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Abstract 

A large amount of data is the key requirement in order to train a neural network efficiently. Using a small size training set in network 

training causes low accuracy for model performance over the testing set and also hard to implement the model in practice. Similar to 

many other problems, sperm morphology datasets are also limited for training the neural network-based deep networks in order to 

provide an automatic evaluation of sperm morphometry. Data augmentation mitigates this problem by utilizing actual data more 

effectively. The standard data augmentation techniques focus on only spatial changes over the images and can only produce a 

restricted number of useful informative and disjunctive data. Therefore, in order to create more distinctive and diverse data than the 

regular spatial domain-based augmentation techniques, a deep learning-based data augmentation technique which is known as the 

generative model, is trained in this study for the sperm morphology datasets. The deep convolutional generative adversarial network 

(DCGAN) was optimized and utilized in this study for three well-known sperm morphometry datasets as SMIDS, HuSHeM, and 

SCIAN-Morpho. Each dataset was individually augmented to a 1000 sample size by the proposed approach. In order to optimize the 

network with different parameters and observe the generated data, a graphical user interface has been designed. For the similarity 

evaluation of the generated images to original images, the Fréchet Inception Distance (FID) score was utilized. The FID results 

indicate that the most similar generated images have been obtained for SMIDS with an average of 29.06 FID score. The worst 

performance (Average FID = 53.46) was obtained for the SCIAN-Morpho dataset, which has low resolution and data imbalance 

problems. Lastly, DCGAN based proposed approach resulted in an average of 44.25 FID score for the HuSHeM dataset. 

 

Keywords: Data Augmentation, DCGAN, Deep Learning, Generative Adversarial Networks, Sperm Morphology. 

Sperm Morfolojisi Veri Kümeleri için Veri Artırmada DCGAN’ın 

Uygulanması  

Öz 

Bir sinir ağını verimli bir şekilde eğitmek için büyük miktarda veri temel gereksinimdir. Ağ eğitiminde küçük boyutlu bir eğitim 

kümesinin kullanılması, test kümesinde düşük doğruluklu model performansına neden olur ve modelin pratikte uygulanmasını 

zorlaştırır. Diğer birçok soruna benzer şekilde, sperm morfolojisi veri kümeleri de, sperm morfometrisinin otomatik 
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değerlendirilmesini sağlamak için sinir ağı tabanlı derin ağları eğitmek açısından sınırlıdır. Veri artırma, gerçek verileri daha verimli 

kullanarak bu sorunu azaltır. Standart veri artırma teknikleri, yalnızca görüntüler üzerindeki uzamsal değişikliklere odaklanır ve 

sadece sınırlı sayıda yararlı bilgi sağlayan ve ayrık veri üretebilir. Bu nedenle, standart uzamsal tabanlı veri artırma tekniklerinden 

daha farklı ve çeşitli veriler oluşturmak için, bu çalışmada sperm morfolojisi veri kümeleri adına üretici model olarak bilinen derin 

öğrenme tabanlı bir veri artırma tekniği kullanılmıştır. Bu çalışmada Derin Evrişimli Üretici Çekişmeli Ağ (DCGAN) optimize 

edilmiş ve SMIDS, HuSHeM ve SCIAN-Morpho gibi üç iyi bilinen sperm morfometrisi veri kümeleri kullanılmıştır. Her veri kümesi, 

önerilen yaklaşımla ayrı ayrı 1000 örneklem büyüklüğüne yükseltilmiştir. Ağı farklı parametrelerle optimize etmek ve üretilen verileri 

gözlemlemek için grafiksel bir kullanıcı arayüzü tasarlanmıştır. Üretilen görüntülerin orijinal görüntülere benzerlik değerlendirmesi 

için Fréchet Başlangıç Mesafesi (FID) skoru kullanılmıştır. FID sonuçları, oluşturulan en benzer görüntülerin ortalama 29.06 FID 

puanı ile SMIDS için elde edildiğini göstermektedir. En kötü performans (Ortalama FID = 53.46), düşük çözünürlük ve veri 

dengesizliği sorunları olan SCIAN-Morpho veri kümesi için elde edilmiştir. Son olarak, DCGAN tabanlı önerilen yaklaşım HuSHeM 

veri kümesi için ortalama 44.25 FID puanıyla sonuçlanmıştır. 

 

Anahtar Kelimeler: Veri Artırma, DCGAN, Derin Öğrenme, Üretici Çekişmeli Ağlar, Sperm Morfolojisi. 

 

 

1. Introduction 

In deep learning-based classification approaches, the 

performances largely depend on the amount of data available for 

training. In case of using insufficient data in training causes high 

error rates in the practical usage of the model. Scientific efforts 

such as the classification of various illnesses may not easily be 

carried out due to sufficient data unavailability (Vasconcelos & 

Vasconcelos, 2017). Similarly, one of the medical fields 

suffering from the limited dataset problem is that of sperm 

morphometry. The morphological analysis of sperm shapes 

provides the key information about the male factor in infertility 

problems. However, the data is not abundant due to privacy 

concerns. In the laboratories, morphological analysis has been 

performed by the visual assessment technique by experts who 

carry out manual observations under the microscope without 

storing the images. In this procedure, the results strongly depend 

on the expertise of the observer. Different observers report 

different results, known as the observer variability problem 

(Kapoor, 2021). In order to eliminate the human factor and 

develop a computer-based analyzing approach for the 

determination of the sperm shapes with more objective and 

consistent results, the analyzing system should be fed with a lot 

of labeled images in the training phase. Therefore, the data 

augmentation techniques are a vital preprocessing step in this 

field. 

In the data augmentation techniques, the main idea is to 

create synthetic images from the existing datasets via spatial 

domain image processing or deep learning methods. In this 

study, we aim to train one of the recently growing fields of deep 

learning models, namely adversarial networks, for data 

augmentation. By combining the number of input domains using 

Generative Adversarial Networks (GAN) (Goodfellow et al., 

2014), new data is generated; thereby, a comprehensive dataset 

is created. The proposed deep learning-based augmentation 

approach has been individually utilized over three well-known 

publicly available sperm morphology datasets to increase the 

sample sizes by generating new images. Additionally, a 

graphical user interface (GUI) was designed to easily optimize 

the network and demonstrate the generated images. The 

proposed GAN-based approach provides a solution, especially 

for the medical field where the data is scarce due to privacy and 

ethical concerns. 

 

 

2. Related Works 

The performance of machine learning applications, such as 

the classification of images, is directly related to the amount of 

data (Vasconcelos & Vasconcelos, 2017). On the other hand, 

finding sufficient and reliable datasets are the most challenging 

phase. Therefore, developing synthetic data augmentation 

techniques in image classification tasks is very popular due to 

eliminating this bottleneck. Data augmentation methods can be 

defined as the data generation techniques by performing spatial 

image manipulation operations or deep learning-based methods. 

The generated data should be informative and also distinctive 

from the original image. Rotating, shifting, cropping, fading, 

frequency masking, scaling, etc., are several examples utilized in 

spatial-based image manipulation operations. These techniques 

provide to increase the number of training images, but the 

generated images are not so much different than original images. 

Therefore, the training process of networks may not be enriched 

in some applications. Using deep learning-based data 

augmentation techniques, the generated images are more 

informative and different from original images, providing a more 

enhanced training process. However, the fine-tuning procedure 

of the generative networks is the critical step that should be set 

carefully.  

In literature, several studies were conducted to investigate 

the effects of spatial data augmentation techniques in the 

classification of sperm morphology datasets (Ilhan et al., 2020; 

Tortumlu & Ilhan, 2020; Yüzkat et al., 2020). Ilhan et al. 

performed the spatial augmentation techniques on the SMIDS 

dataset in order to increase the classification performance of 

three deep networks. Augmentation provided 1.4%, 3%, and 

3.3% increments for VGG19, Inception, and Mobile Net, 

respectively. However, they also reported that excessive training 

times were observed in the training of networks due to the data 

generation step. Additionally, some networks have resulted in 

lower accuracy after a point of augmentation scale because of 

feeding the almost similar images to networks. This is the 

limitation of the spatial-based augmentation techniques, which 

causes the non-informative training phase, as demonstrated in 

(Yüzkat et al., 2020). In another study, the effects of spatial 

augmentation techniques have been explored for mobile-based 

networks (Tortumlu & Ilhan, 2020). They tested over three 

sperm morphology datasets and reported that the augmentation 

approach increased the performance for all datasets. Lastly, 

Yuzkat et al. focused on the performance increment for the most 

challenging sperm morphology dataset, SCIAN-Morpho. They 

tested multiple networks with several parameters and 

augmentation scales. Eventually, they indicated that the 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  309 

augmentation is also effective over the low-resolution image sets 

as well. 

As deep learning-based data augmentation techniques 

evaluate, GANs are the most implemented techniques in recent 

years (Goodfellow et al., 2014). GANs have many different 

versions but are commonly designed based on deep 

convolutional networks in two ways: discriminator and 

generator (Barışkan et al., 2020; Radford et al., 2016). 

Progressive growth of GANs (Karras et al., 2018) uses a 

pathway that is gradually enlarged by increasing the number of 

layers in both generator and discriminator networks. With the 

flexibility of GAN networks, higher frequency details are added 

to the image created in the energy-based GAN model (Zhao et 

al., 2017) to produce effective results. In literature, GAN-based 

networks were implemented in different medical image datasets 

but not tested over Sperm Morphometry. Rubin et al. used GAN 

with the transfer learning idea in the label-free live cell dataset 

(Rubin et al., 2018). The utilized dataset also has a small size 

training set, resulting in low accuracy for transfer learning. They 

performed GAN architecture to generate more synthetic live-cell 

images to fed the networks. In another study of Rubin et al., they 

proposed a novel GAN architecture, namely TOP-GAN 

(transferring of pre-trained generative adversarial network). 

They also utilized TOP-GAN for the augmentation of a small-

size cancer image dataset. They achieved an average of 95% 

accuracies for a small-size cancer dataset by the TOP-GAN 

model (Rubin et al., 2019).  

GAN models are also used in different fields. More recently, 

in the style-based architecture (Karras et al., 2019), instead of 

feeding the data used as input directly to the generator, this input 

is first transformed into a hidden space and used to measure and 

slide the standardized image characteristic output calculated 

from convolutional layers. Apart from data augmentation 

techniques, GAN networks are also applied for some complex 

tasks. For instance, the recently mentioned GAN model (Mirza 

& Osindero, 2014) can be used for modeling the special 

movement of patient distribution bottomed on before surgery of 

image, re-colorization of endoscopic video data, and 

highlighting regions most affected by a disease. Another task as 

style transfer is a useful image synthesis technique that can re-

process the given image to another artistic style while preserving 

the image of the content. GANs are a widely adopted framework 

for this task because of their better representation of local style 

patterns than traditional Gram-matrix-based methods. Most of 

the previous methods are based on pre-assembled style images to 

train the model. A new Patch Permutation GAN (P2-GAN) 

network (Zheng & Liu, 2020) can effectively learn the contour 

style from a single style image and is used to create multiple 

training examples. A patch separator is designed, which can 

seamlessly process patch-based and natural images at the same 

time. In addition, a local texture descriptor-based criterion is 

proposed to evaluate style transfer quality quantitatively. 

Experimental results show that this method (Zheng & Liu, 2020) 

produces a higher quality image than a single style image with 

improved computational efficiency compared to many modern 

techniques. GAN networks are also utilized for the improvement 

of image resolution (Ledig et al., 2017; Yeh et al., 2017; Zhang 

et al., 2017). 

In this study, DCGAN that is one of the GAN based 

architecture has been implemented to generate sperm patch 

images in order to augment data of small training sets. The 

performance metrics show that the created new images are 

similar to original images but consist of additional information 

different than the images generated by the regular spatial data 

augmentation techniques. 

3. Materials and Methods  

3.1. Dataset Information 

The aim of the study is to create large sperm morphology 

datasets for different sperm morphology image sets. In this 

regard, three well-known publicly available datasets, namely 

SMIDS, HuSHeM, and SCIAN-Morpho, are utilized for training 

and testing of generative models. For datasets containing a very 

low amount of images, we use standard spatial-based data 

augmentation techniques, increasing the count of images to the 

required level for training of GANs. The number of original 

images contained in each dataset is shown in Table 1. The train 

and test partitions of the datasets are divided using the cross-fold 

format. 

  

 

Table 1. Class names and sample sizes in the utilized datasets 

SMIDS HuSHeM SCIAN-Morpho 

Labels # of images Labels # of images Labels # of images 

Normal 1021 Normal 54 Normal 100 

Abnormal 1005 Tapered 53 Tapered 228 

Non-Sperm 974 Pyriform 57 Pyriform 76 

  Amorphous 52 Small 72 

    Amorphous 656 

Total 3000 Total 216 Total 1132 
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SMIDS was obtained from the Medical Faculty of Istanbul 

University. A smartphone-based data acquisition approach was 

used in the collecting of the semen samples. This novel data 

acquisition approach has been introduced in (Ilhan & Aydin, 

2018) and validated over the motile sperm and concentration 

analysis. Totally 3000 segmented patches have been manually 

labeled as normal (1021), abnormal (1005), and non-sperm (974) 

patches by an expert. HuSHeM data set was created from semen 

samples of 15 patients in Isfahan Fertility and Infertility Center. 

It has four sub-classes which are normal, tapered, pyriform, and 

amorphous (Shaker et al., 2017). The images in the dataset are 

almost equally distributed into classes (around 50 samplers per 

class) but not enough to train for a deep network. Lastly, The 

SCIAN-Morpho consists of manually cropped and rotated 

human semen samples taken from the University of Chile, 

Faculty of Medicine Spermiogram Laboratory Anatomy and 

Developmental Biology Program (Chang et al., 2017). The 

images were collected in a very small size of resolution, 35×35, 

gray-scale color space, and having imbalanced distribution per 

class. Therefore, the SCIAN-Morpho dataset is known as the 

most challenging dataset in this field. The effective data 

augmentation technique would provide a significant increment in 

the classification. 

3.2. Methodology  

In the proposed study, The Deep Convolutional Generative 

Adversarial Network (DCGAN) has been implemented for 

sperm morphology image augmentation. DCGAN is one of the 

widely improved GAN structures used in the data augmentation 

steps for many other studies in the literature (Karras et al., 2019; 

Rubin et al., 2019). It uses the convolutional neural layers for 

both the generator and discriminator models. The training for 

this type of GAN results in more stable and accurate outcomes. 

This structure is used in combination with convolutional neural 

networks (CNNs) and GAN networks. In the structure of the 

model in this study, unlike other adversarial neural networks, 

convolutional networks are used that replace deterministic 

pooling functions such as max-pooling with long convolutions. 

This model that directly connects the largest convolutional 

layers of both generator and the discriminator pattern in the 

fundamental construction of the GAN model has shown 

encouraging outcomes in the latest studies. While other GAN 

models have used the single momentum to accelerate training, 

DCGAN uses Adam optimizer with tuned hyperparameters to 

achieve stable training results. 

Three aforementioned datasets are sourced into the DCGAN 

architecture. For each dataset, the DCGANs were adequately 

trained by using different parameter determination and 

optimization settings. Then, 1000 images per class are generated 

after the training phase. The overall flow of the presented 

approach is depicted in Figure 1. The initial parameters, which 

are experimentally decided for the best performance, are given 

in Table 2. 

 

 

Figure 1. The flowchart of the presented approach  

The activation functions in machine learning are in charge 

of processing the total input values from the node to the output. 

In other words, the activation determines whether the 

representations from the input domain are available in the 

different places of the forward path. As in real-life practices, 

these relationships require non-linear operations, some special 

mathematical functions, such as ReLU activation, are used. The 

following activation functions are the crucial parameters 

arranged in DCGAN in the proposed data augmentation 

approach. 

 

 

1) Rectified Linear Unit: ReLU causes the model to learn 

more quickly during the training. ReLU has grown to be the 

default activation feature for many neural networks, especially 

CNN, since it is an activation function that simplifies the 

training procedure. 

2) Leaky ReLU: Leaky ReLU is an activation function that 

fixes the "dying ReLU" problem. This problem arises when the 

neurons, linked to this function, always output 0 as the negative 

inputs cause. 
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Table 2. Parameter determination of DCGAN for each utilized sperm morphology dataset 

SMIDS HuSHeM SCIAN-Morpho 

Parameters Equivalent Parameters Equivalent Parameters Equivalent 

Noise size 128 Noise size 128 Noise size 128 

Learning rate for D 0.001 Learning rate for D 0.00004 Learning rate for D 0.00004 

Learning rate for G 0.001 Learning rate for G 0.00004 Learning rate for G 0.00004 

Batch size 64 Batch size 64 Batch size 64 

Epochs 2,000 Epochs 2,500 Epochs 2,000 

Beta1 0.9 Beta1 0.9 Beta1 0.9 

Weights 0.002 Weights 0.002 Weights 0.002 

Epsilon 1e-08 Epsilon 0.005 Epsilon 0.005 

 

3.3. Performance Metric  

The performance of the DCGAN based data augmentation 

technique, especially for the sperm morphological datasets, has 

been measured using Fréchet Inception Distance (FID) score. 

The formula of FID is given in Equation 1. FID is an objective 

metric that calculates the distance between feature vectors of 

original and generated (artificial) images. This metric is also 

involved in the utilization of the InceptionV3 model; deep 

learning neural network for image classifications. A low FID 

value indicates that the two image datasets are similar and 

having more similar close statistics. 

          𝑑2((𝑚, 𝐶), (𝑚𝑤 , 𝐶𝑤)) = 

||𝑚 −𝑚𝑤||2
2
+ 𝑇𝑟(𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)

1/2) 

 

(1) 

FID value is expressed as d2, where m and mw represent the 

average of real and generated images in terms of their properties. 

C and Cw are the covariance matrix for real and generated 

feature vectors called sigma. Tr corresponds to the trace linear 

algebra operation. 

3.4. Application  

The development environment of this study was 

implemented in Python programming language (Python 3.6) 

using Keras library within TensorFlow. Since speed and 

efficiency are important factors, PyCharm Community 

application development environments provided by Google 

Colab and JetBrains were mainly used. The GUI for the bulk 

image generation using the backend framework of the overall 

neural network structure was designed as shown in Figure 2. It 

was preferred to use the system interface with the Tkinter tool 

that comes with the Python programming language on the front 

side. 

 

 

Figure 2: GUI of the application 
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The main idea of developing a GUI is to ease the process of 

fine-tuning for DCGAN. Users can easily arrange the parameters 

by using the GUI and start the training process. Additionally, 

GUI has been designed, dataset independent. Therefore, GUI can 

be used for any dataset to be augmented, not just for Sperm 

Morphology Datasets. The application is open source and freely 

downloadable from (Balayev et al., 2020). 

4. Experimental Results 

In the experimental phase of our research, different 

scenarios and parameter values have been tested to ensure a 

completely realistic synthetic version of images. We have the 

generated images as all the features from the original input 

domain. It was seen that values of the most appropriate results 

during the trials changed according to the size and characteristics 

of the applied datasets. In every machine learning system, 

statistical information about the success of the system is required 

by using different methods on the available data in order to 

measure the success of the installed system, thereby obtaining 

information about the accuracy and consistency. While the 

evaluations of the images were created at the initial stages, the 

testing was primarily conducted via human visual perception. 

Then fine-tuning is achieved according to the FID score metrics. 

Early trials of the images were conducted on the SMIDS 

dataset with the default parameter values taken from the original 

paper of the DCGAN model (Radford et al., 2016). However, 

these parameters did not perform promisingly for the HuSHeM 

and SCIAN-Morpho types of sperm datasets as the high learning 

rate caused the mode collapse problem, frequently observed on 

adversarial networks. We observed that, while the constant low 

learning rate of the networks used in training increased the 

overall quality of images by making the training more stable, it 

significantly reduces the time of the training process. We 

assigned learning rates for HuSHeM and SCIAN-Morpho 

datasets by logarithmically increasing and decreasing fashion. 

For the evaluation of the study, we kept the high noise size for 

all types of datasets to create more diverse data. Several 

examples for the generated samples are presented in Table 3. We 

compared our generated results with the original input dataset, 

and we observed that the artificial results resemble the original 

input domain quite adequately. 

At the end of the study, FID scores were calculated for the 

generated results and given in Figure 3 using the bar plots. Low 

scores correspond to how synthetic images are similar to the 

original input data. We compared the 1,000 artificially generated 

images to original images located in the same class labels. 

Accordingly, some results were observably good, while there 

were some disrupted images as well. All these results were 

accomplished through the network parameters presented in Table 

2. 

Table 3. The example images obtained by DCGAN by using the corresponding original dataset images 

 SMIDS  HuSHeM  SCIAN-Morpho 

 Original DCGAN Results  Original DCGAN Results  Original DCGAN Results 
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According to Figure 3, the best-generated images were 

obtained for the SMIDS dataset due to the lowest FID scores. An 

average of 29 FID score was measured for the SMIDS dataset. 

Images generated for the normal class were the most similar 

images to the original dataset. The less similar images have been 

generated for the Non-Sperm class; however, it is still better than 

other classes for HuSHeM and SCIAN-Morpho datasets. The 

reason for this performance for SMIDS is about the sample sizes 

of the original dataset. SMIDS has significantly more images 

than HuSHeM and SCIAN-Morpho datasets which provides a 

better training process for DCGAN. On the contrary, HuSHeM 

has the fewest sample size. Therefore, the FID score was 
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measured as an average of 44.25. It is worse than SMIDS but 

better than SCIAN-Morpho due to having high-resolution 

images. The amorphous class is the most challenging class for 

HuSHeM because many abnormalities have been defined in the 

same class. Lastly, image generation for the SCIAN-Morpho 

dataset resulted in the worst FID scores due to having fewer 

samples, data imbalance, and low-resolution problems. An 

average of 53.46 FID score was measured for the image 

generation of the SCIAN-Morpho dataset. 

 

 

Figure 3. FID score over DCGAN-based generated datasets (Red Lines indicate the average FID scores per dataset) 

 

5. Conclusion 

In this study, one of the deep learning-based data 

augmentation techniques, DCGAN, has been implemented for 

the sperm morphology datasets in order to generate synthetic 

images. The performances of the DCGAN in terms of similarity 

between the generated and original images have been evaluated 

by FID scores. Additionally, an open-source GUI has been 

developed, in which the system can interact with the user for the 

fine-tuning procedure. DCGAN architecture has been used 

together with ReLU and Leaky ReLU activations, along with 

Adam optimization for high-resolution modeling. The proposed 

approach has been tested with three different sperm morphology 

datasets having different characteristics such as resolution, 

sample size, and color space. As an outcome of the comparisons, 

the best results have been inferred for the normal class of the 

SMIDS dataset with an FID score of 22.041, for the pyriform 

class of the HuSHeM dataset with an FID score of 36.297, and 

for the small class of SCIAN-MorphoSpermGS dataset with FID 

score 48.738. The results of this study indicated that one of the 

deep learning-based data augmentation techniques, DCGAN, is 

an effective technique to use as generating the synthetic sperm 

patch images for the augmentation. Adversarial networks can 

moderately recognize sensible characterizations of sperm shapes 

to form new images for generative modeling. While traditional 

spatial domain-based data augmentation techniques are effective 

in sperm morphological analysis, other techniques provided by 

GAN are promising as a preprocessing step of classification for 

future studies. We will also aim to use the created synthetic 

augmented datasets by DCGAN in the training of classification 

models such as inception, VGG16, etc., to enhance the 

classification performance in future studies. 
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