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Abstract

There is an increasingly needed to development a new mathematical apparatus concerned with the description, prediction, and
understanding of natural phenomena in a precise manner. The purpose of this study is to extend the mathematical framework of
Fibonacci and Lucas sequences for underpinned and establishing a modern mathematical formulas. For this purpose, we derive
analytical formulas of order k-Fibonacci and order k-Lucas sequences simultaneously based on Bernoulli sequence. Furthermore,
exploiting a relationship with the k th order Fibonacci and Lucas sequence, we study the probability distribution function (pdf) of the
waiting time (W (k)).

Keywords: Bernoulli trials, Order k - Fibonacci sequence, Order k -Lucas sequence.

Bir Fibonacci ve Lucas dizisinde tekrarlarin bekleme siiresi tizerine

Oz

Dogal fenomenlerin kesin bir manada tanimlanmasi, ongoériilmesi ve anlagilmasiyla ilgili yeni matematiksel aygitlar gelistirme
ihtiyac1 giderek artmaktadir. Bu ¢alisgmanin amaci, Fibonacci ve Lucas dizilerinin matematiksel ¢ergevesini modern matematiksel
formiiller ile desteklemek amaciyla genisletmektir. Bu amagla, order-k Fibonacci ve order-k Lucas dizileri ile es zamanl olarak
Bernoulli dizisine dayanarak analitik formiillerin tiiretilmesi amaglanmaktadir. Ayrica, k-yinc1 mertebeden Fibonacci ve Lucas dizileri
arasindaki bir iliskiden yararlanarak (W (k)) bekleme siiresinin olasilik dagilim fonksiyonu (pdf) calisilacaktir.

Anahtar Kelimeler: Bernoulli denemeleri, k-mertebeli Fibonacci dizisi, k-mertebeli Lucas dizisi.
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1. Introduction

In Bernoulli trials, there is a series of results about
distribution theories on runs (Greenberg, 1970; Klots & Park,
1972; Saperstein, 1973; Koutras, 1996, 1997; Chaves & de
Souza, 2007; Aki & Hirano, 2007; Kim,S et al,2013).
KOUTRAS (1996) investigated the exact distribution of the
waiting time in a sequence of independent and identically
distributed (iid) Bernoulli trials. Formulae are provided for
terms of certain generalized Fibonacci numbers and polynomials
are also included. Chaves et al., (2007) used j-step Fibonacci
numbers to derive the expected value and the variance for the
distribution of the waiting time for n consecutive successes in a
Bernoulli sequences. Singh et al., (2014) presented some
generalized identities on the products of k-Fibonacci and k-
Lucas numbers to establish connection formulas between them
with the help of Binet’s formula. Kim,S et al, (2013) derived
probabilty distribution of W(k) for both independent and
homogeneous two-state Markovian Bernoulli trials, using a
generalized Fibonacci sequence of order k. Ocal, A el al, (2005)
give some determinantal and permanental representations of k-
generalized Fibonacci and Lucas numbers and obtained the
Binet's formula for these sequences.

There can be many applications: Bernoulli trials to get a
cluster of positive or negative response on certain treatment to a
DNA sequence. A sequence of n Bernoulli trials contains as
many runs of length k as there are non-overlapping uninterrupted
succession of exactly k 1’s or 0’s.

We will follow the same previous methodology, but our
ideas are completely different. That mean we are trying to derive
a new formula for order k-Fibonacci and order k- Lucas
sequences through sequences of Bernoulli trials.

In this work, we study the sequence of Bernoulli trials under
some conditions and exploiting a relationship with the Fibonacci
and Lucas sequences.

2. Sequence of Bernoulli trials

We will start a sequence of Bernoulli trials of size n by toss
a coin n times, and obtaining a sequence i ones consecutive on
the n™ trial at the end of sequence with less than i zeros or ones
consecutive previously where i > 2.

i .
Let s,(l) denote the number of cases where a sequence of i ones
consecutive on the n' trial at the end of sequence with less than i
Zeros or ones consecutive previously.

To derive the value of s,(li) we note that:
Case 2.1 Wheni = 2
The sequence as shown in table 1.

Table 1: Sequence of Bernoulli when i=2

Lemma 2.1. The number of sr(lz) where n > i, "i.e. sequences",
follows the Fibonacci sequence of order 1.

A proofis easily established by table 1 that all the number of sr(lz)

is equal to 1.

2.1.1.Probability distribution function of WS)

Let define independent Bernoulli variables x; , with p(x; = 1) =
pand, p(x; =0) =q.

2.1 Definition(1) : For any two probabilities Z and D, let's
define them by two equations.

Z,=qD,, and D, =pZ, ; forn=234,5,..,

With. Zl = 1,D1 = 1.

The new formula for either consecutive k ones or k zeros for the
first time at end sequence with less than k ones or k zeros before.

We are derivation of pdf of F. is as follows.

Theorem (1). For n = 2, the pdf of F3 is

P(F,}_1=n)
0 n<?2

n-—2
={@*+q»)Pq)z if (n> 1)is an even number
n-1
(pq) 2z

Proof.

if (n> 2)is an odd number

p(F{ =2)=pp+qq=p*+q°
p(F; =3) = qp* +pq* = pq

p(F3 = 4) = pq(p* + q*)

p(Fi =5) = qpq(®* + ¢*) = (pq)*
p(Fs = 6) = p*q*(p* + q°)

p(F& =7) = qpapq(®* + q*) = (pq)?

n—2
@*+q)(q) 2 if (n> 1)is an even number

1

(pq)%

Case 2.2. Wheni =3

if (n > 2)is an odd number

The sequence as shown in the following Table 2.

Table 2: Sequence of Bernoulli when i=3

n |1 (234|567 ]8| 9 1011 |12

n [ 1|23 ]|4|5]6|7|8|9|10]11]12

sP|lOo |1 1|11 |1]1]1]|1 1 1 1
n

5513)0011235813213455

We can see comparing the previous values of Sflz_)z with those
@ _ F(l)
27 'n

values of Fr(ll) shown in table 2. This shows that s~

e-ISSN: 2148-2683

From table 2, We define the second order recurrence relations

s = sr(lg_)1 + 51(13_)2 n=5 2.1

With the initial conditions
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(3) =0, S(3) 0, S(3) 1, S(3) 1
= > = =

2.2.Definition 2 For any four real numbers ay, a;, by and b; ,
the sequences {wﬁ}:: 0

(2) {bos(3) +b, @

n+1 n+2

is defined recursively by

nZZ}

where wgz) = ao, wiz)

3

=a,

2.2)

where s, is above definition.

Special cases When
Day=1,a,=1,by=1,b;= 1
than {W,2}>_, is Fibonacci sequence
2)ag=2,a,=1,by=2,b; =1

than {W?2}>_, is Lucas sequence

Notes. We can see comparing the previous values of 5(3) with
those values of F2 shown in table 2. This shows that s( ) = F2.
Theorem 2 The sequences {W( e },_, satisfy following
1-L,=2F,,+ F,_; (2.3)
2—L,=F,,+ F, (2.4)
3—L,=2F,— F,_4 (2.5)
4 — L, =2F,,4 —3F,_1 (2.6)
Proof.
1 L® =283, + 8%,
We know S35 = FZ then L% = 2F%_, + FZ_;
2) L® =253, +53,, =53, + (S5, +5%,,)
= Sp1 +Spys — Li = Fi, + Fy.
3) L? =283, + 53, =2 (S35 — S345) + Sk
= 283,53 — Spez = L = 2FF — Fiy
4) L(Z) = 2S3+1 +S; n+2 = ZSn+3 25r31+2 + Sr31+2
= 283, — 283, — S35 = 253, — 33,
= 2F? — 35

Theorem 3 The generating function of sequence {Wﬁ}:;o is
given by

Dy = ZW X"

ao)X + (bo + bl - aO - al)XZ + (bl - al)X3

1—x—x°

ap + (31

Special cases
1_When aozl,al = 1,b0 = 1,b1=1
1

Deo = 1—-x—x2

is generating function of Fibonacci sequence.

2 —When a3, = 2, a; =1, by =2,

e-ISSN: 2148-2683

2—X
1—x—x2
2.1.2 The distribution of order 2 -Fibonacci and Lucas

Dy = is generating function of Lucas sequence.

We use only elementary facts about Fibonacci and Lucas
numbers to derive the waiting time for n consecutive successes
in Bernoulli sequences. In the case of the Bernoulli parameter

D= é the exact distribution is obtained.

Let Wf,z) be the random variable determined by the number for
a run of j consecutive successes in a Bernoulli experiment, as
defined in the preliminaries. The exact distribution of W(Z)
seems to be intractable, except for p == . In this case, every
equal length sequence has the same probablhty and the

distribution of W,(,LZ) is nicely given:
2.1.3 The distribution of W&

The distribution of Wflz) is nicely given by:

0 n<2
@ 1 n+i
P(W, 5 =n) ={w® (E) n=234,5,..
0 ow

There are two cases depends on WEIZ) and i:

@

The first case: Where w @ _

=1,w; 1,

w® = { D+ s, n=z2} andi=0 Then

n+1 n+2
0 n<?2
@ 1\"
P(W,2, =n) = {w, %) (5) n=2345,..
0 o.w

This distribution is Fibonacci distribution.

And we can rewrite the distribution of Wﬁz) as

0 n<?2

n
P(W,2, =n)=1F%(3) n=2345,..
0 o.w

This distribution as Shane( 1973) defined.

The second case: Where WSZ) =1, Wgz) =3,

w® = (258, + 50

n+1 n+2

n>2 } ,and i=1
This distribution as Lucas distribution.

And we can rewrite the distribution of Wﬁz) as

0 n<?2
@) 1 n+1
P(W,2 =n) = 1@, (E) n=2345,..
0 o.w
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The distribution of Wflz) can called distribution of waiting time.
And The Fibonacci and Lucas numbers allow the calculation of
the probability distribution function for waiting time for a run of
n successes in a sequence of Bernoulli trials. Obtained the closed
form for the Fibonacci and Lucas numbers.

2.1.4 Probability distribution function of W,(li)

2.3 Definition(3) : For any two probabilities Z and D, let's
define them by two equations

Zn = an—l + qun—Z and Dn = pZn—l + pZZn—Z fOTTl
= 34,5, ..,

with Z,=1,Z,=q,D;=1,D, =p

The pdf of F2 is given using the above definition.

Theorem (4). For n = 3, the pdf of F2_, is

P(Fi_; =n) = {Zn_op* + Dy_2q°}

where Z, = qD,_1 + q¢*D,,_,

D, =pZ, ,+p°Z,_, forn=345...withZ, =1,Z, =q
Dy=1andD, =p.

Proof. First, note that

P(Ff =3) =ppp +q9qq9 =p* + q° = Z,p° + D1q°

P(F} = 4) = qppp + pqqq = qp° + pq® = Z;p° + D,q°

P(F§ = 5) = pqp® + qqp® + qpq® + ppq®
= Z3p® + D3q° where

Z3 =qD, +¢*°Dy = pq + qq and D3 = pZ, + p*Z,
=pq +pp

P(F} = 6) = paqp® + qpqp® + ppap® + qppq® + papq®
+qqpq®

= 2q°p* + qp® + 2p*q* + pq®

where Z, = qD; + q°D, = qpq + ppq + pqq
= 2pq* + qp* and

D, = pZ3 + p*Z, = ppq + pqq + prq = 2qp* + pq°.

P(Frfz)z =n) ={Z,_,p® + Dp_»q°} This result as Kim, S.,
Park, C., & Oh, J. (2013) defined.

2.4 Definition(4) : For any two probabilities z and D, let's define
them by two equations

Zn = an—l + qZDn—Z and Dn = pZn—l + pZZn—Z fOTTl
=345, ..,

with Z, =1,Z,=(q+1),D;,=1,D,=(p+1)

e-ISSN: 2148-2683

The pdf of L,(lz) is given using the above definition.
Theorem (5). For n = 3, the pdf of L,(,LZ_)2 is

P(LEIZZZ =n) = Zp_,p° where

Zn = an—l + qZDn—Z and Dn = pZn—l + Pzzn—z
forn =345, ..

with Z, =1,Z,=(q+1),D; =1,D, = (p+1).
Proof. First, note that

P(LY =3)=Zp* =ppp |,

P(LY = 4) = Z,p* =p*(q + 1) = qpp + PP

Zy=qD, +q*Dy = qp + q + q*, D3 = pZ, + p*Z;
=pq +p +p’

P(LP = 5) = Z3p® = pappp + qppp + 9qppP
— 2 — 2 2 2

Zy=qD3+q°D; = qpq + qp + qp” + pq° + q°,

D, = pZs + p*Z, = pap + pq + pq® + qp* + p*

P(L} = 6) = Z4p® = qpqp® + qpp® + qp°p° + pq°p* + q°p°

P(L3_; =n) = Z,_,p°
Some numerical examples:

The pdf of W, for a special case of p = % is obtained

numerically, using F._,, F2_, ,L%_,.

1- Forn=2

) 11 1 !
P(Fo=2)=pp+qq=Z+Z=—=Fo(—>

2 2
) 11 1 1,
P(Fi =3)=qpp+paq=g+g=7=F()
1 1 1 113
P(Fy =4)=papp +apaq =+ 1, =g=F ()

1
P(Fy_, =n) = - papqpqpp + - qpqprqpqq = (5)"‘1
1
= Fﬁ—z(z)n_l
where F1_, =1,n=2,34,..

2- Forn=3and W2 = F%_,
777
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P(Ff =3) = ppp + —1+1—1—F2(1)2
i =3)=ppp+qea=g+g=,=F(
1 1 1
PF2:4= 3 3:— —_—— = 2_3
(Ff =4) =qp° +pq TR 22)
P(F{ = 5) = pap® + qqp® + qpq® + ppq®
_1+1+1+1_1_2_ , 1,
73232 32 32 8 16 3(2)
P(Ff = 6) = 2q*p* + qp® + 2p*q* + pq®
—2+1+2+ _3_F215
T 64 64 64 64 32 4(2)

1
P(FR, =1n) = ;)" where F}_, = (1,12358,13,..)

And the sum over all F._, and F2_, are equal to 1 that are

hod 1 n—1 had 1 n—1
Z F;_Z(E) = 1and Z F,%_Z(E) =1.
n n=3

=2

1- Forn=3andW3= 1%,

1 1
PULi=3)=ppp=5= L§(§)3

8
P(L5=4)= + —1+1—3_L214
2=4) =ppp+appp =g+ 7 = 7 = i)
2 1 1 1 4
P(L3 =5) = pappp + qppp +qappp = 35 + 7ot 35 =35

1
=[12()°
23

P(L5 = 6) = 2¢*p* J;qp‘* +qp°® + ¢°p?

1 7 1
TR it

" a2

64 32

1
P(l32_,=n)= L%_Z(E)" where L? = (1,3,4,7,11,18,29, .....)

And the sum over all L?_, is equal to 1 that

(o]

> Lﬁ—z(%)n 1

n=3

2.2.Distribution function of WY for either consecutive k ones
or k zeros for the first time in a two state Markovian trial

Let's define a sequence of Markov dependent Bernoulli variables
x;, with P(x; = 1) = p, P(x; = 0) = q and with Markov
dependence as following: P(x;4; = 1\x; = 1) =

aand P(x;,; =0\x; =0)=b

2.2.1 Probability distribution function of Fj

Theorem ( 6). the probability distribution function of FJ, is

e-ISSN: 2148-2683

P(Fr}—z =n)
0 n<2

_ {1 - (1 =BT (pa + gb)
[(1-a)(1 =BT (q(1 —b)a+p(l—a)b) nisodd

nis even

Proof. Starting with

P(F§ =2) =pp+qq =pa+qb

P(F} =3) =qpp +pqq = q(1 = b)a+p(l—a)q

P(F; = 4) = pqpp + qpaq
=p(1—-a)(1—->b)a+q((1-b)(1—a)b
=[(1-a)A - Db)](pa + qb)

P(F3 =5) = qpqpp + pqpqq
=q(1-b)A—-a)(d—b)a

+p(1—-—a)(1—-b)(1 —a)b
= [1-a)(1-Db)]lqg(1 = b)a+p(1 —a)b]

P(F} = 6) = papqpp + qpqrqq
=p(1l-a)(1-b)1—-a)(1—Db)a+

q(1-b)1—-a)(1—-b)(1—a)b
= [(1 - a)(1 - b)]*(pa + gb)

P(F§ = 7) = qpqpqpp + rqpapqq
=q(1-b)A1—-a)(1-b)(1—-a)(1—b)a
+p(1—-a)(A-b)1—-a)(A—-b)A —a)b
=[1 -1 -Db)]*[q(1 = b)a
+p(1 —a)b]

2.2.2 Probability distribution function of L,z1
Theorem (7). the probability distribution function of L,zl is

P(I3_,=n)=7Z, ,aa n>=3 whereZ,
=1 -b)Dp_y+ (1 —=b)bD,_,

andD, =(1-a)Z,_, +(1 —a)aZ,_,
n = 3,4,5,6,... and
Z,=p,Zy=q(1—b)+p ,Dy=qandD, =p(1 —a) +q
Proof. Starting with
(L2 =3) = {111} > P(L2, = 3) = ppp = paa = Z,aa

(L5 = 4) = {111,0111} - P(LZ = 4) = ppp + qppp
= paa + q(l - b)aa = Zzaa

(L5 = 5) = {0111,00111,10111} = qppp + qqppp + Pqppp
=q(1 - b)aa+ qb(1 — b)aa
+p(1—-a)(1 —b)aa = Zsaa Where Z,
=(1-b)D, + (1 —b)bD,
= p(1-b)(1—a)+q(1-Db)
+ (1 - b)bg
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(L2 = 6) = {00111,10111,100111 + 110111 + 010111}

= qqppp + pqppp + pqqprpp + ppqppp
+ qprqppp

= gb(1 —b)aa + p(1 —a)(1 — b)aa
+p(1 —a)b(1 — b)aa

+pa(l —a)(1 - b)aa
+q(1-b)(1—-a)(1-b)aa

= Z,aawhere Z,

= (1 -b)D; + (1 -b)bD,
=q(1-b)1-a)(1-b)+

pr(1—a)(1—-b)+ap(1—-b)(1—a)+ bp(1—->b)(1—a)
+qb(1 —b)

P(I3_, =n) = Z,_,aa.

Case 2.3. Wheni =4
The sequence as shown in Table 3.

Table 3: Sequence of Bernoulli when i=4

n [1]2(3]|4|5(6][7|8]9 10|11 |12 13
SI(14)0001124713244481149

From table 3, We define the third order recurrence relations

S(4) —_ ® (C)) C))
h =

Spo1t s, ,+s, 23 n=6 (2.7)

with the initial conditions
554) =0, sgl) =0, s§4) =0, sf) =1, s?) =1.

2.5 Definition 5. For any six real numbers ay, a;, a, by, b; and

b, , the sequences {wflg) o 1s defined recursively by

(3 (©)) 3
WO =ao,W1 =a , Wy =a,

2
3) (€3]
Wyo = Zbk Sptk—1
k=0

where s,(14)

n>3 (2.8)

is above definition.

Special cases.

1—a,=0,a;, =0,a, =1,b; = 1wherel =0,1,2
Then W(E3) =0 ,W1(3) =0 and Wz(g) =1

Wr(13) — ¥ C)} C)]

Sn—l + Sn + Sn+1 n=3

{Wﬁ}:zo is Tribonacci sequence
2—ay=3,a;,=14a,=3,by=3,b; =4,b, =7 then
w® =3, W =1 and W =3

w® = 3s® 4 4™ 4 7s®

n—1 n n+1 n=3

[oe]
1—o is Tribonacci — Lucas sequence

e-ISSN: 2148-2683

(€]

Notes: we can see comparing the previous values of s, /5 with
those values of FS) shown in table 3. This shows that sf:% =
F®

n
Theorem 8 The sequences {WS)}::O satisfy following
1- 1Y = F®), +2FQ +3F%, (2.9)
2— LY =38, - 2F, - FY (2.10)
3— L =2F® _F® 4+F®, (2.11)

Proof.

1- L® =35 +45® 4 75

_ ) 4) ) ) 4)
- 3(Sn—l + Sn + Sn+1) + Sn + 4Sn+1

=35 45 4 45

n+1

_ 2¢@® “® (€)] “® (€)]
- 33n+2 + Sr1+3 - Sn+2 - Sr1+1 + 4'Sn+1

=s® 425" +35™  where s%, =F’ Then

LY = F®, 4+ 2F® 4 39

+53P +4s())

3) — 2c® 4 04 _ 2c®
2— LY =357 +4s(P + 757 =3S.7,

— 35(4) + S(4) _ 5(4) + 33(4) _ 33(4) _ S(4)

n+2 n+3 n+2 n+4 n+3 n+2
= 3Sr(f+)4 - 2551‘:)3 - 3514‘22 = 3Fr(1?-,32 - 2Fr§?1 - Fr(13)
3 LY =350 + 450 + 75, =35, + 50 + 4s{),
= st(::-)z + 51(1?3 + 355::-)1 = 251(1?4 - 51(1?3 + 51(1?1

1D — 25® _p®

n+2 n+1

+F®)

Theorem 9 The generating function of sequence {WS)}n=0 is
given by.

D(X) = zwn Xn
n=0

ap+ (a; —ag)x + (a; —a; —ag)x* + (b, —a, —a; —ap)x’
+(b; —a, —a)x* + (by — a)x°

1-x—x2—x3
Special cases.
1— Whenay, =0,a; =0,a, =1,b; = 1wherel =0,1,2
X
then Dy = Z WrE3) X" =

1—x—x%—%x%

2

n=0
D, is generating function of Tribonacci
2 — When ao = 3,31 = 1,32 = 3,b0 = 3,b1 :4',b2 =7
- . 3 —2x — x?
then D(X) = Z Wwh XT = m
n=0
D(y) is generating function of Tribonacci — Lucas

Case 2.4. Wheni>>5

The sequence as shown in Table 4.
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Table 4: Sequence of Bernoulli when i > 5

n 5167|8910 11 | 12| 13 14 15 16 17 18 19
51(15) 1{1]|2|4|8] 15|29 |56 | 108 | 208 | 401 | 773 | 1490 | 2872 5536
51(16) O(1|1]2|4| 8 |16 31| 6l 120 | 236 | 464 912 1793 3525
51(17) 0Ojo0o|1|1|2]| 4 8 | 16 | 32 63 125 | 248 492 976 1936
51(18) 0jo0joO|1|1]| 2 4 8 16 32 64 127 253 504 1004
51(19) 0jo0jO0|O|1]|1 2 16 32 64 128 255 509
51(110) 0(0|0]0]0] 1 1 4 8 16 32 64 128 256
Fromtable4, SO =3i2s®  nx>i+2 212) W=l
with the initial conditions Theorem 11 ( Generating function of {W’}%_,,i>4 ) . The
Sr(li) —0,n=12..i—1 S(l) 31(21 _ generating function of sequence {WIEI)};',":O is given by
. -1 k
We can see comparing the previous values of SS:; ) with those ( )= z Wi x ko(aK — k1 — —ap)X
values of Fr(ll) shown in table 4. This shows that SS:; ) = F(l) I=x=xf = X!
i1 =4 (2.14)
Then FY = Z Fr(ll)k ,n>iand F? =0, Special cases.
k=1 1 — When a; = 0 wherej = 0,1, ...... .. ,i—2,a., =1,
n=12.i-3,FY = F¥, = 1,

7 hi-1
2.6 Definition 6 For any real numbers a; and b; the sequences
(W3 is defined recursively by

i+1
w® = Zbl w1 SED iy, =i,
W =a;,j=01,,i—1 (2.13)
bj,j=0,1...i—1
where s() is above definition.
Special cases.
1—Whena; = 0wherej=0,1,........ i—2,a_4 =1,
bj=1,j=0,1,........,i—1,m = 2 Then
wP=0,j=01,..,i-2wl =1
W = YL SO, n>i

{Wrsl)};‘,"zo is order — i Fibonacci sequence wherei > 4
2 —whena, =i,a; = lLaj=2a_,+1,j=23,..,i—1

bo = 3,by = 4,b, =i+by b =b;_, —
=1

1,j=34...,i—
Then Wy =i, W” = 1, W® = 2w, + 1,j =23, ..,
i+1

i i+1
Wt(ll) = Z bi_k+1 Sr(:.—i_)k

{Wrgi)}g’:() is order — i Lucas sequence wherei > 4

n=i

Theorem 10 the sequences {WS)};I”:O satisfy following

e-ISSN: 2148-2683

® ) X
ThenD(X) ZW 1_X_X2

Dl is generating function of order — i Fibonacci

—xi

2 —whenay=ia; =1la=2a_,+1,j=23,..,i—2

Z}(_=10(ak —adg-1 — --_ao)Xk

1-x—x2%—

Then D, = Z Wi x? = —

Dl is generating function of order — i Lucas

3. Conclusions and Recommendations

The sequences of Bernoulli numbers allow to obtained
Fibonacci and Lucas numbers.

New formula for sequences of Fibonacci and Lucas for a
run of n successes in a sequence of Bernoulli trials can be
obtained to a closed form for special values of the real numbers
aandb.

Obtained the closed form for the order -i Fibonacci and
Lucas and their generator function together.

Connection between Fibonacci and Lucas with the help of
Bernoulli sequence were derived.

We studied the probability distribution function (pdf) of the
waiting time (W (k)) problem both in independent and in
homogeneous two state Markovian trials and express the pdf of
W (2) for symmetric trials, we used a relationship with the 2t
order Fibonacci and Lucas sequence.

4. Suggestions

The researcher recommends using the k-order relationship
of the Fibonacci and Lucas sequences to study the probability
distribution function of the waiting time
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