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Abstract 

In this paper, a distributed parameter system expressed as a parabolic partial differential equation governed by a diffusivity control is 

considered. A modal space expansion approach is used to convert the distributed parameter system into a lumped parameter system. 

Thereafter, Pontryagin’s maximum principle is used to compute the optimal control function that leads to a nonlinear two-point boundary 

value problem (TPBVP). An iterative numerical technique, variation of extremals is used to solve the nonlinear TPBVP. The feasibility 

and applicability of the proposed solution is demonstrated by numerical simulations generated in MATLAB.  

Keywords: Diffusivity control, Maximum principle, Parabolic PDE.   

Optimallik Koşulları Kullanılarak Isı Transferi İşleminin Yayılım 

Kontrolü 

Öz 

Bu çalışmada, yayılım kontrolü ile yönetilen parabolik kısmi diferansiyel denklem olarak ifade edilen dağıtılmış bir parametre sistemi 

ele alınmıştır. Dağıtılmış parametre sistemini toplu bir parametre sistemine dönüştürmek için bir özfonksiyon genişletme yaklaşımı 

kullanılmıştır. Bundan sonra, Pontryagin'in maksimum prensibi, doğrusal olmayan iki noktalı sınır değeri problemine yol açan optimum 

kontrol fonksiyonunu hesaplamak için kullanılmıştır. Doğrusal olmayan iki noktalı sınır değer problemini çözmek için, yinelemeli 

sayısal bir teknik, variation of extremals, kullanılmıştır. Önerilen çözümün fizibilitesi ve uygulanabilirliği, MATLAB'da oluşturulan 

sayısal simülasyonlarla gösterilmiştir. 

 

Anahtar Kelimeler: Yayılım kontrolü, Maksimum Prensibi, Parabolik KDD. 
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1. Introduction 

Parabolic equations can be used to model a variety of 

dissipative physical processes. In the field of distributed 

parameter system theory, there is a long tradition of study into the 

related control problems (Xu et al., 2011). Boundary conditions 

(boundary control), source terms (interior control) and diffusivity 

coefficients (diffusivity control) are some examples of physical 

actuation in parabolic partial differential equations (PDEs). 

Interior and boundary control issues have been thoroughly 

researched. However, controlling of PDEs using a diffusivity 

actuator has rarely been studied. Lin et al. discussed a parabolic 

system with a bilinear control and they proved the exact 

controllability of the system (Lin et al., 2007a). Xu et al. studied 

a controlled parabolic system with diffusivity, boundary and 

interior actuations. The solution of the reduced-order system 

obtained is computed with a successive scheme based on Picard 

apparoximation (Xu et al., 2007).  Lin et al. investigated a 

nonlinear parabolic structure controlled by a bilinear control and 

an approximate null controllability result is presented (Lin et al., 

2007b). The parabolic system's nonnegative approximate 

controllability is researched through a bilinear control (Khapalov, 

2003). Körpeoğlu and Küçük introduced an approach containing 

modal space expansion, Pontryagin’s maximum principle and 

steepest descent algorithm to solve a parabolic bilinear optimal 

control problem (Körpeoğlu and Küçük, 2018). 

There are three distinct classes of solution methods for 

optimal control problems: Dynamic programming, direct methods 

and indirect methods. The method of dynamic programming leads 

to a nonlinear partial differential equation such as Hamilton-

Jacobi-Bellman equations. In direct methods, calculus of 

variations, mathematical programming and state and/or control 

parametrization, optimal control problems are transformed into 

nonlinear optimization problems. As for an indirect method, 

Pontryagin's maximum principle is used to derive the necessary 

conditions for optimality. The obtained optimality conditions 

result in nonlinear two-point boundary-value problems. The 

solutions of TPBVPs are computed via iterative numerical 

solution techniques such as steepest descent, quasilinearization 

and variation of extremals methods (Kirk, 2004). 

In this paper, it is aimed to obtain the optimal control function 

to a parabolic equation with a diffusivity control where a heat 

conduction process is studied as the model problem. Controlling 

the dynamic response of the system by using an accessible control 

is indicated by a quadratic performance index to be minimized. 

An indirect method based on Pontryagin's maximum principle is 

used to derive necessary conditions for the optimal control. This 

approach leads to a nonlinear two-point boundary value problem 

with split boundary conditions. The variation of extremals method 

is used as a solution procedure. Numerical calculations illustrate 

the theoretical approach's efficacy and applicability. 

The paper is organized as follows. The optimal control 

problem formulation and uniqueness and controllability of the 

problem are examined in Section 2. In Section 3, modal control 

space problem is discussed to obtain reduced order model. In 

Section 4, derivation of the Pontryagin’s maximum principle for 

the controlled system is introduced. A simulation study is 

presented in Section 5 using the variation of extremals method 

with numerical results to verify the competence of the introduced 

control algorithm. Section 6 contains the results and discussion. 

The paper's conclusion is stated in Section 7. 

2. Optimal Control Problem 

2.1. Problem Formulation 

Consider a parabolic distributed parameter system that 

describes a heat transfer mechanism (Lin et al., 2007a) defined by 

the following relationship 

𝜕𝑧

𝜕𝑡
= Δ𝑧 + 𝜒𝜔𝑢(𝑡)(𝑧 − 𝜉(𝑥, 𝑡)),                                          (1)  

𝑧(0, 𝑡) = 𝑧𝐵
(0)(𝑡), 𝑧(𝑙, 𝑡) = 𝑧𝐵

(𝑙)(𝑡),                                         (2) 

𝑧(𝑥, 0) = 𝜑(𝑥),                                                                    (3) 

over Ω = {(𝑥, 𝑡): 0 ≤ 𝑥 ≤ 𝑙, 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓}. 𝜒𝜔 is the characteristic 

function of 𝜔, 𝑢(𝑡) is the control function to be determined 

optimally. Ω𝑡  denotes a given time interval (0, 𝑡𝑓) where 𝑡𝑓 is a 

predetermined terminal time. 𝜑(𝑥) is the initial profile and 

𝑧𝐵
(0)(𝑡), 𝑧𝐵

(𝑙)(𝑡) are given functions on Ω𝑡. The term 𝑢(𝑡)(𝑧 −

𝜉(𝑥, 𝑡)) denotes the heat-exchange of the given substance at 

system at position 𝑥 and time 𝑡 with the sorrounding medium of 

the temperature 𝜉(𝑥, 𝑡). The control function 𝑢(𝑡) is used as a 

catalysts that can accelerate or decelerate the reaction. 

The following perfomance index functional is used to 

formulate the optimal control problem for the parabolic system 

(1)-(3).  

     min
𝑢

𝐽 =
1

2
∫ 〈𝑧𝑡𝑓(𝑥), 𝒫𝑧𝑡𝑓(𝑥)〉 𝑑𝑥 +

1

2
∫ 〈𝑧(𝑥), ℛ𝑧(𝑥)〉𝑑𝑥𝑑𝑡
Ω

𝑙

0

+
1

2
∫ 〈𝒮𝑢, 𝑢〉𝑑𝑡
𝑡𝑓

𝑡0

                                              (4) 

where 𝒫 and ℛ are weighting operators, 𝒮 is the control 

weighting matrix. 𝑧(𝑥, 𝑡𝑓) = 𝑧𝑡𝑓(𝑥) is the evaluated state at time 

𝑡 = 𝑡𝑓. The following functional space is defined with the inner 

product  〈. , . 〉, 

𝐿2(0, 𝑙) = {𝑓(𝑥): ∫ 𝑓2(𝑥)𝑑𝑥 < ∞
Ω

},                                  (5) 

𝐻1(0, 𝑙) = {𝑓: 𝑓 ∈ 𝐿2(0, 𝑙) and 𝑓′ ∈ 𝐿2}.                           (6) 

Presume that the control set that is admissible is 

𝑈𝑎𝑑 = {𝑢(𝑡): 𝑢(𝑡) ∈  𝐿2(Ω𝑡)}.                                               (7) 

Finding an optimal control function 𝑢∗(𝑡) ∈ 𝑈𝑎𝑑 that 

minimizes the performance index is required. 

2.2. Uniqueness of the Solution 

The existence of the solution for the optimal control problem 

(1)-(3) is considered in (Lin et al., 2007). The uniqueness of the 

problem is then illustrated next via the application of the energy 

method. The uniqueness of the system's solution is critical since 

it determines the control's uniqueness. 

Lemma. Eq. (1) has a unique solution 𝑧(𝑥, 𝑡) ∈ 𝐿2(ℝ𝑁) when 

subjected to Eqs. (2)-(3). 

Proof. Assume there are two smooth solutions, 𝑧1 and 𝑧2, that 

satisfy Eq. (1) with 𝜉(𝑥, 𝑡) = 0. Then, with zero initial-boundary 

conditions, their difference,  �̃� ≔ 𝑧1 − 𝑧2 satisfies Eq. (1). 

𝜕𝑧

𝜕𝑡
= Δ�̃� + 𝜒𝜔𝑢(𝑡)(�̃� − 𝜉(𝑥, 𝑡)),                                           (8)  

�̃�(0, 𝑡) = 0, �̃�(𝑙, 𝑡) = 0,                                                     (9) 
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�̃�(𝑥, 0) = 0.                                                                          (10)                                          

The energy integral is now defined as follows: 

𝐸(�̃�) =
1

2
∫ |�̃�(𝑥, 𝑡)|2𝑑𝑥
𝑙

0
                                                     (11) 

which is always positive and decreasing. Let ||.|| stand for the 

𝐿2 norm on ℝ𝑁 determined by 

‖𝑓‖ = (∫ |𝑓(𝑥)|2𝑑𝑥
ℝ𝑁

)
1
2⁄ .                                                 (13) 

When you differentiate with respect to 𝑡 Eq. (11), you get 

       
𝑑

𝑑𝑡
𝐸 = ∫ �̃�

𝜕�̃�

𝜕𝑡
𝑑𝑥

𝑙

0

= ∫ �̃�(Δ�̃� + 𝜒𝜔𝑢(𝑡)�̃�)𝑑𝑥
𝑙

0

= ∫ �̃�Δ�̃�𝑑𝑥 + ∫ 𝜒𝜔𝑢(𝑡)
𝑙

0

�̃�2𝑑𝑥.
𝑙

0

                  (14) 

Using integrating by parts in the last integral results in 

𝑑

𝑑𝑡
𝐸 = �̃�

𝜕2𝑧

𝜕𝑥2
|0
𝑙 − ∫ (

𝜕𝑧

𝜕𝑥
)
2

𝑑𝑥 + ∫ 𝜒𝜔𝑢(𝑡)
𝑙

0

𝑙

0
�̃�2𝑑𝑥,               (15) 

and we get the following equation 

𝑑

𝑑𝑡
𝐸 = −∫ (

𝜕𝑧

𝜕𝑥
)
2

𝑑𝑥 + 𝜒𝜔𝑢(𝑡) ∫ �̃�
2𝑑𝑥

𝑙

0

𝑙

0
≤ 𝜒𝜔𝑢(𝑡)‖�̃�‖

2.(16) 

Then, we obtain  

𝑑

𝑑𝑡
‖�̃�‖ ≤ 𝜒𝜔𝑢(𝑡)‖�̃�‖

2.                                                         (17) 

Now we apply Gronwall's lemma, and we get 

‖𝑧1 − 𝑧2‖ ≤ |𝑧1 − 𝑧2|𝑡=0𝜒𝜔 𝑒𝑥𝑝 (∫ 𝑢(𝑟)𝑑𝑟
𝑡𝑓
0

).                  (18) 

As a result, the uniqueness of smooth solutions is 

immediately demonstrated.   

To ensure the uniqueness of the solution given by Lemma 

proposed above, the corresponding control function 𝑢(𝑡) must be 

unique. Since the system has a unique solution and unique control 

function, the system is called observable. By taking Hilbert 

Uniqueness into account, the observability is equivalent to the 

controllability (Guliyev et al., 2007; Pedersen, 1999). Namely, the 

system is controllable. 

3. Reduced Order Modeling (ROM) 

To convert the optimal control of distributed parameter 

systems (1)-(3) into the optimal control of lumped parameter 

systems, the modal space expansion technique is used. As a result, 

the original parabolic PDE system can be approximated using a 

low-dimensional dynamical system. 

To accomplish the transformation, a new parameter 𝑦(𝑥, 𝑡) is 
first applied to translate nonhomogeneous boundary conditions to 

homogeneous boundary conditions. By introducing 

𝑦(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) −
(𝑙−𝑥)

𝑙
𝑧𝐵

(0)(𝑡) −
𝑥

𝑙
𝑧𝐵

(𝑙)(𝑡)                    (19) 

in Eq. (1), the following partial differential equation is 

obtained 

       
𝜕𝑦

𝜕𝑡
−
𝜕2𝑦

𝜕𝑥2
=
(𝑥 − 𝑙)

𝑙

𝜕 (𝑧𝐵
(0)(𝑡))

𝜕𝑡
−
𝑥

𝑙

𝜕 (𝑧𝐵
(𝑙)(𝑡))

𝜕𝑡

+ 𝑢(𝑡) (𝜒𝜔𝑦(𝑡) −
(𝑙 − 𝑥)

𝑙
𝑧𝐵

(0)(𝑡)

−
𝑥

𝑙
𝑧𝐵

(𝑙)(𝑡) − 𝜉(𝑥, 𝑡))                                 (20) 

subject to 

𝑦(𝑥, 0) = 𝜑(𝑥) −
(𝑙−𝑥)

𝑙
𝑧𝐵

(0)(0) −
𝑥

𝑙
𝑧𝐵

(𝑙)(0),                      (21) 

𝑦(0, 𝑡) = 0, 𝑦(𝑙, 𝑡) = 0.                                                    (22) 

In the following calculations, a truncated Fourier series 

expansion is used 

𝑦(𝑥, 𝑡) ≈ ∑ 𝜓𝑘(𝑥)𝑤𝑘(𝑡)
𝑛
𝑘=1 .                                               (23) 

Indicating a complete orthonormal basis as 

𝑉 = {𝑣: 𝑣,
𝜕𝑣

𝜕𝑥
∈ 𝐿2(Ω), 𝑣|𝜕Ω = 0}                                       (24) 

for 𝐻(0, 𝑙), the solution 𝑦(𝑥, 𝑡) of the system is satisfied by 

multiplying both sides of Eq. (20) by a basis function 𝑣 and 

integrating by parts 

∫
𝜕𝑦

𝜕𝑡
𝑣𝑑𝑥

𝑙

0

−∫
𝜕2𝑦

𝜕𝑥2
𝑣𝑑𝑥

𝑙

0

= ∫(
(𝑥 − 𝑙)

𝑙

𝜕 (𝑧𝐵
(0)(𝑡))

𝜕𝑡

𝑙

0

−
𝑥

𝑙

𝜕 (𝑧𝐵
(𝑙)(𝑡))

𝜕𝑡
)𝑣𝑑𝑥

+ ∫𝑢(𝑡) (𝜒𝜔𝑦(𝑡) −
(𝑙 − 𝑥)

𝑙
𝑧𝐵

(0)(𝑡)

𝑙

0

−
𝑥

𝑙
𝑧𝐵

(𝑙)(𝑡)) 𝑣𝑑𝑥 − ∫𝜉(𝑥, 𝑡)𝑣𝑑𝑥

𝑙

0

        (25) 

where 𝑦, 𝑣 ∈ 𝑉. If Eq. (23) for 𝑦(𝑥, 𝑡) is used in Eq. (25) and 𝑣 =
𝜓𝑗, j=1,2,…n., the finite dimensional system is obtained using the 

notations below (𝐷:=
𝜕

𝜕𝑥
): 

 
𝑑𝑤

𝑑𝑡
= 𝑀𝑤 +𝑁𝑤𝑢 + 𝐾𝑢 + 𝐿                                               (26)     

where 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), … , 𝑤𝑛(𝑡)) ∈  ℝ
𝑛, 𝑀 = (𝑀𝑗𝑘) ∈

 ℝ𝑛×𝑛, 𝐾 = 𝐾𝑗 , 𝐿 = 𝐿𝑗 ∈  ℝ
𝑛. The finite dimensional 

approximation is represented by the vector 𝑤(𝑡). The initial 

values are defined by 

𝑤𝑗(0) = 〈𝑦(𝑥, 0), 𝜓𝑗〉.                                                                (27) 

The following notations are used in Eq. (26): 

𝐹𝑗𝑘 = 〈𝜓𝑗 , 𝜓𝑘〉 = ∫ 𝜓𝑗(𝑥)𝜓𝑘(𝑥)𝑑𝑥 = 𝛿𝑗𝑘
𝑙

0
,                       (28) 

𝛿𝑗𝑘 = {
1, if 𝑗 = 𝑘 

      0, otherwise.
                                                        (29) 

𝑀𝑗𝑘 = 〈𝜓𝑗 , 𝐷
2𝜓𝑘〉 = ∫ 𝜓𝑗(𝑥)

𝜕2(𝜓𝑘(𝑥))

𝜕𝑥2
𝑑𝑥

𝑙

0
                        (30) 

𝑁𝑗𝑘 = ∫ 𝜒𝜔𝜓𝑗(𝑥)𝑑𝑥
𝑙

0
                                                         (31) 
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𝐹𝑗 = ∫ (
(𝑥−𝑙)

𝑙

𝜕(𝑧𝐵
(0)(𝑡))

𝜕𝑡
−

𝑥

𝑙

𝜕(𝑧𝐵
(𝑙)(𝑡))

𝜕𝑡
)𝜓𝑗(𝑥)𝑑𝑥

𝑙

0
                   (32) 

𝐾𝑗 = ∫ (
(𝑙−𝑥)

𝑙
𝑧𝐵

(0)(𝑡) −
𝑥

𝑙
𝑧𝐵

(𝑙)(𝑡))𝜓𝑗(𝑥)𝑑𝑥
𝑙

0
                      (33) 

𝐻𝑗 = −∫ 𝜓𝑗(𝑥)𝜉(𝑥, 𝑡)𝑑𝑥
𝑙

0
                                                   (34) 

𝐿𝑗 =  𝐹𝑗  +  𝐻𝑗                                                                                      (35) 

 

4. Pontryagin’s Maximum Principle  

In 1956, Lev Pontryagin, a Russian mathematician, 

reformulated the control problem in terms of a Hamiltonian. It 

enables one to express the adjoint equations and optimality 

conditions in a very compact, general, and simple manner. 

Pontryagin's method is similar to, and also a generalization of, the 

classical variational method. To obtain the Euler equations, the 

classical variational approach requires that all functions, 

including the state and control variables, be continuously 

differentiable functions. By relaxing the optimality condition, 

Pontryagin's approach allows for piecewise-continuous solutions 

for the control input (Pontryagin, 1959). 

The conditions in the Maximum principle are necessary but 

not sufficient for optimality. We need to look at the control region. 

𝑼𝒂𝒅 must be convex. Then only then (𝒛(𝒕), 𝒖(𝒕)) is an optimal 

pair. 

The finite horizon optimal control problem defined in Eq. (4) 

can now be rewritten as  

𝑱 =
𝟏

𝟐
[𝒘(𝒕𝒇)]

𝑻𝑷[𝒘(𝒕𝒇)] +
𝟏

𝟐
∫ (𝒘𝑻𝑹𝒘 + 𝒖𝑻𝑺𝒖)𝒅𝒕
𝒕𝒇
𝒕𝟎

        (36) 

P, R and S are symmetric positive semi-definite matrices which 

are the finite dimensional representations of 𝓟, 𝓡 and 𝓢. 

Theorem. A canonical optimality condition is obtained, which is 

a nonlinear two-point boundary value problem by using the 

Pontryagin's Maximum Principle  

{
 
 

 
 
𝒅𝐰

𝒅𝒕
= 𝑴𝒘− 𝑺−𝟏𝚲𝑻(𝑵𝒘 + 𝑲)𝟐 + 𝑳

𝒅𝚲

𝒅𝒕
= −𝑹𝒘−𝑴𝑻𝚲 − 𝐍𝒖𝑻𝚲

𝚲(𝒕𝒇) = 𝑷𝒘(𝒕𝒇)

𝒘(𝒕𝟎) = 𝒘𝟎

  

where P, R and S are positive semidefinite symmetric matrices, 

M, N, K and L are defined in Eqs. (30), (31), (33) and (35), 

respectively. 

Proof. Consider the optimal control problem of the system Eqs. 

(26)-(27), 

𝑑𝑤

𝑑𝑡
= 𝑀𝑤 + 𝑁𝑤𝑢 + 𝐾𝑢 + 𝐿                                               (37) 

where 𝑤(𝑡) is the finite dimensional approximation to 𝑦(𝑥, 𝑡) and 

𝑢(𝑡) is the control input. M, N, K and L are defined in Eqs. (30), 

(31), (33) and (35), respectively. 

We minimize the following augmented cost functional,  

       𝐽∗(𝑤, 𝑢, Λ) = ∫ {
1

2
(𝑤𝑇𝑅𝑤 + 𝑢𝑇𝑆𝑢)

𝑡𝑓

𝑡0

− Λ𝑇 (
𝑑𝑤

𝑑𝑡
− 𝑀𝑤 − 𝑁𝑤𝑢 − 𝐾𝑢 − 𝐿)} 𝑑𝑡

+
1

2
[𝑤(𝑡𝑓)]

𝑇𝑃[𝑤(𝑡𝑓)]                                   (38) 

The functional becomes as following by establishing the 

Hamiltonian 𝓗 , 

    𝐽∗(𝑤, 𝑢, Λ) = ∫ {ℋ(𝑡, 𝑤, 𝑢, Λ) − Λ𝑇
𝑑𝑤

𝑑𝑡
}

𝑡𝑓

𝑡0

𝑑𝑡

+
1

2
[𝑤(𝑡𝑓)]

𝑇𝑃[𝑤(𝑡𝑓)].                                  (39) 

If (𝒘,𝒖, 𝚲) is a minimizer of 𝑱∗ 

𝜹𝑱∗ = ∫ {
𝝏𝓗

𝝏𝒘
𝜹𝒘 +

𝝏𝓗

𝝏𝒖
𝜹𝒖 +

𝝏𝓗

𝝏𝚲
𝜹𝚲 − 𝜹(𝚲𝑻

𝒅𝒘

𝒅𝒕
)} 𝒅𝒕

𝒕𝒇

𝒕𝟎

+ 𝜹(
𝟏

𝟐
[𝒘(𝒕𝒇)]

𝑻

𝑷[𝒘(𝒕𝒇)])

= 𝟎.                 (𝟒𝟎) 

We get the following four optimality conditions after 

processing variational operations and integration by parts: 

Firstly, 

𝝏𝓗

𝝏𝒖
= 𝟎  

𝒖(𝒕) = −𝑺−𝟏𝚲𝑻(𝑵𝒘 +𝑲)                                                 (41) 

Secondly, 

𝝏𝓗

𝝏𝒘
= −

𝒅𝚲

𝒅𝒕
  

𝒅𝚲

𝒅𝒕
= −𝑹𝒘−𝑴𝑻𝚲 − 𝐍𝒖𝑻𝚲                                                  (42) 

Thirdly, 

𝝏𝓗

𝝏𝚲
=

𝒅𝐰

𝒅𝒕
  

𝒅𝐰

𝒅𝒕
= 𝑴𝒘− 𝑺−𝟏𝚲𝑻(𝑵𝒘 + 𝑲)𝟐 + 𝑳                                     (43) 

Lastly, 

𝑷𝒘(𝒕𝒇) = 𝚲(𝒕𝒇)                                                                (44) 

To obtain the control law in this proof, the Pontryagin's 

approach leads to a nonlinear two-point boundary-value problem 

that cannot be solved analytically. The combination of split 

boundary conditions and nonlinear differential equations makes 

solving the optimal control problem challenging. On a numerical 

example, an iterative numerical technique for evaluating optimal 

control and trajectories is discussed in the following section. 

Variation of extremals method is used as a numerical method. 

5. Algorithm Based on Variation of 

Extremals  

The following procedure explains how the variation of 

extremals method works to solve the nonlinear two-point 

boundary value problem (Kirk, 2004). The method of variation of 
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extremals is an algorithm that uses the observed values of 𝚲(𝒕𝒇) 

to adjust systematically the guessed values of 𝚲(𝒕𝟎). Newton’s 

method is used for making systematic adjustments of the initial 

costate values.  

Let's start with an overview of the steps involved in using the 

variation of extremals method: 

1. Solve 
𝝏𝓗

𝝏𝒖
= 𝟎 for 𝒖(𝒕) in terms of 𝒘(𝒕), 𝚲(𝒕), and 

substitute in the state and costate equations to produce the reduced 

differential equations. 

2. Set the iteration index i to zero and guess 𝚲𝟎(𝒕𝟎), the 

costate's initial value. 

3. Integrate the reduced state-costate equations and the 

influence function equations (45) and (46) with initial conditions 

(47) and (48), from 𝒕𝟎 to 𝒕𝒇, using 𝚲(𝒕𝟎) = 𝚲
𝒊(𝒕𝟎) and 𝒘(𝒕𝟎) =

𝒘𝟎 as initial conditions. Only 𝚲𝒊(𝒕𝒇), 𝒘
𝒊(𝒕𝒇), and the state and 

costate influence matrices 𝑷𝚲(𝚲
𝒊(𝒕𝟎), 𝒕𝒇) and 𝑷𝒘(𝚲

𝒊(𝒕𝟎), 𝒕𝒇) 

should be saved. 

𝒅

𝒅𝒕
[𝑷𝒘(𝚲

𝒊(𝒕𝟎), 𝒕)] = [
𝝏𝟐𝓗

𝝏𝚲𝝏𝒘
(𝒕)]𝒊𝑷𝒘(𝚲

𝒊(𝒕𝟎), 𝒕) +

                                             [
𝝏𝟐𝓗

𝝏𝚲𝟐
(𝒕)]

𝒊
𝑷𝚲(𝚲

𝒊(𝒕𝟎), 𝒕)                      (45)                                                    

𝒅

𝒅𝒕
[𝑷𝚲(𝚲

𝒊(𝒕𝟎), 𝒕)] = [−
𝝏𝟐𝓗

𝝏𝒘𝟐
(𝒕)]𝒊𝑷𝒘(𝚲

𝒊(𝒕𝟎), 𝒕) +

                                             [−
𝝏𝟐𝓗

𝝏𝒘𝝏𝚲
(𝒕)]𝒊𝑷𝚲(𝚲

𝒊(𝒕𝟎), 𝒕)                    (46)                          

𝑷𝒘(𝚲
𝒊(𝒕𝟎), 𝒕𝟎) = 𝟎 (𝒏 × 𝒏) 𝐳𝐞𝐫𝐨 𝐦𝐚𝐭𝐫𝐢𝐱                            (47) 

𝑷𝚲(𝚲
𝒊(𝒕𝟎), 𝒕𝟎) = 𝑰 (𝒏 × 𝒏) 𝐢𝐝𝐞𝐧𝐭𝐢𝐭𝐲 𝐦𝐚𝐭𝐫𝐢𝐱                      (48) 

𝑷𝚲(𝚲
𝒊(𝒕𝟎), 𝒕) =

[
 
 
 
𝝏𝚲𝟏(𝒕)

𝝏𝚲𝟏(𝒕𝟎)

𝝏𝚲𝟏(𝒕)

𝝏𝚲𝟐(𝒕𝟎)
…

𝝏𝚲𝟏(𝒕)

𝝏𝚲𝒏(𝒕𝟎)

⋮
𝝏𝚲𝒏(𝒕)

𝝏𝚲𝟏(𝒕𝟎)

⋮ ⋮ ⋮
𝝏𝚲𝒏(𝒕)

𝝏𝚲𝟐(𝒕𝟎)
…

𝝏𝚲𝒏(𝒕)

𝝏𝚲𝒏(𝒕𝟎)]
 
 
 

𝚲𝒊(𝒕𝟎)

         (49) 

𝑷𝒘(𝚲
𝒊(𝒕𝟎), 𝒕) =

[
 
 
 
𝝏𝐰𝟏(𝒕)

𝝏𝚲𝟏(𝒕𝟎)

𝝏𝐰𝟏(𝒕)

𝝏𝚲𝟐(𝒕𝟎)
…

𝝏𝐰𝟏(𝒕)

𝝏𝚲𝒏(𝒕𝟎)

⋮
𝝏𝐰𝒏(𝒕)

𝝏𝚲𝟏(𝒕𝟎)

⋮ ⋮ ⋮
𝝏𝐰𝒏(𝒕)

𝝏𝚲𝟐(𝒕𝟎)
…

𝝏𝐰𝒏(𝒕)

𝝏𝚲𝒏(𝒕𝟎)]
 
 
 

𝚲𝒊(𝒕𝟎)

        (50) 

4. Examine whether the termination criterion ‖𝚲𝒊(𝒕𝒇)‖ is 

satisfied. If that's the case, run 𝚲𝒊(𝒕𝟎) one more time to reintegrate 

the state and costate equations and graph the optimal trajectory 

and control. If the stopping criterion is not met, use the iteration 

equation to find the value for 𝚲(𝒊+𝟏)(𝒕𝟎),  then go to step 3.  

6. Simulation Study 

We consider the controlled model below 

𝝏𝒛

𝝏𝒕
= 𝚫𝒛 + 𝝌𝝎𝒖(𝒕)(𝒛 − 𝝃(𝒙, 𝒕))                                                    

(51) 

subject to 

𝒛(𝒙, 𝟎) = 𝒔𝒊𝒏(𝝅𝒙),                                                              (52) 

𝒛(𝟎, 𝒕) = 𝟎, 𝒛(𝒍, 𝒕)  =  𝟎.                                                  (53) 

With a diffusivity control parameter 𝒖(𝒕), the examined model is 

used to characterize the heat conduction. Coolant flow rate is a 

diffusivity control variable in the heat transfer process, whereas 

temperature is a state variable. From 𝒙 =  𝟎 to 𝒙 =  𝒍, a 

diffusivity control is applied to a uniform rod of length with non-

uniform temperature lying on the 𝒙-axis. A finite dimensional 

approximation 𝒚(𝒙, 𝒕) of 𝒛(𝒙, 𝒕) based on the modal space 

expansion approach is used to simulate the system composed by 

the nonlinear two-point boundary value problem and proposed 

diffusivity control. 

The state equation can be expanded by a series of 

orthonormal basis functions 𝒚(𝒙, 𝒕) ≈ ∑ 𝝍𝒌(𝒙)𝒘𝒌(𝒕)
𝒏
𝒌=𝟏 , where 

𝝍𝒌(𝒙) = √𝟐𝐬𝐢𝐧 (𝒌𝝅𝒙), which satisfy the homogeneous 

boundary conditions. The following finite dimensional system is 

obtained 

𝒅𝒘

𝒅𝒕
= 𝑴𝒘+𝑵𝒘𝒖 + 𝑲𝒖 + 𝑳                                               

with initial condition 𝒛(𝟎) =
√𝟐

𝟐
. The performance index to 

be minimized is 

𝑱 =
𝟏

𝟐
[𝒘(𝒕𝒇)]

𝑻𝑷[𝒘(𝒕𝒇)] +
𝟏

𝟐
∫(𝒘𝑻𝑹𝒘 + 𝒖𝑻𝑺𝒖)𝒅𝒕

𝒕𝒇

𝒕𝟎

 

where P, R and S are symmetric positive semi-definite 

matrices. We simulate the system Eqs. (1)-(3) over 𝒕𝟎 = 𝟎 ≤ 𝒕 ≤
𝒕𝒇 = 𝟏 with following parameters: 𝝃(𝒙, 𝒕) = 𝟎, 𝒋 =  𝒌 =  𝟏, 

𝝍𝒌(𝒙) = √𝟐𝐬𝐢𝐧 (𝒌𝝅𝒙). 

7. Results and Discussion  

Computer codes produced in MATLAB is used for the 

solution of the system. The boundary conditions for integrating 

differential equations are 𝑷𝚲(𝟎) = 𝑰 and 𝑷𝒘(𝟎) = 𝟎. The initial 

state 𝒘(𝟎) = 𝟎 and initial costate 𝚲(𝟎) = 𝚲𝒊(𝟎) are used. The 

initial guess applied to start the iterative procedure is 𝚲𝟎(𝟎) = 𝟎 

and  

|𝚲𝟏(𝟏)| + |𝚲𝟐(𝟏)| ≤ 𝟏𝟎−𝟓 

is the norm used as a stopping criterion. The values of the 

performance index as a function of the number of iterations are 

shown in Figure 1. The performance index decreases significantly 

after 43 iterations, but only slightly improves after the remaining 

57 iterations.  

 

Figure 1. Performance index reduction with the variation of 

extremals method. 
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Temperature profiles in time 𝒛(𝒙𝟎, 𝒕) are curves in the zt-

plane. Figure 2 shows a comparison of temperature profiles over 

time with a fixed value of 𝒙𝟎  =  𝟎. 𝟓 for uncontrolled and 

controlled systems using the variation of extremals process.  

 

Figure 2. Comparison of the temperature profiles in time at 

𝒙𝟎 = 𝟎. 𝟓 for uncontrolled and controlled case. 

 
Figure 3. Comparison of the spatial temperature profiles for 

uncontrolled and controlled case. 

Figure 3 depicts the spatial temperature profile of the 

uncontrolled and controlled systems using the the variation of 

extremals method at the final time 𝒕𝒇 =  𝟏. Figure 3 shows that at 

terminal time 𝒕𝒇, the middle of the rod, which is the position of 

the highest temperature, cools more slowly for the uncontrolled 

model than for the controlled model.

8. Conclusions and Recommendations 

It is investigated how to control a parabolic PDE with a 

diffusivity control optimally. The controllability and uniqueness 

of the system's solution is discussed. A lumped parameter system 

is created using reduced order modeling. Pontryagin's maximum 

principle is used to obtain the optimal control function that leads 

to a nonlinear two-point boundary value problem. An iterative 

numerical technique, variation of extremals, for determining 

optimal trajectories and optimal control of the system is 

discussed. The programming is achieved using computer codes 

produced in MATLAB. The usefulness and applicability of the 

proposed strategy are demonstrated through numerical simulation 

studies. The optimal diffusivity control for different models can 

be designed by adopting the presented control algorithms in this 

study. In addition, the system can be controlled by adding 

boundary control and interior control as well as diffusivity 

control.  
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