers can develop programs quickly without 

struggling with text-based languages. On the other hand, the 

VHDL environment is more suitable for hardware designers 

interested in hardware description languages and successful in 

software languages. It is not possible to synthesize a program 

without arithmetic optimization. In FPGA-based hardware, the 

numbers must be fixed or floating-point; this is tiring and time-

consuming. If the designer is going to do HDL programming, 

he/she should be aware of them. Therefore, LabVIEW is more 

suitable for rapid prototyping. Transferring the code written in 

the LabVIEW environment to the FPGA environment is possible 

with the LabVIEW-FPGA ready software package. All the 

designer has to do is compile the written code to suitable 

hardware. Although the VHDL language is difficult to learn 

compared to other languages, its human readability ensures that 

it can interfere with the code at any point. Since LabVIEW is 

graphical programming, there is almost no chance of 

intervention for each piece of code. 
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