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Abstract

In this paper, a finite element implementation of a recently proposed phenomenological constitutive model for rubber-like materials is
represented based on the fundamentals of continuum mechanics and rubber elasticity. The phenomenological model is first fitted to
the hyperelastic behavior of an unfilled silicon rubber subjected to five different uniform deformations. Then, a subroutine is written
to import the model into the finite element software and an unfilled silicon rubber sheet is numerically modeled in the commercial
finite element software. As performed in the experiments by Meunier et al (Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008)., the
rubber sheet is deformed 57.2 mm along the vertical axes in the simulations. Good agreement between the numerical model and
experimental data is obtained.
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Bir Fenomenolojik Yapisal Modelin Kaucuk Tipi Malzemeler icin
Sonlu Elemanlar Yontemi Uygulamasi

Oz

Bu makalede, kauguk tipi malzemelerin yapisal olarak modellenmesi i¢in yakin zamanda 6nerilmig olan bir fenomenolojik model
stirekli ortamlar mekanigi ve kauguk elastisitesi temellerine dayanarak sonlu elemanlar yontemi icerisine adapte edilmistir. Model, ilk
once saf silikon kaugugun bes farkli yiikkleme altinda gosterdigi hiperelastik davramiglara gére kalibre edilmistir. Sonrasinda modeli
sonlu elemanlar yontemi yazilimina adapte etmek i¢in altprogram yazilmis ve iizerinde delikler olan saf silikon kauguk levha yazilim
icerisinde niimerik olarak modellenmistir. Meunier ve digerlerinin (Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008) deneylerde

yaptig1 gibi kauguk levha simiilasyon igerisinde 57.2 mm dikey deplasmana maruz birakilmistir. Yapilan 6l¢iimlerde niimerik modelin
ve deneysel verilerin Ortiistiigli gorilmiistiir.

Anahtar Kelimeler: Kauguk tipi malzemeler, Yapisal modelleme, Hiperelastisite, SEY uygulamalari.
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1. Introduction

Rubber-like materials are a class of polymers having a wide
range of industrial applications ranging from tires to electronics,
textile to isolation systems. Due to their application capability,
their physical and mechanical characterization is crucial.
However, rubber-like materials, such as carbon-black rubber,
soft tissues, hydrogels, exhibit nonlinear inelastic features under
large deformation. As such materials can sustain strain up to 20
times of initial length (Sun, et al., 2012), their mechanical
characterization is complicated. Although, in literature, there
have been many constitutive models in different scales proposed
to describe the non-linearity and inelasticity of rubber-like
materials (Boyce & Arruda, 2000), (Diani, Fayolle, & Gilormini,
2009), (Steinmann, Hossain, & Possart, 2012), the background
of their complicated mechanical behavior is still indefinable.
Therefore, since the beginning of the 1900s, there have been
many studies carried out to identify structural properties of such
materials during the course of deformation.

Constitutive modeling based on the fundamentals of
continuum mechanics and rubber elasticity is a powerful tool to
characterize behaviors of the materials, which can sustain large
deformation. In general, constitutive modeling of rubber-like
materials can be split into two parts: micro-mechanical and
phenomenological. Despite higher computational costs and some
idealization approaches, micro-mechanical models get more
attention since they have interpreted the macroscopic material
behavior with the change of the physical properties during
deformation. This property is an important benefit compared to
phenomenological models. Some of the micro-mechanical
constitutive models for rubber-like materials are the 3-chain, 4-
chain, 8-chain, and unit sphere models (Steinmann, Hossain, &
Possart, 2012). However, in commercial applications,
phenomenological models are broadly chosen due to
computational cost. The commercial software, i.e., ANSYS®,

ABAQUS®, also contains some of the very important
phenomenological constitutive models ready to use.
The phenomenological models describe the macro-

mechanical behavior based on the fundamentals of continuum
mechanics and can be classified into two approaches: principal
stretch- and invariant-based models. Ogden (Ogden, 1972)
proposed a principal stretch-based model. The model is very
flexible and can describe the mechanical behavior of various
materials. Early strain invariant-based models are Mooney-
Rivlin type (Mooney, 1940). The simplest expression is known
as the neo-Hookean model that describes the material behavior
for moderate deformations. Among the strain invariant-based
models, Yeoh (Yeoh O. H., 1990), Gent (Gent, 1996), Yeoh and
Fleming (Yeoh & Fleming, 1997), Carroll (Carroll, 2011)
models are widely used in the literature. Recently, Blaise et al.
(Blaise, Bien-aimé, Betchewe, Marckman, & Beda, 2020),
Mansouri & Darijani (Mansouri & Darijani, 2014), and Darijani
& Naghdabadi (Darijani & Naghdabadi, 2010) proposed
successful phenomenological constitutive models.

In the present paper, the predictive capability of the model
proposed by Kiilcii (Kiileii, 2020) for complicated finite element
simulations is examined. Firstly, the experimental data of five
different loading modes are reproduced by the model having a
constant value of material parameters for each deformation type.
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Then, the model is implemented into finite element simulation
via subroutines. Lastly, the results of the numerical model have
competed against the experimental data.

2. Modeling

2.1. The Fundamentals of Continuum Mechanics

The continuum mechanics approach is an effective tool,
which does not consider discontinuities of microscopic systems.
It is frequently used to develop mathematical models of material
behavior to estimate the material deformation and motion. In the
following, basic terms of the continuum mechanics used in this
study are shown.

Let F be the deformation gradients that maps a material
point X in the reference configuration to a point x in current
configuration and shown as

x=FX 1)

Also, let ¥ = W(C,¢) be the strain energy function per unit
volume of a rubber-like material, with ¢ being some internal
variables. Now, considering that the rubber-like material is
nearly incompressible, the strain energy function can be
additively decomposed into volumetric and isochoric parts
(Flory, 1961) such as

lp(C‘ E) = U(]) + LpL‘so (C" E) (2)

where the first term on the right-hand side is taken into account
for the volumetric response of the material, whereas the second
term is for the distortional deformation. In Eq. (2), C is the right
Cauchy Green tensor, J is the volume change and C' is the
unimodular tensor describing the distortional deformation.

C and C' can be written as follows

C = FTF, 3)
¢ =J7?hc (4)

2.2. The Constitutive Model

In practice, to appraise the accuracy and applicability of a
particular constitutive model, a simple experiment is performed
and the results are compared with the data reproduced by the
model. To the best of our knowledge, an ideal phenomenological
constitutive model should contain the following requirements:

1. Include few material parameters as possible,

2. Describe different relatively complicated deformation
behavior,

3. Reproduce the behavior of different materials.

However, the macro-mechanical models found in literature
often suffer one or two of the above-mentioned requirements.
Some of them contain more material parameters, some of them
are not able to characterize the material behavior under different
loading modes (see (Steinmann, Hossain, & Possart, 2012)).
Such drawbacks result in difficulties in the structural analysis,
which is carried out in the finite element simulations.

Recently,  Kilci  (Kulct, 2020) proposed a
phenomenological constitutive model that represents material
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behavior with a constant material parameter for the classical
Treloar experimental data (Treloar, 1944). Also, experimental
data of rubber by Sasso et al. (Sasso, Palmieri, Chiappini, &
Amodio, 2008) is successfully reproduced by the model. Lastly,
experimental data of different materials, such as collagen and
fibrin (Storm, Pastore, MacKintosh, Lubensky, & Janmey,
2005), is utilized to check the model accuracy.

This model is represented as

w=y [f(ll,oc) 4 (l—12)+1n (% F(I1) + 1)] 5)

where I; and I, are the first and second strain invariants of right
Cauchy-Green tensor, respectively, u is the shear modulus, « is
the scalar material parameter and

fCx,y) = g[ey[x-ﬂ -1]. (6)

The strain invariants can be calculated as

L=2+2+2 7
I = N2AZ 4+ 2222 + A22%, (8)
where A; (i =1,2,3) is the principal stretch. The principal

stretches can be written for different uniform deformation modes
as shown in Table 1.

Table 1. Principle stretches

A 1, PR

Uniaxial A A0S 205

Equibiaxial A A A0S
Pure shear A At 1

Finally, by considering the incompressibility condition for
rubber-like materials, the first Piola-Kirchhoff stress is written as

v o1
P = 0_7\i_7\_ip (i=123), 9)

where p is the Lagrange multiplier. The first Piola-Kirchoff
stress for the uniaxial, equibiaxial, and pure shear deformations
are represented as

1 1 (—a[lz—s])
Puniaxial = 21 (/1 - /1_2) ((X e@h=3D 4 ¢ Ie 16 + 1), (10)
1 —aliz-3]
Pequibiaxial =2p (/1 - ﬁ) ((X e@h-3D 4 allze( 12 ) + 1), (11)
—a[l;-3]
Ppureshear =2u (/1 - %3) (06 e@lh=3D 4 o 6( 12 ) + 1). (12)

To implement the model into finite element application,
Abaqus® is utilized. The model is coded for user subroutine
UHYPER.
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3. Results and Discussion

The aim to constitute a material model is to predict material
behavior under complicated deformations. Implementing a
material model into the finite element simulations is significant
to perform such analysis. In this contribution, the Kiilcii model is
implemented by writing a code and importing the code into a
commercial finite element software. Experimental data of
unfilled silicon rubber by Meunier et al. (Meunier, Chagnon,
Favier, Orgéas, & Vacher, 2008) is utilized to check the accuracy
of the model in finite element simulations. Therefore, the model
is first fitted to the five different uniform deformations. In Figure
1, the fitting of the model against uniaxial tension/compression,
equibiaxial tension, and tensile/compressive pure shear tests are
represented. The model is able to reproduce all of the
deformations with constant values of material parameters.

a)

[ ]

uniaxial
equibiaxial ------
pure shear - — -

Stress (MPa)

uniaxial
pure shear - — -

Stress (MPa)
L
h

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Stretch

Figure 1. Comparison of the Kiilcii model against the
experimental data of unfilled silicon rubbers by Meunier et al.
(Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008) (u =
0.1, = 0.28) a. tensile tests, b. compressive test

The error margin of the model for this particular comparison
is calculated as

2
EI‘I‘OI‘Z = %Zé\lzl[Pmodel(/li) - Pexp (/11')] ’ (13)

where N is the number of experimental data. In Table 2, the
mean error margin of the model in comparison to the
experimental data shown in Figure 1 is represented. A relatively
small error margin is achieved for the model comparison.
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Table 2. The mean error margin of the model compared to
experimental data by Meunier et al. (Meunier, Chagnon, Favier,
Orgéas, & Vacher, 2008)

Deformation Error (MPa)
Uniaxial 0.027
Equibiaxial 0.051
Pure shear 0.040
Compressive uniaxial 0.097
Compressive pure shear 0.022

61.5 mm

measured path

82.5 mm 82.5 mm

(0,0) = 62 mm ™

thickness: 1.75 mm

Figure 2. A rubber specimen simulated using the finite element
method

Further, an unfilled silicon rubber specimen is accounted for
in the finite element simulations. Figure 2 represents the
dimensions of the rubber sheet tested in the experiments,
whereas Table 3 shows the locations of the holes placed on the
rubber sheet (Khiém & Itskov, 2016). There is a cut between Cs
and Cs.

Table 3. Location of the holes on the rubber sheet

X(mm) | Y(mm)
C1 475 21.2
C2 14.0 23.0
C3 315 40.5
C4 475 59.0
C5 145 58.0
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Figure 3. A rubber specimen simulated using the finite element
method: a) experiment, b) simulation

2.8 -
experiment ]
2.6 model

2.4 Ll
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1.6 X

1.4
1.2 ~

X—coordinate (mm)

Figure 4. Comparison of the numerical model with the
experimental data taken from the measured path

The rubber specimen discretized by 6566 linear hexahedral
elements of type C3D8H is fixed at the bottom and subjected to
the vertical deformation of 57.2 mm as performed in the
experiment (Meunier, Chagnon, Favier, Orgéas, & Vacher,
2008). Figure 3 shows the deformed configuration of the rubber
specimen in the experiment and simulation. In the simulation, a
deformed configuration that is similar to one obtained in the
experiment is captured. This fact indicates that the model
qualitatively describes the experimental data.

In Figure 4, a comparison of the numerical model and the
experimental data taken from the measured path shown in Figure
2 is illustrated. In the numerical model, the values of the material
parameters are considered to be 4 = 0.1, @ = 0.28 as in Figure
1. The deformation along the measured path in the numerical
model and the experimental data shows a good match.
Therefore, the results of the finite element simulation show
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quantitatively good agreement with the experimental data as
well.

4. Conclusions and Recommendations

Rubber-like materials are commercially widely-used, and
the characterization of their properties is therefore significant. In
this contribution, the numerical implementation of a
phenomenological model proposed by Kiilcii (Kiilcii, 2020) is
studied. The model is first fitted to the experimental data of five
different uniform deformations by Meunier et al. (Meunier,
Chagnon, Favier, Orgéas, & Vacher, 2008). Then, the model is
utilized in the finite element simulation by writing a user-defined
subroutine. A silicon rubber specimen having five holes, in
which two of them have a cut in between, is accounted for in the
numerical analysis. The model is discretized by the
approximately 6500 elements and loads are applied as done in
the experiments. Qualitatively and quantitatively good
agreement between the numerical model and experimental data
is obtained. Further, the predictive capability of the model may
be checked on the fiber-reinforced rubber-like materials.
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