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Abstract 

Knowing the protein structures is essential in understanding the job descriptions of proteins involved in vital functions, drug design, 

and many more. On the other hand, protein structure prediction is an alternative bioinformatics sub-study field to shorten the process 

that takes a long time in the laboratory environment. Performance analyzes of the methods developed in this field are generally made 

on benchmark datasets. The size of the datasets directly affects the algorithm runtime. In this study, how to benchmark datasets are 

reflected in the results is analyzed. Within the scope of the study, two different benchmark datasets, CB513 and EVASet, and two 

different protein structure prediction methods, JPred and Porter, were used. The study is a source of inspiration for further studies with 

the idea of developing benchmark datasets that are comprehensive in terms of protein properties but contain as little data as possible 

in terms of data size.  
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Kıyaslama Veri Kümelerinin Protein Yapı Tahminine Etkisi: Bir 

Kavram Çalışması 

Öz 

Protein yapılarının bilinmesi hayati fonksiyonlarda görev alan proteinlerin görev tanımlarının anlaşılabilmesi, ilaç tasarımı ve daha 

birçok açıdan öneme sahiptir. Protein yapı tahmini ise laboratuvar ortamında oldukça uzun zaman alan süreci kısaltmak için alternatif 

bir biyoinformatik alt çalışma alanıdır. Bu alanda geliştirilen yöntemlerin performans analizleri genel itibariyle kıyaslama 

(benchmark) veri kümeleri üzerinden yapılmaktadır. Veri kümelerinin büyüklüğü algoritma çalışma zamanlarına doğrudan etki 

etmektedir. Bu çalışmada kapsamında kıyaslama veri kümelerinin sonuçlara nasıl yansıdığı analiz edilmiştir. Çalışma kapsamında iki 

CB513 ve EVASet olmak üzere iki farklı kıyaslama veri kümesi, JPred ve Porter olmak üzere iki farklı protein yapı tahmini yöntemi 

kullanılmıştır. Çalışma, protein özellikleri açısından geniş kapsamlı ancak, veri büyüklüğü anlamında olabildiğince az veri içerecek 

olan benchmark veri kümeleri geliştirme fikri itibariyle sonraki çalışmalar için esin kaynağı niteliğindedir.  
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1. Introduction 

Proteins are the building blocks of the body and play an 

essential role in almost all basic functions and growth (van 

Goudoever et al., 2014; Aydin et al. 2019). From this point of 

view, knowing the structure of proteins can contribute 

significantly to many issues such as body defense (Krishnan, 

1932), treatment and drug design (Silverman & Holladay, 2014). 

Protein structure is a subject that has been studied for years, and 

a hierarchical order consisting of four different classes (KU, 

1952) has been proposed to customize the studies and conduct 

them more efficiently. Protein secondary structure refers to the 

hydrogen bonding patterns that express the state of the protein 

between its primary structure consisting of amino acids and its 

three-dimensional form in space. The way to know the tertiary 

structure of the protein is through the determination of the 

secondary structure. 

Determination of protein structure in the laboratory is an 

uphill task that takes a long time. Thanks to the developing 

technology and bioinformatics studies, structure estimation 

studies have provided successful results in recent years. Protein 

secondary structure prediction is also a studied subject, and 

many methods have been developed specifically for the issue 

(Atasever et al., 2019, Azginoglu et al., 2020; Jones, 1999; 

Pirovano & Heringa, 2010). Many different methods have been 

used for protein secondary structure prediction, such as Hidden 

Markov Models (Asai, 1993), neural networks (Holley & 

Karplus, (1989), and deep learning (Spencer et al., 2014). The 

performance analysis of these methods is carried out on 

benchmark datasets, and in this respect, it has a crucial place on 

the subject. The benchmark dataset must represent the problem 

and must be of acceptable size in terms of computational cost. 

Looking at the studies in the literature, while there are 

studies on new method development, existing methods 

(Bouziane et al., 2015; Le et al., 2017), and comparison of 

prediction servers (Bujnicki et al., 2001), no studies are 

evaluating the protein secondary structure benchmark datasets to 

the best of our knowledge. Within the scope of this study, the 

effect of benchmark datasets on the success of the methods and 

the results obtained were examined. Thus, it was focused on 

whether it would be inconvenient to use smaller, less costly 

benchmark datasets instead of large datasets in computational 

cost. 

It was determined that the data sets we used in our study did 

not differ much in measuring the success of the methods. 

However, this does not mean that the same result will be 

obtained when different datasets or techniques are used. If the 

study we have carried out as a concept study is expanded in 

terms of datasets, datasets that are qualitatively broad but 

quantitatively narrow-scoped can be developed with the results 

to be obtained so that running time can be reduced in parallel 

with computation cost. 

2. Material and Method 

2.1. Dataset 

Two different benchmark datasets, CB513 (Cuff & Barton, 

1999) and EVASet (Koh et al., 2003), were used in this study. 

These are challenging, and difficult datasets used to measure the 

performance of methods developed for secondary structure, 

solvent accessibility, and torsion angle estimation. We used these 

datasets only for secondary structure prediction. CB513 contains 

513 proteins and a total of 84119 amino acids (residue), while 

EVASet includes 2876 proteins and a total of 584595 amino 

acids after excluding proteins containing less than 30 amino 

acids. Datasets are in the form of multiple Fasta (Pearson & 

Lipman, 1988) files in a single text file. 

2.2. Dataset 

2.2.1. JPred 

JPred is a protein secondary structure prediction server 

using the JNet algorithm. In this study, Jpred4 (Drozdetskiy et 

al., 2015), the latest version of JPred, was used as a secondary 

structure prediction method. 

We used JPred4 via web server, which has certain 

restrictions (http://www.compbio.dundee.ac.uk/jpred4). JPred4 

does not accept submissions for more than 200 proteins at the 

same time. For this reason, we first divided our dataset into parts 

from ≤ 200. Therefore, it was planned to submit eighteen 

different jobs as (200 x 2) + (113 x 1) three for CB513 

containing a total of 513 proteins, and (200 x 14) + (76 x 1) 

fifteen jobs for EVAset containing a total of 2876 proteins. 

JPred4 does not accept proteins containing more than 800 

residues of amino acids as a single input. For this reason, we 

divided in two the amino acid sequences of 25 proteins 

containing more than 800 amino acids that we detected in 

EVASet (The IDs of these proteins are: 1b0pA, 1bglA, 1bxrA, 

1c7sA, 1clqA, 1e7uA, 1ej6A, 1ej6C, 1epwA, 1eulA, 1ffyA, 

1h3nA, 1h6zA, 1hq7sA, 1hty 1jncwA, 1kjvA, 1hty5A, 1kcv2A, 

1hty1, 1qb4A, 1qgkA, 2btvA.) and submitted them separately. 

Therefore, a total of 19 jobs, 3 for CB513 and 15+1=16 for 

EVASet, were submitted to the JPred4 web server with different 

names. The results of the proteins submitted in two fragments 

were combined after the estimation process. 

Fasta files containing multiple proteins were submitted to 

the JPred4 server as advanced options with Single Sequence 

(Batch Mode) and Skip Searching PDB Before Prediction 

options. JPred accepts only a certain number of submissions per 

day from an e-mail address. For this reason, we need to state that 

submissions are made from five different e-mail accounts not to 

delay the works. Under these circumstances, we can say that the 

JPred4 estimates for the datasets we use are completed in less 

than half a day, and, it's a reasonable time. 

After the JPred4 estimates are completed, an e-mail is 

informed, and the download link of the *tar.gz file containing 

the results is sent. After all the predictions were achieved, 

*.name files to determine the name of the relevant protein, and 

*.simple.html files to determine the secondary structure 

prediction result were used among the result folders containing 

many files from alignment files to structural matrices.  

 

 

Figure 1. Porter Estimation Result for a Sample Protein 
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An automated programmatic way has been developed to 

select the files to be used and the deletion of the files that will 

not be used from the disk (it can take up approximately 200 MB 

of space for just a protein depending on the protein size). Python 

was used as the programming language, and Jupyter Notebook 

was used as the programming editor. 

2.2.1. Porter 

Porter is an ensemble of 25 different bidirectional recurrent 

neural networks, a protein secondary structure, and a solvent 

accessibility prediction server (PaleAle for solvent accessibilty 

prediction). In this study, Porter 4.0 (Mirabello & Pollastri, 

2013), the latest version of Porter, was used for protein 

secondary structure prediction. 

The Porter server (http://distillf.ucd.ie/porterpaleale/) 

accepts input in Fasta format up to 64 kilobytes (KB). For our 

input size not to exceed 64 KB, the datasets were submitted to 

the system as divided into sections of approximately 250 

proteins. The CB513 ((1 x 250) + (1 x 263) = 513 proteins) is 

divided into two different, and the EVASet ((11 x 250) + (1 x 

126) = 2876 proteins) was divided into twelve different jobs. 

Porter completed all the submitted jobs in about half a day, 

similar to JPred. Prediction result (output) of The Porter Server 

for a sample protein is given in Figure-1. 

After the Porter predictions were completed, the results 

obtained for each dataset were combined. A new file was 

generated with two lines separated for each protein. (name of the 

protein and the protein secondary structure prediction query). 

Python programming language was used during this generating 

process. In its final form, the same format output was produced 

using both JPred and Porter prediction results.  

2.3. Experimental Setup 

In this study, in which two benchmark datasets and two 

different methods are used, firstly, the data is converted into the 

format accepted by the methods. Then the prediction results are 

obtained by giving them to the system. Outputs in different 

forms were converted into a standard format, and then their 

prediction performance was evaluated. Experiment setup and 

workflow are given in Figure-2. 

 

 

 

 

3. Results 

Average Three-state Prediction Accuracy (Q3) (Rost & 

Eyrich, 2001), Segment Overlap Measure (SOV) (Zemla et al., 

1999), Class-specific Recall (R), and Precision (P) were used to 

evaluate the results of the experiments conducted in this study. 

The overall accuracy was calculated by taking the percentage of 

the value obtained by dividing the correctly predicted number of 

amino acids by the total number of amino acids. Q3 is one of the 

most popular statistical performance measures. Here three 

symbol denotes secondary structure labels. On the other hand, 

SOV aims to calculate the overlap ratio between the actual class 

label and the predicted class label segments. 

In Table-1 and Table-2, confusion matrixes obtained using 

the CB513 dataset are given. Table-1 presents the results 

obtained with JPred, and Table-2 presents the results obtained 

with the Porter method. The vertical axis represents the actual 

label in the tables, and the horizontal axis represents the 

estimation results. Table-5 and Table-6 show the results obtained 

using the EVASet dataset. Table-3 and Table-4 give the P, R, Q3, 

and SOV results of JPred and Porter methods, respectively, using 

the CB513 dataset. Values were calculated both on a class level 

and as a total. All values are given in the table, and the essential 

values for us to compare are the Q3 and SOV values. Table-7 

and Table-8 present the results of the JPred and Porter method 

obtained using the EVASet dataset. Both dataset-based and 

method-based comparisons were made since two different 

datasets (Cb513 and EVASet), and two different methods (JPred 

and Porter) were used during the experiments. 

When we make a comparison as a data set, when we look at 

the results obtained from the JPred method, it is seen that there is 

a 0.40% (78.31%-77.91%) difference in the Q3 results. 

Similarly, a difference of 0.40% (73.79%-73.39%) is also 

observed in SOV results. We can say that this difference is not 

statistically significant for either metric (z-score and p-value 

values were used at this point). For this reason, the dataset 

difference in CB513 and EVASet did not significantly affect the 

results. In the Porter method, the difference between datasets for 

Q3 is 0.25% (82.67%-82.42%) for CB513 and 0.59% for 

EVASet. (79.50%-78.91%). These values were also not 

statistically significant, and there was no obvious difference 

between the two data sets in the experimental results. When the 

methods are compared, it is seen that the Porter method is more 

successful on CB513 with a rate of 4.36% (Q3) and 5.61% 

(SOV), and on EVASet, 4.51% (Q3) and 5.52% (SOV) is more 

successful than the JPred method. 

Figure 2. Experimental Setup 
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However, a detailed comparison was not made for the 

working time of JPred and Porter, as it was not within the scope 

of the study. Since the number and size of the jobs waiting in the 

queue cannot be known clearly, we would like to point out that 

such a comparison can only be made by installing these two 

methods on the local server. 

If we evaluate the results obtained, considering that both 

CB513 and EVASet are difficult datasets, the fact that there is 

not much difference in the success rates based on the dataset 

shows that the dataset containing less protein is computationally 

preferable. In this respect, CB513 (513 protein, 84119 amino 

acids) among the two datasets shows that it is preferable to 

EVASet (2876 protein, 584595 amino acids) due to the low 

number of both protein and amino acids it contains in general 

terms. When an evaluation was made within the scope of the 

methods, it was seen that the Porter method gave better results in 

the range of about 4%-6% compared to JPred, and therefore it 

was preferable.  

 

 

Table 1. Confusion Matrix for JPred (CB513)                     

  Predicted 

   H E L Total 

A
ct

u
a

l H 22476 392 6229 29097 

E 495 12833 5731 19059 

L 2557 2843 30563 35963 

Total 25528 16068 42523 84119 

 

Table 2. Confusion Matrix for Porter (CB513) 

  Predicted 

   H E L Total 

A
ct

u
a

l H 25134 249 3714 29097 

E 250 14453 4356 19059 

L 2930 3078 29955 35963 

Total 28314 17780 38025 84119 

 

Table 3. Accuracy Measures for JPred (CB513)                

 P R SOV 

H 88.04 77.25 79.04 

E 79.87 67.33 72.84 

L 71.87 84.98 70.10 

Total 78.31 78.31 (Q3) 73.79 (SOV) 

 

Table 4. Accuracy Measures for Porter (CB513)          

 P R SOV 

H 88.77 86.38 86.47 

E 81.29 75.83 78.99 

L 78.78 83.29 74.44 

Total 82.67 82.67 79.50 

 

 

 

Table 5. Confusion Matrix for JPred (EVASet) 

  Predicted 

   H E L Total 

A
ct

u
a

l H 165157 3247 44965 213369 

E 3449 85309 37000 125758 

L 20035 20435 204998 245468 

Total 188641 108991 286963 584595 

 

Table 6. Confusion Matrix for Porter (EVASet) 

  Predicted 

   H E L Total 

A
ct

u
a

l H 185258 2226 25885 213369 

E 1815 96947 26996 125758 

L 22912 22915 199641 245468 

Total 209985 122088 252522 584595 

 

Table 7. Accuracy Measures for JPred (EVASet) 

 P R SOV 

H 87.55 77.40 78.93 

E 78.27 67.84 72.76 

L 71.44 83.51 68.98 

Total 77.91 77.91 (Q3) 73.39 (SOV) 

 

Table 8. Accuracy Measures for Porter (EVASet) 

 P R SOV 

H 88.22 86.83 86.38 

E 79.41 77.09 79.26 

L 79.06 81.33 72.68 

Total 82.42 82.42 (Q3) 78.91 (SOV) 

 

4. Conclusion and Recommendations 

Within the scope of the study, the secondary structures of the 

proteins in the CB513 and EVASet benchmark datasets were 

estimated by JPred and Porter methods. The pre-processed data 

were pre-processed to make them suitable for the methods used, 

and then the results were obtained from both approaches. The 

outputs of these methods, which give output in different formats, 

have been post-processed, and a standard format has been 

received. Finally, the prediction successes were determined. 

The results show that smaller datasets with less 

computational cost can be sufficient for performance evaluation, 

particularly for JPred and Porter. However, we can say that the 

characteristics of the dataset and the method are also crucial 

points. This study aims to give a different perspective on 

benchmark datasets for protein structure prediction studies. 
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