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Abstract 

In this study, the Deep Deterministic Policy Gradient (DDPG) algorithm, which consists of a combination of artificial neural networks 

and reinforcement learning, was applied to the Vertical Takeoff and Landing (VTOL) system model in order to control the pitch angle. 

This algorithm was selected because conventional control algorithms such as Proportional-Integral-Derivative (PID) controllers which 

cannot always generate a suitable control signal eliminating the disturbance and unwanted environment effects on the considered 

system. In order to control the system, training was carried out for a sinusoidal reference in the mathematical model of the VTOL 

system in the Simulink environment, through the DDPG algorithm with continuous action space from deep reinforcement learning 

methods that can produce control action values that take the structure that can maximize the reward according to a determined reward 

function for the purpose of control and the generalization ability of artificial neural networks. For sinusoidal reference and a constant 

reference, tracking error performances obtained for the pitch angle, which is the output for the specified VTOL system, were 

compared with the conventional PID controller performance in terms of mean square error, integral square error, integral absolute 

error, percentage overshoot and settling time. The obtained results are presented via the simulations studies. 

Keywords: Reinforcement Learning, DDPG, PID, VTOL.  

Dikey Kalkış ve İniş Sistemi Modeli için Derin Pekiştirmeli Öğrenme 

Tabanlı Kontrolör Tasarımı  

Öz 

Bu çalışmada, yapay sinir ağları ve pekiştirmeli öğrenmenin birleşiminden oluşan Deep Deterministic Policy Gradient (DDPG) derin 

pekiştirme öğrenme algoritması Dikey Kalkış ve İniş (VTOL) sistemi modeline yunuslama (pitch) açısını kontrol edebilme amacıyla 

uygulanmıştır. Bu algoritma, Oransal-İntegral-Türevsel (PID) kontrolör gibi geleneksel kontrol algoritmaları için en uygun kontrolör 

katsayıları bulunsa dahi kontrol edilecek sistem üzerindeki bozucu etki ve istenmeyen ortam etkilerini elimine edebilecek kontrol 

sinyali üretememelerinden dolayı seçilmiştir. Belirtilen bu problemi çözebilmek için kontrol amacına yönelik belirlenen bir ödül 

fonksiyonuna göre ödülü maksimize edebilecek yapısı ve yapay sinir ağlarının genelleştirme yeteneğini arkasına alan kontrol aksiyon 

değerleri üretebilen derin pekiştirmeli öğrenme yöntemlerinden sürekli eylem uzayına sahip DDPG algoritmasının, Simulink 

ortamında VTOL sisteminin matematiksel modelinde sinüzoidal bir referans için eğitimi gerçekleştirilmiştir. Belirtilen VTOL sistemi 

için çıkış olan yunuslama açısının, DDPG algoritması için sinusoidal ve sabit referans için elde edilen izleme başarımları, geleneksel 

PID kontrolör algoritmasının izleme başarımları ile ortalama kare hatası, integral kare hatası, integral mutlak hatası, yüzde aşım ve 

oturma zamanı cinsinden karşılaştırılmıştır ve edinilen sonuçlar simülasyon çalışmaları ile sunulmuştur.  
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1. Introduction 

Deep reinforcement learning (DRL) based algorithms are 

commonly used methods in the field of controller system design 

due to their generalization ability, and performance against the 

possible disturbance effects (Lillicrap et al., 2015). DRL based 

controller design has a significant role on flow, speed, 

temperature, position, and process control applications (Rabault 

et al., 2019; Chen et al., 2018; Brandi et al., 2020; Satheeshbabu 

et al., 2019; Spielberg et al., 2017). The DRL algorithms 

consider the environment and agent action pairs to compute a 

control signal which maximize a pre-determined reward function 

over a policy (Sutton and Barto, 2018; Buşoniu et al., 2018). For 

the reinforcement learning based controllers, a Q learning based 

adaptive method, which considers model states, is employed to 

compute optimal Proportional-Integral-Derivative (PID) 

controller gains for a nonlinear cart-pole plant (Shi et al., 2018). 

Rahman et al. employed both Q learning and deep Q learning 

(DQN) based controller methods to control a self-balancing 

robot model, compared the results considering the reference 

trackings, and evaluated the reward scaling factor selection 

effects on cumulative reward (Rahman et al., 2018). Markov 

decision process (MDP) based Fitted Value Iteration (FVI) 

controller method, which considers quadratic state terms, is 

employed for an altitude control process of unmanned aerial 

vehicles (UAVs) (Bou-Ammar et al., 2010). Qin et al. 

experimented with the reverse pendulum system by determining 

the constant parameters of conventional control methods such as 

PID through the DDPG-based reinforced learning algorithm 

(Qin et al., 2018). Hu et al. have designed DDPG-based 

controller to control its pressure of Variable Geometry 

turbocharger system and compared the performances of the 

conventional PID controller and the designed controller (Hu et 

al., 2019). Hossny et al. compared the performance of the 

proposed method using a parameterized tanh activation function 

instead of the normal tanh activation function in the artificial 

neural network to the performance of the unparameterized tanh 

activation function on DDPG algorithm in bipedal walk, lunar 

lander and reverse pendulum problems by testing (Hossny et al., 

2020). Parvaresh et al. proposed a controller to control the pitch 

angle of the variable-speed wind turbine by using a DDPG based 

nonlinear integral backstepping algorithm and tested the 

controller on the different scenarios (Parvaresh et al., 2020). 

In the study, Deep Deterministic Policy Gradient (DDPG) 

controller algorithm is employed for tracking control of the 

vertical take-off and landing (VTOL) system model pitch angle. 

The system model is implemented on MATLAB/Simulink 

environment. DDPG-based controller parameters and working 

conditions are determined for the simulation process. DDPG 

agent is trained in each randomly initialized episode for a 

sinusoidal reference signal. Control process is repeated for 

sinusoidal and constant reference signals. Mean-squared-error 

(MSE), Integral-Squared-Error (ISE), Integral-Absolute-Error 

(IAE) and time measures of transient parts are computed to 

analyze both reference tracking performance and closed-loop 

system dynamics. The conventional PID controller algorithm is 

employed to evaluate the performance of the proposed DDPG 

based controller algorithm.  

The rest of the article is as follows: In the Section 2, the 

mathematical background of the model of the VTOL system, 

model parameters and the DDPG algorithm are explained. 

Section 3 presents the implementation conditions, 

hyperparameter selection, and simulation scenario details. 

Herein, performance evaluation metrics of the simulations are 

explained, and simulation results for both PID and proposed 

method-based controller system are presented. Conclusions and 

possible future directions of the study are given in Section 4.  

2. Material and Method 

In this part of the study, the mathematical model and 

parameters of the VTOL system and control algorithm are 

explained. 

2.1. VTOL System Model 

The VTOL mechanism shown as a free body diagram in Fig. 

1 is a useful tool used to show the basics of aircraft such as 

quadcopters, helicopters and rockets. Flight dynamics can be 

examined using it and vertical take off and landing control can 

be provided. The VTOL system consists of a weight that can be 

relocated and a dc motor fan that can change speed (Junejo et al., 

2020; Quanser, 2011). The transfer function of the VTOL system 

is shown in Eq.1. 

𝑌(𝑠)

𝑈(𝑠)
=  

3.11

𝑠2 + 0.576𝑠 + 10.7
 

(1) 

where Y(s) refers to the Θ angle variable which is the output 

of the system and U(s) refers to the voltage variable that is the 

input of the system. The parameters, values, and units 

considered in the extraction of the transfer function of the VTOL 

system are shown in Table 1 (Quanser, 2011). 

 

Fig. 1. The Free Body Diagram of the VTOL System 
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Table 1. The VTOL System Parameters 

Parameter  Symbol Value Unit 

Equilibrium Current  Ieq 1.0 𝐴 

Torque-thrust Constant  Kt 0.0226 (𝑁𝑚)/𝐴 

Moment of Inertia  J 0.0035 𝑘𝑔𝑚2 

Viscous Damping  B 0.002 (𝑁𝑚𝑠)/𝑟𝑎𝑑 

Natural Frequency  ωn 2.52 𝑟𝑎𝑑 

Stiffness  K 0.022 (𝑁𝑚)/𝑟𝑎𝑑 

Measured Torque-thrust Constant  Ktid 0.01 (𝑁𝑚)/𝐴 

Measured Viscous Damping  Bid 0.006 (𝑁𝑚𝑠)/𝑟𝑎𝑑 

Measured Stiffness  Kid 0.015 (𝑁𝑚)/𝑟𝑎𝑑 

Length of the setup  Lh 0.3 𝑚 

 

2.2. Deep Deterministic Policy Gradient 

DDPG is a model-free, off-policy, actor-critic type deep 

reinforcement learning algorithm (Lillicrap et al., 2015). Model-

free structure directly provides to use experiences which are 

obtained in an environment 𝜀 without needing to find estimates 

of them while off-policy nature means that estimate of optimal 

policy is different from behavior policy which is used to choose 

actions. Actor-critic type can be considered as value-based and 

policy-based, so this type of algorithm uses both a value function 

and a policy function. DDPG algorithm includes 4 network 

which are 𝑄(𝑠, 𝑎|𝜃𝑄) function as a network (critic), 𝜇(𝑠|𝜃𝜇) is a 

deterministic policy function (actor) which denotes current 

policy and it directly provides a mapping from observations to 

action, 𝑄′ is target 𝑄 network and 𝜇′ is target 𝜇 network shown 

in Fig. 3. Considering the Eq. 2, 𝑄(𝑠′, 𝑎′) is dependent to 𝑄 

function while 𝑄 is being updated according to Eq. 2 (Bellman 

equation)  

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼(𝑅(𝑠, 𝑎)  +  𝛾 max
 

𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎)) 

(2) 

 

so, this will make divergence problem, where, 𝑄𝑛𝑒𝑤(𝑠, 𝑎) is 

new 𝑄 function, 𝑄(𝑠, 𝑎) is the current 𝑄 function, max
 

𝑄(𝑠′, 𝑎′) 

is the maximum expected future reward, 𝑅(𝑠, 𝑎) is the reward 

which is taken after applying to action in state 𝑠, 𝛼 is the 

learning rate, 𝛾 is the discount rate. This problem is solved by 

using target networks which are delayed copies of actual 

networks in terms of time. Algorithm is given as follows: critic 

𝑄(𝑠, 𝑎|𝜃𝑄) network with weights 𝜃𝑄, actor 𝜇(𝑠|𝜃𝜇) network 

with weights 𝜃𝜇 are initialized. Then, target networks 𝑄′ and 𝜇′ 
are initialized with same weights in their actual counterparts. 

This target 𝑄′ and 𝜇′ networks are related to training stability. 

Their predicted values are used in the Bellman equation instead 

of 𝑄(𝑠′, 𝑎′) to train (update) main Q network (value function). 

As a technique known experience replay is constructed as 

experiences 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) tuple at a time 𝑡 step where 𝑠𝑡 

are observations (states) at time 𝑡, 𝑎𝑡 is action at time 𝑡, 𝑟𝑡 is 

reward at time 𝑡, 𝑠𝑡+1 are observations at time 𝑡 + 1 are stored in 

𝑅 = 𝑒1, 𝑒2, … , 𝑒𝑁 dataset which is known as replay memory. 

Replay memory (𝑅) and capacity 𝑁 of replay memory are 

initialized. In each episode, a random process Ν is initialized for 

exploration purpose so unlike discrete action space (algorithms  

 

 

in discrete action space realize exploration using Boltzman 

distribution or epsilon-greedy algorithm), exploration is 

provided to adding a noise (Ν) to policy function 𝜇(𝑠|𝜃𝜇) for 

continuous action space. Generally, random process Ν is 

Ornstein-Uhlenbeck Process. After initializing random process 

Ν, initial observations are obtained. For each time step t, action 

at 𝑡 is selected according to 𝑎𝑡 = 𝜇(𝑠|𝜃𝜇) + Ν. Then, action is 

applied to environment in 𝑠𝑡, observations 𝑠𝑡+1, and reward 𝑟𝑡 

are obtained. Then, experience 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is stored in 

replay memory 𝑅. Next, a random mini batch is extracted from R 

(so data correlations are reduced) and size of this random mini 

batch 𝑀 is defined by user. For every 𝑖th experience in 

minibatch, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝑢′
)|𝜃𝑄′

) is 

calculated, loss function  𝐿 =
1

𝑀
∑ (𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖)|𝜃𝑄)𝑀

𝑖=1

2
 

is minimized with respect to 𝜃𝑄 parameters and 𝑄(𝑠, 𝑎|𝜃𝑄) is 

updated. Then, ∇𝜃𝜇𝐽 ≈
1

𝑀
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠 = 𝑠𝑖 , 𝑎 =𝑀

𝑖=1

𝜇(𝑠𝑖)∇𝜃𝜇 𝜇(𝑠|𝜃𝜇)|𝑠𝑖 sampled policy gradient is used for 

updating the policy 𝜇(𝑠|𝜃𝜇). Main networks parameters 𝜃𝑄, 𝜃𝜇 

and target networks parameters 𝜃𝑄′
and 𝜃𝜇′

 are synchronized 

(equality of parameters of both network) for every 𝐶 steps 

(periodically) which is a parameter defined by user or target 

network parameters can be updated using one of another target 

update methods (Lillicrap et al., 2015; Sutton and Barto, 2018). 

When the reinforcement learning algorithm is implemented in 

control systems, a policy, and an environment corresponds the 

controller, all things excluding the controller, respectively (Fig. 

2). Observation(s), action, reward denote measured variable(s) 

(system states, output tracking error), control signal, a function 

which is for control purpose(s) (tracking error dependent 

function).  

 

Fig. 2. The reinforcement learning controller structure for a 

system in an environment 
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3. Results and Discussion  

The DDPG as control algorithm was implemented at 

MATLAB/Simulink simulation software environment by using 

the Reinforcement Learning Toolbox and The Deep Learning 

Toolbox. The controller algorithms and mathematical model of 

VTOL system are run with personel computer having Intel Core 

i7-8750 CPU 2.2GHz microprocessor, GeForce RTX 2070 as 

GPU, 32 GB of RAM, and Windows 10 operating system.  

The observations for DDPG were selected as tracking error 

of VTOL’s pitch angle, time derivative of pitch angle and the 

reward function was determined as 𝑟(𝑡) = −10𝑒2(𝑡), where 

𝑒(𝑡) is tracking error of pitch angle so best possible reward is 0 

according to reward function. Continuous action space was 

chosen as interval [-6, 6]. Critic network and actor network 

structures were created as in Fig.3. The determined hyper 

parameters of the DDPG based control algorithm are given in 

the Table 2. 

 

 

(a) 

 

 

 

(b) 

Fig. 3. The critic network structure 𝑄(𝑠, 𝑎)  (a) and actor 

network structure 𝜇(𝑠) (b) 

 

 

 

 

 

Table 2. The Hyper Parameters of the DDPG algorithm 

Hyper Parameters  
Value of Hyper 

Parameters 

Learning rate (for the critic 

network 𝑄(𝑠, 𝑎|𝜃𝑄)) 
1e-3 

Learning rate (for the actor 

network 𝜇(𝑠|𝜃𝜇)) 
1e-04 

Gradient threshold 1 

DDPG Agent sample time in 

terms of seconds 
0.01 

Experience buffer length (N) 1e6 

Discount factor (𝛾) 0.99 

Mini batch size (𝑀) 128 

Training device 
Geforce RTX 2070 as 

gpu 

 

14 hours after training of DDPG algorithm for sinusoidal 

reference 0.2𝑠𝑖𝑛(2𝜋) was started, the most suitable agent for the 

control purpose has been observed in the end of 701st episode 

which has a reward -11. For this reinforcement agent, the 10 

seconds responses of the sinusoidal and constant signals for the 

desired pitch angle of the VTOL system by using the PID and 

DDPG based control algorithm were shown in the Fig.4a and 

Fig.4b, respectively. The PID controller parameters are tuned by 

MATLAB PID tuner application as 𝐾𝑝  =  29.599, 𝐾𝑖  = 34.108 

and 𝐾𝑑  =  4.607 (Taşören et al., 2020). According to result of 

sinusoidal signal as a desired output that is shown in Table 3, the 

performance of DDPG based control algorithm is better than the 

PID based control algorithm in terms of MSE, ISE and IAE. 

However, the performance of PID based control algorithm that is 

given in Table 4 is better than the performances of the DDPG 

based control algorithm for constant signal as a desired output in 

terms of MSE and ISE but DDPG constant reference 

performance in terms of settling time according to %2 criterion 

and percentage overshoot are smaller than PID one as given in 

Table 5 (Ogata, 2010). 
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(a) 

     

(b) 

Fig. 4. The Tracking Performance of the PID and DDPG Based 

Controller for Desired Outputs (a) Sinusoidal and (b) Constant 

Reference 

 

Table 3. The results of the control algorithms in terms of MSE, 

ISE and IAE for sinusoidal reference 

 MSE ISE IAE 

DDPG 7.6089 × 10−4 0.008054 0.2451 

PID 0.0014 𝟎. 𝟎𝟏𝟒𝟗𝟑 𝟎. 𝟑𝟒𝟖𝟏 

 

Table 4. The results of the control algorithms in terms of MSE, 

ISE and IAE for constant reference 

 MSE ISE IAE 

DDPG 5.7666 × 10−4 0.003369 0.03137 

PID 4.0157 × 10−4 0.00187 0.03223 

 

Table 5. The results of the control algorithms in terms of settling 

time and overshoot for constant reference 

 Settling Time (s) Overshoot (%) 

DDPG 0.79 11.24 

PID 2.29  21.69 

 

 

4. Conclusions and Recommendations 

In this study, the DDPG based control algorithm is 

implemented to control the pitch angle of the VTOL system 

model through MATLAB/Simulink environment. The DDPG 

based control algorithm are tested for the pitch angle in terms of 

sinusoidal and constant signals as desired outputs. The obtained 

results are compared to the PID based control algorithm whose 

parameters are tuned by Simulink PID tuner application, in 

terms of MSE, ISE, IAE, settling time and percentage overshoot. 

The tracking error performance of DDPG based control 

algorithm for a sinusoidal reference is better than the PID based 

control algorithm in terms of MSE, ISE, IAE. The tracking error 

performance of the DDPG based control algorithm for constant 

reference is not as good as the PID control algorithm in terms of 

all error metrics, but it is better in terms of percentage overshoot 

and settling time than PID control algorithm for constant 

reference response. so DDPG as a controller can be used in fast 

and sensitive systems. In the future studies, the other 

reinforcement-based algorithms that have continuous action 

space can be used to control the VTOL system model. 
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