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Abstract

Knowing the protein structures is essential in understanding the job descriptions of proteins involved in vital functions, drug design,
and many more. On the other hand, protein structure prediction is an alternative bioinformatics sub-study field to shorten the process
that takes a long time in the laboratory environment. Performance analyzes of the methods developed in this field are generally made
on benchmark datasets. The size of the datasets directly affects the algorithm runtime. In this study, how to benchmark datasets are
reflected in the results is analyzed. Within the scope of the study, two different benchmark datasets, CB513 and EVASet, and two
different protein structure prediction methods, JPred and Porter, were used. The study is a source of inspiration for further studies with
the idea of developing benchmark datasets that are comprehensive in terms of protein properties but contain as little data as possible
in terms of data size.
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Kiyaslama Veri Kiimelerinin Protein Yapi1 Tahminine EtKisi: Bir
Kavram Cahismasi

Oz

Protein yapilarmin bilinmesi hayati fonksiyonlarda gérev alan proteinlerin gérev tanimlarinin anlasilabilmesi, ilag tasarimi ve daha
bir¢ok agidan dneme sahiptir. Protein yap1 tahmini ise laboratuvar ortaminda olduk¢a uzun zaman alan siireci kisaltmak igin alternatif
bir biyoinformatik alt ¢aligma alanidir. Bu alanda gelistirilen ydntemlerin performans analizleri genel itibariyle kiyaslama
(benchmark) veri kiimeleri tizerinden yapilmaktadir. Veri kiimelerinin biiylikligi algoritma c¢aligma zamanlarina dogrudan etki
etmektedir. Bu ¢alismada kapsaminda kiyaslama veri kiimelerinin sonuglara nasil yansidigi analiz edilmistir. Calisma kapsaminda iKi
CB513 ve EVASet olmak iizere iki farkli kiyaslama veri kiimesi, JPred ve Porter olmak tizere iki farkli protein yap1 tahmini yontemi
kullanilmistir. Calisma, protein 6zellikleri agisindan genis kapsamli ancak, veri biiylikliigii anlaminda olabildigince az veri igerecek
olan benchmark veri kiimeleri gelistirme fikri itibariyle sonraki ¢alismalar i¢in esin kaynagi niteligindedir.

Anahtar Kelimeler: Protein yap1 tahmini, Kiyaslama veri kiimesi, Kavram.
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1. Introduction

Proteins are the building blocks of the body and play an
essential role in almost all basic functions and growth (van
Goudoever et al., 2014; Aydin et al. 2019). From this point of
view, knowing the structure of proteins can contribute
significantly to many issues such as body defense (Krishnan,
1932), treatment and drug design (Silverman & Holladay, 2014).
Protein structure is a subject that has been studied for years, and
a hierarchical order consisting of four different classes (KU,
1952) has been proposed to customize the studies and conduct
them more efficiently. Protein secondary structure refers to the
hydrogen bonding patterns that express the state of the protein
between its primary structure consisting of amino acids and its
three-dimensional form in space. The way to know the tertiary
structure of the protein is through the determination of the
secondary structure.

Determination of protein structure in the laboratory is an
uphill task that takes a long time. Thanks to the developing
technology and bioinformatics studies, structure estimation
studies have provided successful results in recent years. Protein
secondary structure prediction is also a studied subject, and
many methods have been developed specifically for the issue
(Atasever et al., 2019, Azginoglu et al., 2020; Jones, 1999;
Pirovano & Heringa, 2010). Many different methods have been
used for protein secondary structure prediction, such as Hidden
Markov Models (Asai, 1993), neural networks (Holley &
Karplus, (1989), and deep learning (Spencer et al., 2014). The
performance analysis of these methods is carried out on
benchmark datasets, and in this respect, it has a crucial place on
the subject. The benchmark dataset must represent the problem
and must be of acceptable size in terms of computational cost.

Looking at the studies in the literature, while there are
studies on new method development, existing methods
(Bouziane et al., 2015; Le et al.,, 2017), and comparison of
prediction servers (Bujnicki et al.,, 2001), no studies are
evaluating the protein secondary structure benchmark datasets to
the best of our knowledge. Within the scope of this study, the
effect of benchmark datasets on the success of the methods and
the results obtained were examined. Thus, it was focused on
whether it would be inconvenient to use smaller, less costly
benchmark datasets instead of large datasets in computational
cost.

It was determined that the data sets we used in our study did
not differ much in measuring the success of the methods.
However, this does not mean that the same result will be
obtained when different datasets or techniques are used. If the
study we have carried out as a concept study is expanded in
terms of datasets, datasets that are qualitatively broad but
quantitatively narrow-scoped can be developed with the results
to be obtained so that running time can be reduced in parallel
with computation cost.

2. Material and Method

2.1. Dataset

Two different benchmark datasets, CB513 (Cuff & Barton,
1999) and EVASet (Koh et al., 2003), were used in this study.
These are challenging, and difficult datasets used to measure the
performance of methods developed for secondary structure,
solvent accessibility, and torsion angle estimation. We used these
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datasets only for secondary structure prediction. CB513 contains
513 proteins and a total of 84119 amino acids (residue), while
EVASet includes 2876 proteins and a total of 584595 amino
acids after excluding proteins containing less than 30 amino
acids. Datasets are in the form of multiple Fasta (Pearson &
Lipman, 1988) files in a single text file.

2.2. Dataset
2.2.1. JPred

JPred is a protein secondary structure prediction server
using the JNet algorithm. In this study, Jpred4 (Drozdetskiy et
al., 2015), the latest version of JPred, was used as a secondary
structure prediction method.

We used JPred4 via web server, which has certain
restrictions (http://www.compbio.dundee.ac.uk/jpred4). JPred4
does not accept submissions for more than 200 proteins at the
same time. For this reason, we first divided our dataset into parts
from < 200. Therefore, it was planned to submit eighteen
different jobs as (200 x 2) + (113 x 1) three for CB513
containing a total of 513 proteins, and (200 x 14) + (76 x 1)

fifteen jobs for EVAset containing a total of 2876 proteins.

JPred4 does not accept proteins containing more than 800
residues of amino acids as a single input. For this reason, we
divided in two the amino acid sequences of 25 proteins
containing more than 800 amino acids that we detected in
EVASet (The IDs of these proteins are: 1bOpA, 1bglA, 1bxrA,
1c7sA, 1clgA, 1le7uA, 1ej6A, 1ej6C, lepwA, leulA, 1ffyA,
1h3nA, 1h6zA, 1hq7sA, lhty 1jncwA, 1kjvA, 1hty5A, 1kcv2A,
1htyl, 1gb4A, 1qgkA, 2btvA.) and submitted them separately.
Therefore, a total of 19 jobs, 3 for CB513 and 15+1=16 for
EVASet, were submitted to the JPred4 web server with different
names. The results of the proteins submitted in two fragments
were combined after the estimation process.

Fasta files containing multiple proteins were submitted to
the JPred4 server as advanced options with Single Sequence
(Batch Mode) and Skip Searching PDB Before Prediction
options. JPred accepts only a certain number of submissions per
day from an e-mail address. For this reason, we need to state that
submissions are made from five different e-mail accounts not to
delay the works. Under these circumstances, we can say that the
JPred4 estimates for the datasets we use are completed in less
than half a day, and, it's a reasonable time.

After the JPred4 estimates are completed, an e-mail is
informed, and the download link of the *tar.gz file containing
the results is sent. After all the predictions were achieved,
*.name files to determine the name of the relevant protein, and
*simple.html  files to determine the secondary structure
prediction result were used among the result folders containing
many files from alignment files to structural matrices.

Figure 1. Porter Estimation Result for a Sample Protein
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Figure 2. Experimental Setup

An automated programmatic way has been developed to
select the files to be used and the deletion of the files that will
not be used from the disk (it can take up approximately 200 MB
of space for just a protein depending on the protein size). Python
was used as the programming language, and Jupyter Notebook
was used as the programming editor.

2.2.1. Porter

Porter is an ensemble of 25 different bidirectional recurrent
neural networks, a protein secondary structure, and a solvent
accessibility prediction server (PaleAle for solvent accessibilty
prediction). In this study, Porter 4.0 (Mirabello & Pollastri,
2013), the latest version of Porter, was used for protein
secondary structure prediction.

The Porter server (http://distillf.ucd.ie/porterpaleale/)
accepts input in Fasta format up to 64 kilobytes (KB). For our
input size not to exceed 64 KB, the datasets were submitted to
the system as divided into sections of approximately 250
proteins. The CB513 ((1 x 250) + (1 x 263) = 513 proteins) is
divided into two different, and the EVASet ((11 x 250) + (1 x
126) = 2876 proteins) was divided into twelve different jobs.
Porter completed all the submitted jobs in about half a day,
similar to JPred. Prediction result (output) of The Porter Server
for a sample protein is given in Figure-1.

After the Porter predictions were completed, the results
obtained for each dataset were combined. A new file was
generated with two lines separated for each protein. (name of the
protein and the protein secondary structure prediction query).
Python programming language was used during this generating
process. In its final form, the same format output was produced
using both JPred and Porter prediction results.

2.3. Experimental Setup

In this study, in which two benchmark datasets and two
different methods are used, firstly, the data is converted into the
format accepted by the methods. Then the prediction results are
obtained by giving them to the system. Outputs in different
forms were converted into a standard format, and then their
prediction performance was evaluated. Experiment setup and
workflow are given in Figure-2.
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3. Results

Average Three-state Prediction Accuracy (Q3) (Rost &
Eyrich, 2001), Segment Overlap Measure (SOV) (Zemla et al.,
1999), Class-specific Recall (R), and Precision (P) were used to
evaluate the results of the experiments conducted in this study.
The overall accuracy was calculated by taking the percentage of
the value obtained by dividing the correctly predicted number of
amino acids by the total number of amino acids. Q3 is one of the
most popular statistical performance measures. Here three
symbol denotes secondary structure labels. On the other hand,
SOV aims to calculate the overlap ratio between the actual class
label and the predicted class label segments.

In Table-1 and Table-2, confusion matrixes obtained using
the CB513 dataset are given. Table-1 presents the results
obtained with JPred, and Table-2 presents the results obtained
with the Porter method. The vertical axis represents the actual
label in the tables, and the horizontal axis represents the
estimation results. Table-5 and Table-6 show the results obtained
using the EVASet dataset. Table-3 and Table-4 give the P, R, Q3,
and SOV results of JPred and Porter methods, respectively, using
the CB513 dataset. Values were calculated both on a class level
and as a total. All values are given in the table, and the essential
values for us to compare are the Q3 and SOV values. Table-7
and Table-8 present the results of the JPred and Porter method
obtained using the EVASet dataset. Both dataset-based and
method-based comparisons were made since two different
datasets (Cbh513 and EVASet), and two different methods (JPred
and Porter) were used during the experiments.

When we make a comparison as a data set, when we look at
the results obtained from the JPred method, it is seen that there is
a 0.40% (78.31%-77.91%) difference in the Q3 results.
Similarly, a difference of 0.40% (73.79%-73.39%) is also
observed in SOV results. We can say that this difference is not
statistically significant for either metric (z-score and p-value
values were used at this point). For this reason, the dataset
difference in CB513 and EVASet did not significantly affect the
results. In the Porter method, the difference between datasets for
Q3 is 0.25% (82.67%-82.42%) for CB513 and 0.59% for
EVASet. (79.50%-78.91%). These values were also not
statistically significant, and there was no obvious difference
between the two data sets in the experimental results. When the
methods are compared, it is seen that the Porter method is more
successful on CB513 with a rate of 4.36% (Q3) and 5.61%
(SOV), and on EVASet, 4.51% (Q3) and 5.52% (SOV) is more
successful than the JPred method.
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However, a detailed comparison was not made for the
working time of JPred and Porter, as it was not within the scope
of the study. Since the number and size of the jobs waiting in the
queue cannot be known clearly, we would like to point out that
such a comparison can only be made by installing these two
methods on the local server.

If we evaluate the results obtained, considering that both
CB513 and EVASet are difficult datasets, the fact that there is
not much difference in the success rates based on the dataset
shows that the dataset containing less protein is computationally
preferable. In this respect, CB513 (513 protein, 84119 amino
acids) among the two datasets shows that it is preferable to
EVASet (2876 protein, 584595 amino acids) due to the low
number of both protein and amino acids it contains in general
terms. When an evaluation was made within the scope of the
methods, it was seen that the Porter method gave better results in
the range of about 4%-6% compared to JPred, and therefore it
was preferable.

Table 1. Confusion Matrix for JPred (CB513)

Predicted
H E L Total
_|H 22476 | 392 6229 | 29097
S |E 495 12833 | 5731 | 19059
gL 2557 | 2843 | 30563 | 35963
Total | 25528 | 16068 | 42523 | 84119
Table 2. Confusion Matrix for Porter (CB513)
Predicted
H E L Total
_ | H 25134 | 249 3714 | 29097
S |E 250 14453 | 4356 | 19059
g L 2930 | 3078 | 29955 | 35963
Total | 28314 | 17780 | 38025 | 84119
Table 3. Accuracy Measures for JPred (CB513)
P R SoVv
H 88.04 77.25 79.04
E 79.87 67.33 72.84
L 71.87 84.98 70.10
Total 78.31 78.31 (Q3) | 73.79 (SOV)
Table 4. Accuracy Measures for Porter (CB513)
P R SoVv
H 88.77 86.38 86.47
E 81.29 75.83 78.99
L 78.78 83.29 74.44
Total 82.67 82.67 79.50
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Table 5. Confusion Matrix for JPred (EVASet)

Predicted
H E L Total
_ | H 165157 | 3247 44965 | 213369
S| E 3449 85309 | 37000 | 125758
gL 20035 | 20435 | 204998 | 245468
Total | 188641 | 108991 | 286963 | 584595
Table 6. Confusion Matrix for Porter (EVASet)
Predicted
H E L Total
_ | H 185258 | 2226 25885 | 213369
S |E 1815 96947 | 26996 | 125758
g LL 22912 | 22915 | 199641 | 245468
Total | 209985 | 122088 | 252522 | 584595
Table 7. Accuracy Measures for JPred (EVASet)
P R SOV
H 87.55 77.40 78.93
E 78.27 67.84 72.76
L 71.44 83.51 68.98
Total 77.91 77.91(Q3z) | 73.39 (SOV)
Table 8. Accuracy Measures for Porter (EVASet)
P R SOV
H 88.22 86.83 86.38
E 79.41 77.09 79.26
L 79.06 81.33 72.68
Total 82.42 82.42 (Q3) | 78.91 (SOV)

4. Conclusion and Recommendations

Within the scope of the study, the secondary structures of the
proteins in the CB513 and EVASet benchmark datasets were
estimated by JPred and Porter methods. The pre-processed data
were pre-processed to make them suitable for the methods used,
and then the results were obtained from both approaches. The
outputs of these methods, which give output in different formats,
have been post-processed, and a standard format has been
received. Finally, the prediction successes were determined.

The results show that smaller datasets with less
computational cost can be sufficient for performance evaluation,
particularly for JPred and Porter. However, we can say that the
characteristics of the dataset and the method are also crucial
points. This study aims to give a different perspective on
benchmark datasets for protein structure prediction studies.
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