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Abstract 

Parameter estimation in particular the frequency estimation of sinusoidal signals contaminated with noise is of great importance due 

to its broad applications in many fields such as communications, instrumentation, medicine and radar. In current power systems, 

frequency deviations in the nominal system frequency would cause spurious or so-called ghost frequency components in the 

spectrum. Those types of frequency components complicate the real-time tracking of harmonics and interharmonics present in the 

system. In this study, in order to minimize the side effects of system frequency deviations the performances of various frequency 

estimators are evaluated against varying fundamental frequency and noise conditions and the optimum estimator is chosen. 

 

Keywords: Power quality, Harmonics, Fequency estimation, Fequency deviation. 

Güç Sistemlerinde Sistem Frekans Kayması Olduğu Durumlarda En 

Uygun Frekans Kestirici Seçimi 

Öz 

Parametre tahmini, özellikle gürültü ile kirlenmiş sinüzoidal sinyallerin frekans tahmini, iletişim, enstrümantasyon, tıp ve radar gibi 

birçok alandaki geniş uygulamaları nedeniyle büyük önem taşımaktadır. Günümüz güç sistemlerinde, nominal sistem frekansındaki 

frekans sapmaları, spektrumda sahte veya sözde hayalet frekans bileşenlerine neden olmaktadır. Bu tür frekans bileşenleri, sistemde 

bulunan harmoniklerin ve araharmoniklerin gerçek zamanlı izlenmesini zorlaştırmaktadır. Bu çalışmada, sistem frekans sapmalarının 

yan etkilerini en aza indirmek için, çeşitli frekans kestiricilerin performansları, değişen temel frekans ve gürültü koşullarına göre 

değerlendirilmiş ve en uygun kestirici seçilmiştir.  

 

 

Anahtar Kelimeler: Güç kalitesi, Harmonikler, Frekans tahmini, Frekans kayması. 
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1. Introduction 

Parameter estimation is the task of estimating parameters 

such as amplitude, frequency and phase of a signal. Estimating 

the frequency of signals, especially the frequency of a noise-

contaminated sinusoid is one of the important topics in the 

literature as frequency estimation is continuously being applied 

in many areas such as communication, instrumentation, 

medicine and radar [1]. The parameter estimation problem was 

first formulated in the literature by Slepian [2]. The work that 

Palmer utilized the discrete Fourier transform (DFT) in 

frequency estimation is one of the initial studies in this field [3]. 

The parameter estimation problem of single-tone signals from 

discrete-time observation data has been addressed by Rife and 

Boorstyn [4]. In this study, the maximum-likelihood estimators 

for this problem have been derived and their connections with 

DFT have been explained. Quinn developed two 

computationally-simple algorithms compared to previous studies 

based on the interpolation of the Fourier series coefficients at 

three distinct points [5,6]. Macleod presented a fast algorithm for 

maximum-likelihood estimation of the parameters of single and 

multiple tone signals in their study [7]. In addition, an approach 

based on quadratic interpolation of DFT data was presented in a 

study by Jacobsen and Kootsookos [8]. Candan proposed an 

improved algorithm by involving correction factors upon the 

quadratic interpolation [9]. Frequency estimation have a wide 

range of applications in power systems including protection, 

control, monitoring and measurement [10-12]. 

In real-time power systems, system frequency deviations 

can rise up to 1% of its fundamental frequency [13]. This drift in 

the nominal system frequency causes false (ghost) frequency 

components that are not present in the true spectrum, making it 

difficult to monitor and take precautions for harmonics and 

interharmonics. Harmonics and interharmonics deteriorates 

power quality by causing distorted supply waveforms, 

distribution losses and communication interference and hence 

malfunction protection equipment [14-17]. [15] proposes a 

saturation detection method based on harmonic distortion for 

current transformers of 154 kV transmission lines. In [16], a 

railway system is considered and some proposals are made to 

solve harmonic related power quality problems encountered in 

the system. In [17], power quality issues are covered in an 

induction heating system.  

In this study, the performances of various frequency 

estimators have been assessed against varying system frequency 

and noise conditions and the optimum estimator is chosen in 

terms of its accuracy, bias and variance, and computation-time to 

predict system frequency deviations in the power systems in 

real-time and minimize their aforementioned side effects. 

2. Material and Method 

In this section, we first give a brief description of the DFT 

and the effect of the frequency deviation by illustrating with an 

example. Then, the frequency estimators utilized in this study 

are given and formulazed. In the last subsection, we give the 

assessment criteria and the flowchart of the method followed in 

the work. 

 

2.1. Discrete Fourier transform (DFT) 

Let a continuous-time  v(t)  signal be sampled with a 

sampling rate of Fs = 1/Ts, so that N samples per second be 

taken. The spectrum of the resulting discrete-time signal v(n) = 

v(nTs) , n=0,1,...,N-1 can be obtained by the DFT: 

𝑉(𝑘) =  ∑ 𝑣(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

,     𝑘 = 0,1, … , 𝑁 − 1  
 

(1) 

 

Figure 1. Verification term δ used to determine the true maximum 
value in discrete Fourier transform (adapted from [9]) 

Here V(k) are the spectral components of the discrete-time signal 

v(n). In order to avoid aliasing, the sampling rate Fs should be 

chosen as at least twice the highest frequency component 

contained in the signal.   

In the DFT, finite-length (length of N) samples are taken from 

the signal. This operation is equivalent to multiplying the signal 

by a N-length rectangular window. Since the ideal rectangular 

window of finite length in the time domain has infinite length 

spectral components in the form of sinc(.) function in the 

frequency domain, convolution with the signal in the frequency 

domain causes a phenomenon known as spectral leakage in 

which the energy in one frequency band spreads into other 

bands. To reduce this side effect, different window types that 

have smaller sidelobes than the rectangular window are utilized.    

2.2. The effect of the frequency deviation 

Let us consider a power signal in the form of v(t) = 

Asin(2πf0t) with a fundamental frequency of  f0 = 50. According 

to the IEC 61000-4-7 standard [18], it is recommended to sample 

this signal with a sampling rate of Fs = 3.2 kHz and to take the 

DFT by multiplying it by a rectangular window of length 200 

ms. According to this standard, the frequency resolution 

corresponds to Δf = 1/200 = 5 Hz. Here, the fundamental 

frequency is an integer multiple of the frequency resolution. 

However, when the system fundamental frequency deviates from 

its nominal value of 50 Hz, this integer multiplicity relationship 

does not satisfied anymore and spurious (or ghost) frequency 

components appear in the spectrum that are not present in the 

spectrum of the actual signal. Therefore, it is very crucial to 

estimate the fundamental frequency and adjust the duration of 

the DFT window accordingly in order to get rid of the pseudo-

frequency components in the spectrum.  
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2.3. Frequency estimators 

In real life applications, sinusoidal signals appear as noisy. 

Let 

𝑋 =  𝐴𝑐𝑜𝑠(𝑤0 ∗ 𝑡)  +  𝑛(𝑡) (2) 

be a single-tone sinusoidal signal. Here, A is the amplitude of the 

signal, w0 is the frequency of the signal, 𝑛(𝑡) ~ 𝒩(0, 𝜎2) is a 

zero mean σ standard deviation additive white Gaussian noise, 

respectively. Let the DFT of the signal be represented by X(k). 

The aim here is to estimate the frequency of the tone using three 

DFT samples, Xk-1, Xk, Xk+1. The estimators calculate a 

verification term δ to estimate the true k value (the maximum 

value), i.e, kreal = k + δ as shown Fig. 1. For optimality, it should 

be as accurate as possible, unbiased, and its computation should 

be fast. Frequency estimators for this purpose are given below:   

2.3.1. Quinn’s estimator 

The estimator is obtained from the interpolation of the Fourier 

series coefficients corresponding to three DFT points: 

𝛼1 = 𝑅𝑒(𝑋𝑘−1 / 𝑋𝑘) 

𝛼2 = 𝑅𝑒(𝑋𝑘+1 / 𝑋𝑘) 

𝛿1 =  𝛼1/(1 − 𝛼1) 

𝛿2 =  −𝛼2/(1 − 𝛼2) 

𝐼𝑓 𝛿1 > 0 & 𝛿2 > 0 𝛿 =  𝛿2 𝐸𝑙𝑠𝑒 𝛿 = 𝛿1 

 

 

(3) 

 

2.3.2. Quinn’s second estimator 

This is an improvement upon the Quinn’s first estimator. Instead 

of using comparisons of 𝛿1 and 𝛿2, two factors 𝛾1 and 𝛾2 are 

calculated and 𝛿 is found accordingly. 

𝛼1 = 𝑅𝑒(𝑋𝑘−1 / 𝑋𝑘) 

𝛼2 = 𝑅𝑒(𝑋𝑘+1 / 𝑋𝑘) 

𝛿1 =  𝛼1/(1 − 𝛼1) 

𝛿2 =  𝛼2/(1 − 𝛼2) 

 

𝛾1 =  
1

4
log(3𝛼1

4 + 6𝛼1
2 + 1 ) −

√6

24
log

𝛼1
2 + 1 − √2/3

𝛼1
2 + 1 + √2/3

 

 

𝛾2 =  
1

4
log(3𝛼2

4 + 6𝛼2
2 + 1 ) −

√6

24
log

𝛼2
2 + 1 − √2/3

𝛼2
2 + 1 + √2/3

 

 

𝛿 =
𝛿1 + 𝛿2

2
+ 𝛾2 −  𝛾1 

 

 

 

 

 

(4) 

2.3.3. Macleod’s estimator 

The estimator calculates an offset value by forming a three-

coefficient vector with phase verification and utilizes it in the 

verification term: 

𝑅 = 𝑅𝑒[ (𝑋𝑘−1. 𝑋𝑘
∗)  (𝑋𝑘 . 𝑋𝑘

∗)   (𝑋𝑘+1. 𝑋𝑘
∗)]  

 

 

 

(5) 

𝛾 =  
𝑅(1) − 𝑅(3)

2𝑅(2) + 𝑅(1) + 𝑅(3)
 

 

𝛿 = ((√1 + 8𝛾2) − 1) /4𝛾 

 

2.3.4.Candan’s estimator 

The estimator is an improvement upon the Jacobsen’s quadratic 

interpolation estimation. Quadratic estimator takes two DFT  

 

Figure 2. Pure sinusoidal signal and the waveform of the signal in (6) 
with harmonics and interharmonics in one DFT window period 

points around the spectral point that has maximum amplitude 

and calculates the verification term with quadratic interpolation: 

 

𝛿 =  𝑅𝑒 [
(𝑋𝑘−1  −  𝑋𝑘+1)

(2𝑋𝑘  −  𝑋𝑘−1 − 𝑋𝑘+1)
] 

 

(6) 

 

Candan’s estimator calculates two bias correction factors upon 

the quadratic estimate: 

𝛿𝐶 =  𝛿.
tan 𝜋/𝑁

𝜋/𝑁
 

 

(7) 

 

𝛿′𝐶 =  
tan−1( 𝛿𝐶 . 𝜋/𝑁)

𝜋/𝑁
 

 

  

(8) 

2.4. Assessment criteria and the method 

In order to choose the optimum frequency estimator in the case 

of system frequency deviations and different noise conditions, 

we evaluate the aforementioned estimators based on their 

accuracy, estimator’s bias and variance and computation time. 

The bias and variance of any estimator are given as 

𝐵𝑖𝑎𝑠(𝜔) =  ℰ(𝜔) − 𝜔 (9) 

and 

𝑉𝑎𝑟(𝜔) =  ℰ[(𝜔 −  𝐵𝑖𝑎𝑠(𝜔))2] (10) 
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respectively, where 𝓔(𝝎) is the expectation operator (true 

nominal frequency) and 𝝎 is the estimated frequency. The 

flowchart of the method followed in this work is given Fig. 3. 

 

Figure 3. The flowchart of the method 

3. Results and Discussion 

3.1. The assessment of accuracy and robustness 

A synthesized power signal is used in the assessment of the 

accuracy and robustness of the estimation methods [19]. The 

signal is composed of the third and fifth harmonics, together  

 
Figure 4. Deviations in the fundamental frequency predicted by 
estimators when system frequency varies in a noiseless environment 

 

Table 1. Average bias and variances of the estimation methods in a 
noise-free environment 

Estimation method Bias Variance 

Quin1  0.0433 0.0474 

Candan -0.0014 0.0061 

Quin2  0.0079 0.0118 

Macleod 0.0049 0.0086 
 

with the signal fundamental component and an interharmonic 

which is an integer-multiple of the frequency resolution and 

another interharmonic which is a rational-multiple of the 

frequency resolution:  

𝑣(𝑡) = sin(2𝜋𝑓0𝑡) + 0.35sin(2𝜋3𝑓0𝑡)    +
 0.2sin(2𝜋5𝑓0𝑡) +  0.15 sin(2𝜋65𝑡) +  0.1 sin(2𝜋83𝑡)  

(11) 

 

Here, the odd harmonics represent the ideal symmetrical 

waveform, while interharmonics represent contamination in the 

power line. The waveform and amplitude spectrum of the signal 

in the time domain is shown in Fig. 2. 

Fig. 4 shows the deviations in the fundamental frequency 

value that the Quin1, Quin2, Candan and Macleod frequency 

estimators estimate when the system frequency shifts from 50 

Hz to 49.5 Hz and 50.5 Hz (1%). In such a case, the Quin1 

estimator has the highest deviation and hence the lowest 

performance. In cases where the system frequency decreases 

below the nominal system frequency of 50 Hz, the best estimator 

performance is obtained by the Macleod estimator. In cases 

where the system frequency exceeds 50 Hz nominal system 

frequency, the best estimator performance is obtained by the 

Candan estimator.  

Tab. 1 shows the average bias and variance values of the 

estimation methods in a noiseless environment. When the results 

are examined, it is observed that the estimator with the lowest 

bias and variance value is the Candan estimator. 

Candan and Macleod estimators that perform best in noiseless 

environment are examined in varying noise from 20 dB to 0 dB 

SNR. The tests were repeated 10000 times to reflect the varying 

noise statistics as much as possible for such environment. The 

average bias and variance results of these estimators are given in  
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Figure 7. Time-varying frequency characteristic of the EAF field 

signal 

 
Table 2. Average bias and variance values of Candan And Macleod 

estimation methods in case of noise  

Noise 0 dB 10 dB 20 dB 
Estimation 

method 
Bias Variance Bias Variance Bias Variance 

Candan -0.0016 0.1597 -0.0015 0.0503 -0.0014 0.0160 

Macleod 0.0048 0.1571 0.0048 0.0500 0.0050 0.0167 
 

 

 
Figure 5. Deviations in the fundamental frequency predicted by the 
Candan and Macleod estimators when the system frequency varies in 
case of maximum noise (0 dB) 

 

 
Figure 6.  The ghost frequency components seen at the system 
frequency of  f = 50.5 Hz and the correction of the spectrum after 
determining the frequency deviation 
 

 

Tab. 2. If the results in the table are analyzed, although the 

average variances of both estimators are almost equal, it is 

observed that the bias values of the Candan  estimator are 

considerably lower than that of the Macleod estimator and this 

reveals that it is more robust against noise.  

The performance of the corresponding estimators in 0 dB SNR 

noise condition (maximum noise) is shown in Fig.5. It is notable 

that still Macleod estimator estimates the frequency more 

accurately below 50 Hz. 

Table 3. Average computation times of the estimation methods in 
one DFT period 

Estimation Method Average computation time in 

one DFT period (μs) 

Candan 72.009 

Quin1 127.835 

Quin2 68.308 

Macleod 60.098 
 

In the case the system frequency is 50 Hz, N = 640 samples are 

ideally taken with a 200 ms window with a sampling rate of Fs = 

3.2 kHz. In cases where the system frequency deviates from its 

nominal value, a new N value should be calculated. Here, the 

original and corrected spectra with the frequency predicted for 

the frequency of f = 50.5 Hz, where the variance is maximum 

(worst case), are given in Fig. 6. As it can be seen, the ghost 

frequencies formed around the harmonics are removed except 

for the frequency band wherein the interharmonics are located. 

3.2. The assessment of computational efficiency 

 In the assessment of the computational efficiency of the 

estimation methods, field data which has a time varying 

fundamental frequency characteristic obtained from electric arc 

furnace (EAF) plant is employed [13].  

Field signal is reconstructed by using a 200 ms DFT window 

with a sampling frequency Fs = 3.2 KHz as proposed by IEC 

standard [18]. The fundamental frequency characteristic of the 

signal is given in Fig. 7. The computation times of the estimators 

are calculated againt varying frequency in the MATLAB R2018b 

environment with the Intel Core i5 based 8 GB RAM computer 

and the average computation times are presented in Tab. 3. As it 

can be seen from the table, the estimator with the lowest average 

computation time is the Macleod estimator. Macleod estimator is 

approximately 12 μs faster than Candan estimator in computing 

the system’s fundamental frequency per one DFT period, which 

is a desired property for real-time power systems.  

4. Conclusions 

In this study, in order to minimize the side effects of 

frequency components called fake or ghost components that 

occur in the spectrum in the cases of system frequency 
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deviations, it is aimed to choose the optimum frequency 

estimator. It has been found that in noiseless situations 

Macleod’s estimator has the lowest frequency estimation 

deviation below the nominal system frequency whereas 

Candan’s estimator has the lowest above of the nominal system 

frequency. In noisy conditions, the  estimator with the lowest 

bias value was found to be the Candan’s estimator which reveals 

its robustness over Macleod’s estimator. But, it is also 

remarkable that Macleod’s frequency deviation is lower than 

Candan’s and still performs better than Candan’s estimator 

below the nominal system frequency. When the computation 

times of the estimators were examined, it is seen that Macleod 

estimator have the lowest computation time. When both 

accuracy, robustness and calculation times are assessed, it is 

concluded that Macleod estimator can be regarded as the most 

suitable estimator for real-time monitoring. 
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